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ABSTRACT

The relation between the nuclear spatial and momentum densities is studied by means of their
integral representations in terms of uniform distributions. Examples of this approach are given for
the harmonic oscillator model of 4He and 160, with and without Jastrow correlations, and for the
single-particle potential model of 40Ca.
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1. - INTRODUCTION

The complete many-body nuclear wave function y(ry,...rs) determines both the nuclear density
p(r) and the nuclear momentum distribution n(k). Since a single-particle wave funtion can be
expressed either in the spatial or the momentum representation, these being Fourier transforms of
each other, there is a correspondingly close relation between p(r) and n(k). This is not however
always true for particular nuclear models which use approximate solutions of the many-body
problem, e.g. it has been shown quite generally [1] that no Hartree-Fock calculations can reproduce
simultaneously both the density and the momentum distributions. The physical reason for this is
that the nucleon-nucleon interaction has short-range features that affect the wave functions at short
distances and introduce short-range correlations (SRC) in the motions of the nucleons and also raise
nucleons above the Fermi sea. These short-range correlations result in high-momentum components
in the momentum distribution and these cannot be given by a model that includes only the long-
range properties of the nucleon-nucleon interaction. It is thus possible for a model to give excellent
density distributions and yet fail to give the high-momentum components of the momentum
distribution. Since these are important for many interactions it is necessary to develop a simple and
reliable method of calculating nuclear momentum distributions.

Several methods have been developed [2-6] to include the effects of SRC in nuclear density and
momentum distributions. These give more accurate ground state wave functions, particularly at
smaller distances, and are thus able to reproduce simultaneously both p(r) and n(k). However these
calculations become prohibitively complicated for all but the lightest nuclei.

Recently ihe coherent fluctuation model (CFM) has been developed [7-9] and this gives a
relation between p(r) and n(k) that enables n(k) to be easily calculated for all nuclei. It has already
been shown that n(k) obtained from the CFM has the desired high-momentum tail and agrees with
some experimental data. The CFM thus includes some of the effects of SRC. It is thus desirable to
test the CFM by applying it to light nuclei for which more exact calculations are available.

While in the CFM model the relation between p(r) and n(k) is given but there is an open
question about the character of SRC included in this model, in the approaches [2-6] the situation is
just the opposite: the nucleon-nucleon correlations are included explicitly (by means of the Jastrow
correlations factors or nuclear forces) but the link between p(r) and n(k) still remains unrevealed.

The aim of this paper is to throw light on the relation between p(r) and n(k) in different
approaches and with various kinds of SRC involved in them. For this purpose in Section 2 a
method is developed which allows to compare the spatial and momentum densities on the same
footing, by means of weighting factors in the integral representations of these densities in terms of
uniform distributions. In Section 3 this method is applied to the harmonic oscillator model of 4He
and 160, with and without Jastrow correlations, and to the 40Ca nucleus in the single-particle
potential model [10,11]. Some comparisons are made with the CFM. The conclusions of the work
are given in Section 4.



2. - INTEGRAL REPRESENTATION IN TERMS OF UNIFORM DISTRIBUTIONS

The distributions p(r) and n(k) may always be written in the form:

p(r) - Io dx wy (x) (4/3 70 x3)1 @ (x-1), ¢))

nk) = [, dpw, () (437 p3)10 (pk) @

with the weighting functions

wp (x) == 4/3 1 x3 dp(ryvdr |, , 3)
Wy (p) =~ 4/3 1 p3 dn(kydk |y, 4

0 (x-1) and O (p-k) being the step functions (unity for positive, zero for negative arguments)
describing uniform distribution of radius x or p in variable r or k, respectively.

With the above choice of numerical factors the weighting functions are normalized in the same
way as the corresponding density and momentum distributions:

Jo dx W () =4n [, dre2p (r) )
lo dpwy(p)=4n [y dkk2n (k) (6)

However we consider it more instructive to choose for n(k) another integral representation in
terms of uniform distributions:

[e.+]

n(k) = 1/(2m)3 [, dx wy () 4/3 1 %30 ((wx)—k) ' (7)
with
Wn(x) = = (21)3 (4/3 1 x5/0)~1 dn(k)idk |p_oy, (8)

o being an arbitrary number. Then the weighting functions for the density and momentum
distributions are both functions of spatial radius x. One may thus expect that comparing the weights
Wp (x) and w,(x) the relations between the spatial and momentum densities will become more
transparent and this can provide additional information on the unique functional relation existing

between these two quantities.
The normalization of w(x) is:

oo oo

lo dx wy () = On203) 47 [, dk k2 n(k) 9)



Further on, to facilitate comparison with (6), we choose o= (97/2) 173,
The weighting functions w, (x) and wy, (x) can be calculated in any nuclear model. Generally

they will be different since wy, (x) peaks at
Ig= (91!2/2)1/3 1/1(1:, (10)
kg being the Fermi momentum, while Wp (x) peaks at the value

Ra = (A/4)13 1 (11)

which is close to the nuclear radius.
The maxima in w p(x,) and w,(x) given by Eqs (10) and (11) reflect overall features of nuclear

structure resulting from the long-range properties of the N-N interaction. Notice that the value of rg

is roughly independent of the mass number A. When the SRC are switched on there is only a small
effect on the spatial density p(r) (at small r) hence also the shape of Wp(X) should not be

considerably changed. However, the situation can be quite different for the function wy(x) where
the SRC may induce an additional structure due to the rapid change of the momentum density n(k)

at high values of k.
Before going to a numerical analysis of wp(x) and wy(x) in some nuclear models let us point out

that in the CFM [7-9] a particularly simple relation between the two weighting functions has been
imposed. In this model the nucleon density and momentum distribution are determined as follows:

p() = Jo dx f(x) A @3 mx3)10(x-r), (12)
n(k) = 4/2n)3 J, dx £ (x) 43w x36 (kg (x) ~k) (13)

where kg (x)=(97A/8)1/3 1/x is the Fermi momentum for A nucleons uniformly distributed in a

sphere of radius x.
Thus in the CFM the two weighting functions are the same:

Wp(x) = wp(x) = A f(x) (14)

f(x) being a weighting function of uniform distributions in the density matrix.
Taking into account Eqs (13, 14) together with (3) the following functional relation between
n(k) and p(r) is obtained [7,8]:
Rk)
n(k) = (4n/3)2 1/A 4/2m)3[6 [, drp (1) r5~RE(k) p (R) ] (15)

with

R(k) = (9nA/8)1/3 1/k
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The CFM produces a high-momentum tail (at k >2 fm-1) in n(k) which could mean that the
model effectively accounts for some type of SRC. The very nature of this effect might be revealed
by comparing Eq. (15) with momentum distributions obtained in nuclear models including such
correlations explicitly. Also the study of the weighting function Wp and wy, in correlated nuclear

models would be of great help in recognizing the origin of the high-momentum tail in CFM.

3. - NUMERICAL ANALYSIS OF WEIGHTING FUNCTIONS

As an illustration we calculate Wy (x) and wy, (x) by means of Egs. (3) and (8) in the case of 4He

using: i) the single-particle model with harmonic oscillator wave functions and ii) the Jastrow

correlation model of Bohigas and Stringari [4]. The results, shown in Figs. 1 and 2, have several
noteworthy features: the uncorrelated Wp (x) and wy, (x) although they peak at nearly the same value

x=1.9 fm (which corresponds via Eq. (10) to kg = 250 MeV/c) do strongly deviate from each other
at small values of x. The coincidence of the two maxima is rather exceptional though not accidental
feature (see Eqs (10) and (11)) of the 4He nucleus.
The difference between the two functions for x < 1.0 fm reflects the lack of ‘high-momentum
components in the single-particle model. In fact, in the Jastrow correlation model the situation is
changed. The correlations imply mainly a change of Wy (x) at small x, producing a second narrow
peak at x = 0.6 fm which is due to the change of the slope of n(k) in the regionk =2.0-2.5 fm-1.
On the other hand, the change of Wy (x) due to the correlations is quite small, as shown in Fig. 2.
Thus the correlations lead to an overlap of W, (x) and wy, (x) over a wide range of x. This could
explain, at least for 4He, the presence of high-momentum components in the CFM as the simulation
of short-range correlations.

The same calculations have been repeated for the 160 nucleus using the result of Malecki and

Picchi [2,3] and the results are shown in Fig. 3. As anticipated in Section 2 the main peak of the
function wy, (x) remains at the same position while that of Wp (x) is shifted to greater values of x in

accordance with Eq. (11). In the presence of SRC the function Wy, (x) acquires an additional narrow
peak at x = 0.6-0.7 fm. In the same time the "uncorrelated" broad maximum in wy (x) gets
somewhat lowered. Thus although the two functions Wy and wy, no longer overlap, their values, at
least for 1.5 < x < 2.5 fm, are closer to one another in the correlated case that in the single-particle
model. This explains why the CFM contains some high-momentum components which are however
weaker than those, induced by the Jastrow-type SRC, as shown in Fig. 4.
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FIG. 3 - Weighting function w(x) for 160
in the single-particle model (dashed line)
and in the Jastrow correlation model (solid
line), and wy(x) in the single-particle model

(dotted line).
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Judging from the results for 4He and 160 the two-maximum: svtructure of w; (x)is a
characteristic feature of the correlated momentum distributions. The broad bump at x=x, reflects
long-range effects while the narrow peak at x ~ 0.7 fm is a signaiﬁfe of the short-range part in the
N-N interactions. Unfortunately these general properties cannot be confirmed for heavier nuclei
since the correlated calculations then become prohibitively complicated.

We have also calculated the weighting functions Wy and wy, for the 40Ca nucleus in the

framework of the single-particle potential (SPP) method [10,11]. In Fig. 5 the results for these two
functions calculated by means of (3) and (8) and the relations

PO =A% L @+ 1) Ay [Rym]2

(16)

nlj ' }
n@) =141 % @+ Dy Ry ]2, | . an
Rugjk) = @im12 (i)l [y dr12jj (ko) (), _ (18)

are presented. The radial functions Rpy;(r) and the occupation num’b“ers‘ﬁﬁfj are taken from the SPP
method [10,11]. Unlike the case of the 4He Wy (x) and wy(x) are quite different over the whole

range of x. It should be noticed that the two weighting functions for 40Ca confirm the general
properties expressed in Eqs (10) and (11).
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FIG. 5 - Weighting functions wy, (solid line) and wy, (dashed line) for 40Ca
calculated by the single-particle potential method of Malaguti et al. {10,11].

‘4. - CONCLUSIONS

This work shows that the relation between the nuclear density and momentum distributions can
be studied by means of the weighting functions originating from the integral representation of p(r)
and n(k) in terms of uniform distributions.

In particular, it shows more clearly the effect of correlations on the nucleon momentum
distribution. The function w,(x) shows two peaks if the nucleon are correlated but only one if they
are not correlated. In the former case, one peak is associated with the Fermi momentum and does
not vary from one nucleus to another. The other peak, at a smaller value of x, is attributable to the
correlations, which produce a change in slope of the nucleon momentum distribution n(k). Thus the

weighting function enables the feature of the momentum distribution to be connected with nuclear
structure and with the correlations. The weighting function Wy peaks at a value connected with the

nuclear radius and for light uncorrelated nuclei is very similar to wp(x), as in the coherent

fluctuation model which is not the case for the heavier nuclei.
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