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ABSTRACT

Elastic pp and pj differential cross sections have just one, not multiple dips. The filling up of the
diffraction zero by the real part of the scattering amplitude which gives rise to this dip structure is
shown to be related, by analyticity, to the asymptotic behaviour of the amplitude in the momentum
transfer, q2. The relationship is similar to that of q*-duality, with the Glauber model giving the low q2
description of the scattering amplitude in its analyticity domain, q2—0, while the Chou-Yang model
describes it in the asymptotic region, q2-—ee, This combination fits the data better, at all energies and
for all momentum transfers.

It was pointed out in a recent note (1) that the Glauber model(?), if properly applied, predicts one,
not multiple dips in the pp and pp elastic differential cross sections at high energies. The essential idea
is that the Glauber model involves an approximation in which the ground state wave function alone is
used. If this drastic truncation of the overall wave function expansion is compensated by
proportionately incréasing the strength of the coupling to the ground state, one is led to a Bjorken-type
lirnit: the density of the ground state wave function is vanishingly small but the coupling to it tends to
infinity so that their product remains finite. In this limit, the Glauber model reproduces correctly the
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one dip structure observed experimentally in the cross sections(3). Only the definition, but not this
simple interpretation of the diffractive limit, was given in ref. (1).
The approach of ref. (1), is however, only partially successful:
(1) It does not fit the data at high momentum transfers.
(2) It gives the scattering amplitude an ad hoc real part in order to fill up diffraction zeros.

These two facts are intimately related: the asymptotic g2 behaviour of the scattering amplitude
reflects on its local analyticity properties and vice versa. But up to now, so much attention has been
paid to shadow scattering and the corresponding imaginary part of the amplitude that this important
analyticity relationship has been overlooked. We interprete the various attempts to apply QCD and
quark-parton model concepts(4-6) to pp and pp diffraction scattering as bearing, indirectly, on this
point. From these concepts, there is some suggestion as to the possible form of the relationship
between the asymptotic q2 behaviour of the amplitude and its local analyticity properties which are
responsible for diffraction zeroes and dips in the differential cross section. It is based on ideas
motivated by q2-duality(7-8), which has been quite succesful elsewhere(9).

Here is the proposal. The Glauber model gives the dominant contribution to the imaginary part of
the scattering amplitude and the Chou-Yang model(10) the dominant contribution to its real part, for all
q2. The one dominates the complete amplitude in its analyticity domain, q2—0, and corresponds to a
hadronic description in a q2-duality type picture. The other dominates in the asymptotic region,
q2—eo, and corresponds to a generalised Born term of a quark-parton model description, in the same
duality picture. The idea is that if this models were separately and independently unitarised they would
provide equivalent and dual descriptions of the scattering process. An alternative, but approximate,
analytic procedure is to combine and interprete them, as proposed here, as the predominantly
imaginary and real parts, respectively, of one and the same amplitude.

The result of this combination is shown in Figs. 1 and 2 for Vs=53 and 546 GeV. The dashed
curve is the prediction of the Glauber model alone while the dotted curve that of the Chou-Yang model
alone, with a dipole form factor® . The full curves are their sum. Our notations are(l)

dopp(s,t) / [dt| =7 | T(s,0) [2 (1a)
T(s,0) =iJo dbb Iy bV t])T (s,b) (1b)
T(s,b) = Tg (5,b) — i Tey(s,b) (10)
——h‘ﬁ (s,b)
T (6,b) = Npp(s:b) + 1 2A 2 (1-n(sb) (1 = © ) (1d)
-h . (S>b)
Teysb)=1-¢ ¥ (le)

* To check the reliability of our approach, we have also used a purely empirical fit to the proton-electromagnetic
form factor{11) in the Chou-Yang amplitude, and obtained practically the same results as those in Figs. 1 and 2.



i0?

10-

[

10~

L] ] ¥ L I 1 T ' L) I L 4 L] L L l L L ¥ 1] l 1 L L v

a)

o 109
> L

w -]
u b (-] g
A wri_ e -
E C oD ¢ (-] ]
E w--‘ ‘- "-.‘_-........f‘f 0 o ° o
\ i 1*.."0....“'-9.. i

c Rl —
g =) L LR ]
10 | ¢ ® ? P
1 1 i ] l 1 i 1 1 l 1 L ] 1 l i 1 1 ] ' i 1 1 1
L) l k5 L L) L) l L] L] L] L) ll 4 ¥ L LS l T ¥ L j
c) |
10? ]
10-? ) -
o ]
104 |__ \Qqﬂ% -
e ]
‘, -
0 | ~\?\9?9\E
1 1 ) ] J l 1 i | 1 l 1 1] 1 1 |‘ i [ 1 1 l 1 [ 1 1 I ‘- | ( G e V 2 )

[ 2 b 6§ 8 10

FIG. 1 - Plot of the elastic differential cross section do(s,t)/dt against the momentum transfer t, for CM
energy Vs=53 GeV. Data are from ref, (3¢). The dashed curve is the prediction of the Glauber model alone; the
dotted curve the prediction of the Chou-Yang model alone. The full curve is their sum as described in the text.
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FIG. 2 - Same as in Fig. 1 for pp scattering at Vs=546-630 GeV. The data are from Ref. (3d).



where
_ Opp(s) . -b2/2ap,(s)

D" ap(s) (2a)
o€ -b2/2R
hg (s,b) = _5q®) e (s) o
4n R(s)
O,(5) u2 ]
hey (s,b) = 4'5; yr (1b)3 K5 (ub) 20

where K4(z) is the modified Bessel function. Opp(s) is the pp total cross section at CM energy Vs and
ay(s) the corresponding slope. Oy (8) is a constant multiple of the total cross section of the scattering of
the proton off constituents; R(s) is the corresponding slope. M is the mass scale in the dipole form
factor (1+ | t | / p2)~2, A is the coupling strength mentioned in the introduction and | t|=q?is the
squared momentum transfer.

The theory leading to Eq. (1d) is described in Ref. (1). Eq. (le) is obtained by dropping the term
Tlpp(s.b) in Eq. (1d) since, by assumption, the Chou-Yang amplitude Tcy(s,b) is contributed entirely
by Born terms of scattering from constituents. The Glauber amplitude Tg(s,b) on the other hand,
contains this leading term which represents shadow scattering from the proton as a black disk. It

dominates the diffraction peak for t — 0. The values of the parameters used in the fits are shown in
Table L.

TABLE I - Values of the parameters used in the fits in Figs. 1 and 2. G stands for Glauber amplitude
and CY for the Chou-Yang amplitude.

Vs Cpp a, A2 R m . g -
(GeV) (mb) (fm)2 (fm)ZZ! (GeV) (mb) )

53 36.3 0.49 41.0 0.17 1.648 0.034 0.110

546 53.7 0.66 41.2 0.24 1.633 0.107 0.245

The remarkable property of this combined amplitude is that the continuation of its asymptotic real
part into the low g2 region fills up the diffraction zero of the imaginary part. There is thus no need for
ad hoc complexifications of the amplitude through energy dependent parameters, such as Opp(8) —
Opp(s) (1 —i0p) and Gy(s) — Gq () (1 —10ty). This is the analyticity constraint. It shows how the
local and asymptotic behaviours of the scattering amplitude are related in a q2-duality type manner: It
is argued that this kind of analytic correlation is, theoretically, to be expected. Figs. 1 and 2 shows
that experiments also support it, for all CM energies and over the entire range of available momentum




transfers. The real part of the amplitude is therefore not everywhere negligible with respect to the
imaginary part. The dip in the differential cross section, marks the transition from the low q?2 region,
where the imaginary part is dominant, to the high q2 region, where the real part takes over.

Lastly, some comments, on the values of the fit parameters in Table 1. The most striking facts are:
(i) The mass scale in the dipole from factor is of the order of two proton masses, not of a proton

mass, as in the fits to the proton electromagnetic form factor.
(ii) The cross section O'qw(s) in the Chou-Yang amplitude Ty (s,b) is of the same order as that in the

Glauber amplitude Tg(s,b) and both much smaller than the cross section of about 50 mb used in fits of
the Chou-Yang model to the ISR data in Ref. (12). Small values of Oq are consistent with scattering

from point-like constituents.
(iii) The product | A |2 Oy(s) is approximately constant over the energy range Vs =53 — 600 GeV.
This is consistent with taking the Bjorken type limit | A [2 —>eo, G5(s) — 0 and | A [2 6 (s) finite.
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