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ABSTRACT

The various schemes for calculating inner shells X-ray absorption speclra
are reviewed and shown to be mutually equivalent. The unifying framework is provided
by the multiple scattering (MS) theory. In particular the formulation based on the
Green's function approach allows one under certain conditions to write the absorption
coefficient as a sum of an infinite number of terms which have a direct physical
meaning. The conditions under which this expansion is possible is discussed and as a
consequence a unifying scheme of interpretation of X-ray absorption spectra is
proposed. Finally an approximate formula for the rapid evaluation of the n=-th order
term of the expansion is given.

INTRODUCT ION

Starting from the general expression for the X-ray absorption cross-section
of a cluster of atoms

E , 1
R) = lnw? E ) 2 &(E - E 5 =2 Mo = — 1
o(E) = Wn? E a g | (vl p.D Lo, ) 1% 8B - B+ By ) (a=e?/fic = 737) (1)
>
where E is the photon energy, ;; its polarization versor and D is the dipole
transition operator (atomic units are used throughout), there are basically three
different approaches for evaluating this quantity



-2

1 - the scattering approach where one calculates the time-reversed
scattering wave function w for -the photoelectron in the final state with energy

€ = E - Io’ where Io is the ionization energy, suitably defined for the system under
study ([1, 27).

> > =3 >
2 - The Green's function approach, whereby ¢(E)~E Im (win|p.D G p.D Iwin) S0

that the problem reduces to the solution of the equation (e - H) G = I, where I is
the unit operator, H the hamiltonian of the system and G is the related Green's
function, with incoming wave boundary conditions [3].

3 - The band structure approach for periodic systems, where the scatteringi
states are replaces by Bloch states so that the sum over the final photoelectron
states becomes an integral over the appropriate Brillouin zone [4].

We shall show in the following that in the framework of the multiple
scattering (MS) theory all three approaches are numerically equivalent. Only their
language is different, according to the different points of view taken to describe
the photoabsorption process.

It will turn out howeveér that the expression for the absorption cross
section obtained by the Green's function approach is the most suitable for tackling
structural problems. In particular we shall show that, under certain conditions, the
inner shell X-ray absorption spectroscopy provides a straightforward, direct means
for obtaining structural information about higher order correlation functions in the
systems under study. In this sense geometrical information concerning bonding angles
and positional correlations around the absorbing atom can come within experimental
reach. The field of application that: opens up in this way is extremely reach and it
is now time to exploit all the potentiality of the technique.

The scattering approach

In this approach the sum over thé continuum of the final states is performed
first. The energy conserving delta function s¢lects one particular final state w
normalized to cne state per Rydberg :

ole) = 4w (e v 1)) o] (] p.B ]y, )|

- + W
where ¢y = (y ) (neglecting spin), in order to impose the physical boundary
conditions for the photoabsorption process [1] and win is an inner shell core state.

It is useful to treat both the atomié case and the cluster case :

a) Atomic case

Assuming the atomic potential to be of the muffin-tin type, the angular
momentum L=(1,m) 1is conserved in the scattering process. In the external region,




where V(r) = 0, the solution of the Schredinger equation is

+ . > . +
wL(r,c) =Jdr) + 1 &, H ()
where

g

EY ) + . + -* .
JL(r) = jl(kr)YL(P), HL(r) = hl(kr)YL(P), NL(r) = nl(kr)YLtP)

k = Ye and jl(x), nl(x), h; = jl(X) + inl(x) are the usual Bessel, Neumann and Hankel
functions. JL represents the incoming wave, HI the scattered yfve. This solution is
to be matched smoothly to the solution (’1RL(') = (ZlRl(r)YL(r) of the Schrodinger
equation inside the muffin-tin sphere of radius p, which is regular at the origin.

d

One finds, defining W [f,g) = rg' - gf', where ' = I r
Ww(j,, R,]
tl = eidl simSl = -—~1 1 = Cl
W he, R ]| rep
() ) 1 l(l)
(p) = jy “(kp)cotgs, - ny “(kp)
so Lthat
> , K .,
0.0 = Mt a (e + 1) ](RL|p.D ]win)l2 e ® = (2)

where we have explicitly factorized the density of hhe‘final states k/m coming f[rom
the normal1zatlon to one state per Rydberg. For simplicity we assume that the dipole
operator D selects only one final state, as for K-edge absorption. The generélizatiwn
only adds complication to the formulas.

b - Cluster cage
We assume again that the potential is of the muffin-tin type. In this case L
is not conserved, so that now one can describe asymptotically the physical situation
as an incoming L partial wave J (r ) referred to the center of the cluster where the
absorbing atom is located, pIuo a set of outgoing waves having all L values,
e
emanating (rom each site j located at Rj with amplitude Bﬁ(h)
+ » > i + b > > >
. . j y 4 .
= BY (L) H vo= - R,
wk (r,e) Jk(ro) + 1 %L L (L) IL(rj) (rj I Rg)

Inside the muffin-tin sphere Jj, in analogy with the atomic case, the
solution which matches smoothly with the external solution is given by
. j >
) Bi(h) Ri (rj). Since the initial state is confined at site o and assuming again

K-shell photoabsorption, we find »

0., (€) = ln*a (e +1 )l(n (*)] p-D |¢ )| 2 5 IB (L)

1( 3



As in the atomic case, l(;) is the solution of the Schrgdinger equation
inside sphere j that matches smoothly to d (r Ycotg di - N (r } at the muffin-tin

radius pJ and 6{ is the 1 wave phase shllb of the potential inside sphere j. However

since now the angular momentum is not conserved and we are calculating total cross

sections, we have to add up incoherently all amplitudes BJ(L) squared relating to
different L incoming waves [2].

The scattering amplitudes B%(E) satisfy the following equations

i ol AJ g S S 1.
B (L) -t 321 G Bl (L) = ) JLE (4)

where ti is the t-matrix of the atom located at site i, Géﬂ is the amplitude of
propagation of a spherical wave of angular momcntum L emanating from site i for
arriving at site j with angular momentum L' and J is the amplitude of the incoming

wave J (ro) when referred to site i, With the he]p of the reexpansion theorem [5] one
finds —

ij ‘
U—‘“ THLT Yt ' (kR ) ~
R r L 1n ij YL"(Rij) (5)
Jij bl' 5 2 )]"(kR )
LL* 1
L' : > > >

where C°\, = j daq Y (ﬂ)! ()Y n(®) are the Gaunt coefficients and Ryy = Ry - RJ' It
i useful for’ the tuture to daflne G, S o.

LL'

Eq. (4) has a simple physical meaning. It tells that the total L wave
,cattered amplitude at site 1 is the sum of the scattered wave due to the incident
J (r ) wave plus the waves that have been scattered by all other sites Js travel from

here to site i with amplitude th, and finally get scattered at site i with

ampli tude tia

By introducing the matrices

- iy i cHJ
T = T 613 S @ G =G L
and the vectors %(y) = (L), J(L) = Jlr we can write Eq. (4) as
> -+

(I = T_G) B(L) = T_ J(L)
a - a -

The scattering approach is useful in diocussing shape resonances. In this
case it happens that only one scattering amplitude BL(L ) for a particular L becomes
big at a certain energy, all the other amplitudes with L= L being negllglble. This
means that the L wave incoming from infinity (in a time reversed picture) can easily




overcome the centrifugal barrier, penetrate the cluster potential and attain a
>

sizable amplitude Bz(hr)Ri(ro) at the atomic core of the photoabsorber. An example is

the ir = 3 resonance in diatomic molecules (No' 02) [6].

The Green's function approach

In this approach one transforms Eq. (1) as

) i _1[_ . O ____l_,___.. + > 2 o
o () = oy, (€) = & lim Im (winlp«D i PP ‘win) a2 (e + 1) a
n—)o+
(6)

- 4

.- N - ) EOY . ‘+ T > -
Y (e + Io)a Im J d’r dr win {r) p.D (r) G (r,r') p.D (r') wﬂn (r')

where (e - H) G+ = I or in the coordinate representation
(¢ + €~V (F) G (F M) =8 (r, ")

where V(F) = ) Vj{;) is the collection of the muffin-tin potentials. Since win(;) is

a core state localized at site o. Eq. (5) shows that we need calculate the Green's
function only for r and r' inside the muffin-tin sphere located at o. ‘

+
The solution for G in this.case is [3]

6" (h, Py =~k IR ()t R(F) -k I RS (F) . o
]Ll l L I.J LA i)
L L
where, as before, at the muffin-tin radius p

+ > S .
RL(r) ~ JL(r)cotgél - NL(r) (regular at the origin)
SL(F) ~ JL(;) J (singular at the origin)
smoothly in F.
Insertion of Eq. (7) into Eq. (6) gives
v . ‘ + 3 R _ S . P
- (e) = 4w e+ I)almk {[(Rb|p.D Lo, )35 Yy (winlp.D IRL)(SLID«D L))

When the potential is real, RL and SL are real so that
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ogp (€) = 4 (e + I )a kx[(nblbnb |'¥,,)1? In ty (8)

Due to the optical theorem

[t ? = Im ty

Eq. (8) reduces to Eq. (2)

b) Clu*ter case

- 0w in o D e e

Again we quote the result of ref 3]

+‘ > -:‘ T ¢ [o] e [e]s] .0 -:' _ o, (o] -)l
G (r, r') K %L'RL r) T, R, (rl) E RL(r IS (r!)
where now
20 . (X - T G,'«-1T 1% [T -1 _ G)-Ijoo
LL! ' a ' ‘aLL? a LL'

With this solution

*> . > 0. [b} <+ (o]
dople) = 4 m (e + I )a Im k {[(R |p ) Iwm]2 Ll - (win | p.D | R)) (S | p.D [ v;,))

L
‘ (9a)
vhere the superscript o in w;n reminds that the core initial state is located at site
OID

Again for real potential
. O > ¥ O yq2 _— -1. 00
ogp(e) = 4w (e + IJo k [(R]p.D v, )3% Im [(2 T, 6 'T) 9)
Using Eq. (4) it is possible to prove the generalization of the optical
theorem valid for the atomic case [7] :

o =1
E |B, ()] * = Im [(1 - T, G) Ti]LL

which allows us to recover Eq. (3).

We shall see that Eq. (9) is very. useful for analysing the photoabsorption
cross section in terms of multiple scattering events.




Band structure approach

In an infinite regular lattice (for simplicity we assume all sites to be
equivalent), the KKR method [8] writes the Bloch function as :

” -~
W) = 1 a™Q) R () (10)
q L L L
with the same definition of RL(;) as above, n labelling the band indices.

The coefficients ub(a) satisfy the homogeneous equations

E' (t11 b0 " GLL,(E)) me(E) = 0 (11)
where tl = eiél sin 61 is the usual 1 wave atomic t-matrix, common to all sites,
and
id prd . -+ -+
GLU(E) =_:i ; eiq-(Rl‘--RJ) Gliij. -3 'e‘qu.(Rc}—nj) ‘:ﬁ"
1, M jro

since now the second sum is independent of the initial site o.

A non trivial solution of Eq. (11) demands that

pet || t7! (e) - G (d;e) =0

which determines the band dispersion c=cn(a). Correspondingly Eq. (11) provides

a:(a). Using the expression (10) for the final states wavefunctions. Eq. (1) gives

u 2 3 > [s) 2 v‘ - +o0r N,

OBS(c) Un? k (e + 1)a I(RLIp.D|lWin)| 1 Gr)? J d*q &(e cn(q]’)laL(q)l2
n BZ

where v is the volume of the unit primitive cell.

It is now a matter of labour to show that :

v ) ~ » nery, v N i B e
- E &0 szd a8 (e = e (a))a ()]? = Im Fap Jr;; d*q (t G(a)),,

s

, N e Te B ele)
= Im [(Ta G) ]LL = Im ‘L
where now site o is any site in the lattice. This last relation establishes the
sought equivalence of the band approach to the other methods.



The multiple scattering series

For simplicity we have assumed up to now absorption from K-shell core
states. For’unpolarized absorption the generalization to an initial core state of 1
angular momentum is straightforward (9). For the atomic absorption we find

Oat () = (1 +1) (1;;1 (e) + 1 (::1.‘1 (e)

at
vhere

121 LY 1
Y [T wim2 3
oy (&) np 4m% (e + I) o sin 5, Jo P® Ry, (r) vy (r) dr

having introduced the absorption coefficient ale) = nabo(e) and the density n _ of

ab
the photoabsorber in the medium.
For a cluster, remembering Eq. (9), we have
1+1, -1, -
a (e) = (1+1) ué (e) xl+1(c) + 1 ui e x1 (o) (12)

1,
where now u, (e) indicates the atomic absorption coefficient of the photoabsorber and

1 1 1 . -1
() = — - o o
x (e 5 E) Im [ (1 1rao) Ta]lm im (13)
1

is a structure factor carrying the information about the environment. Notice that, if
G=0 (absencé of environment), then y (e) = 1.

The factorization between atomic absorption and structure factor is possible
only if the potential is real. For a comp}ex potentiil the more general expresiion
Eq. (9a) shpuld be used, since now HL(P) and SL(r) are complex. The physical
interpretation of the theory becomes more involved in this case. In the following we
shall only discuss the real case,

As it is, Eq. (13) is not very useful for getting some physical insight into
the photoabsorption process. However if one can perform the matrix inversion by
series » ® N

(L -T G =13 (T.G) (14)

1 a
n=0
then the physical meaning of the process becomes transparent. In this case

o,

O I R IR IR S (15)
g n n
n=0 n=2
with
1 1 1 v NP | P I
y. (g) = L Im {(T_G)'T_] (16)
n 21+1 Sin’éi m a a’lm lm

and xé (e} = 1, Xy (g) = 0, since G is off-diagonal in the site indices. Clearly
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x;(c) represents the partial contribution of order n to the photoabsorption
coefficient of the cluster under study, coming from all processes where the
photoelectron emanating from the absorbing site o is scattered n-1 times by the
surrounding atoms before escaping to free space after returning to site o. In other
words only closed paths beginning from and ending to the photoabsorbing site are
possible. This last condition is due to the fact that one is calculating total cross
sections and that the initial state is localized at site o. It is this peculiarity
that entails the site specificity of the X-ray absorption spectroscopy and makes il a
unique tool for studying structural problems and for probing higher order correlation
functions in condensed materials. In photoelectron diffraction where this condition
is not operating, the interpretation of the experimental data becomes more
complicated.

The development in Eq. (15) is nothing else that the familiar MS expansion
with spherical wave propagators. For example, using Eq. (16) and Eq. (5), one finds

o]

1 1 2ié o ' §'..J o
X2 (e) 21+1 j?no m%'m' Im {e"" "1 Glm 1'm t1' Gl‘m' 1m )
; 2 © . 3 ' IENIAY 2 + b
- (-1} I {e2161 7Y e, uren -0 Y (21men) (é é é ) nr?(knjo)h
jeo 11 T, 1 / )
1 1 2 150 ' ' 31 X . 3
X (€) = = 2 Tm | e© il G0 J ’j J J jv i" o l
3 2141 m ‘jvz*o jl!EJl 1?:'m" l'im' lm 1'm' th Gl'm' 1"m* t]_" Glumn 1m J{

2162 ot
=4n2Im (771 ) 1 1 (21'+1) e (21meny o3 @

j+0 J=i 171" 1 1n

&

11 1 LB IR L "yl £y 1n 1] "
LLbe ) Bes) Beal {1 E Rrewn eren arenim®

1 lll

~

))

3 o~

1v1M) + + .
. (ﬁ'ﬁ"a) By, (KR, oy (RO By W (KR ) Yy, (R ) hy (KR, )Y
m — — —

R,
n jo

where we have introduced 3-j ind 6-j symbols as defined in the literature [10] and
the "reduced" Hankel function nl(p)

1 ip

+ 1+ + e
1 = =
hy (p) =i" " hy (p) -

1
!

(1+k)! 1 .
T k(3 an

It is possible to write down more cumbersome expressions for the higher order terms

xn(e) (n>3) using the (3n-3)-j symbols. However their practical usefulness decreases

with increasing order. It is much easier to generate them by using a MS program that

already calculates the matrix (ImTaG) and can perform the matrix inversion either
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exactly or via the series expansion Eq. (14),

For application to data analysis we
wish to remark that the functional

expression of the quantities X, (e) 1is quite

simple, despite the complexity of their definition. In fact a little reflection shows
that :
Loy 1 Pn ; tot | o 1 Pn
X, (e) = I})ﬁ Ak, Rij) Sin (k JF(pn vas) ¢ ¢n(k,Rij)) (18)
n
where the sum is over all possible paths pn of order n defined above and RtOt is the

corresponding path length. This form follows from the fact that each GiJ

n
LL! carries a
factor e '1j independent of L, L', contained in the Hankel function (see Eq. (5))

that can be factorized. By defining a new matrix

ij _ -ikR . 1]
G = ¢ 13 G i

and putting

1 pn 1 pn Iy
An (k9 Rij) E’XP {i¢n(kl Hjj)} = 21,‘,] {Z E 4’. "o Z Z

m J,#0 j,*j, Jner Laeeblyy,

=L Ly, 1, =L,L, "1, " JL, L

GO Ja ‘t‘j’ G‘] WJa th Gjnx 01 ‘L (19)

where the indices jk run over the particular path Py
n-1

(18), with R;Ot = )

we arrive at the expression

Rj j - As a vconsequence, under the assumption that the MS
n i=0 i

series converges, one can always fit an experimental spectrum with a series of EXAFS
like functions.

It is obviously of' practical importarice to rind approximate expressions for
the SW propagators GLI' that would allow a rapid computation of the amplitude and
phase functions defined in Eq. (19). We have found that the simple approximation

~ ~ ip
13 * e 4 -
GLL' = g YL(Rij) Y (Rij) pjj rl]'(pij) (pij 13 Rij)
‘ ) (20)
fa, ., 7{(2p
X 110 J172 % L
111,(p) = [1 + 2;1‘ ] e (Gll'— L{1+1) + 1' (1 +1))

generally reproduces quite well the exact EXAFS X5 (c) term (single scattering) both
in amplitude and phase, but fails to reproduce (sometlmes by a factor of two) the
amplitude of the: exact x3(c) term (double scattering). Figs. 1 and 2 illustrate this
comparison in the case of MnOL| tetrahedral cluster.

The usual PW approximation is
obtained by putting f

]l"(p) = 1, but it can be shown to be never good, not even at
the highest energieé. The reason is that the phase correction goes 1like

all,/(zp) - lmax >> 1, since p = kR ~ lmax by the well known semiclassical argument

of the impact parameter. See Ref. [11] for more details on this aspect. Clearly more
work needs to be done for a more accurate approximation.
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FIG. 1 - Exact xlz and x]3 signals (dotted curves) for MnOy cluster, compared with 8.W. approximation

(Eq. 20) (full lines) and P.W. approximation (dot-dashed lines).
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FIG. 2 - Same as Fig. 1 for 1(3»21 and ¢31 phase functions.

The importance of being able to detect the xi(c) signals in experimental
data comes from the fact that they provide information about the n-th order
correlation 1functi.ons 8n(ﬁlo"' ﬁn-lo)' In fact what is actually measured is the
quantity <x (e)>, where the brackets indicate the configurational average with
respect to the distribution of the positions ﬁi around the reference center ﬁo
(photoabsorber). In other words

1

@ n-
e =1+ I [ @R g (R

> 1 -+
n 10"'Rn—1o
n=2 m=1

> >
(21)
) *n (e, Rl""’ Rn-lo)

That one can actually detect terms other than <X;(E)> in X-ray absorption
spectra, has been proved possible in some particular cases [12]. The real challenge
is to deconvolute Eq. (21) to obtain the functions B, Future effort should be put
into this kind of analysis.
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The question of convergence of the MS series : discussion and conclusions

The interpretation of the X-ray absorption spectra in terms of MS pathways
of the phdtoelectron in the final state is meaningfull only if there is numerical
equivalence between the two sides of Eq. (14)., This implies that the expansion on the
r.h.s. must converge to the 1.h.s. relative to some convergence criterium. From
matrix theory one knows that absolute convergence (relative to a suitably defined
matrix norm) is ensured if p(TaG) < 1.

This criterium is extremely useful since absolute convergence entails the
property that terms of order n in the series higher than a certain n. (which can be
very low in favorable cases) do not con&tribute appreciably to the sum. Now p(TaG) is
a continuous function of the photoelectron wave number k = Ve, which goes to zero as
k goes to ﬂnfiqity (since |ti]* 0 in this case) and tends to infinity as k approaches
zero (since Gpﬂ, is singular at k=0, due to the presence of the Hankel function in
the definiticn of Eq. (5)). As a consequence it must cross at least once the value

p=1. Moreover the nearer to 1 is its value, the slower is the - convergence. of the
ser les,

The implication of the above considerations are immediate. At extremly high
energles, where ] tﬂ ~ O,iwe have only atomic absorption (xi ~0, nz 23. At high
energies, where still | tll <« 1, also p(TaG) << 1 so that only the X5 (¢) term
contributes to give structural information. This is the single scattering (EXAFS)
regime, that probes only the pair correlation function. At lower energies, where
p(TaG) is still less than one and of the order of, say, one half, higher order terms
X, (e) begin to contribute to the absorption coefficient, typically n = 3,4. This is
an intermediate MS (IMS) region that can even span as much as 100 + 150 eV and
provides information about g. and 8y At still lowg{ energies several things may
happen depending on the behavior of the phase shifts 61 and the photoelectron damping
and their interplay. The spectral radius p(TaG) may continue to rise, as the energy
approaches the edge from above, so as to reach one or stay very near to it (normal
situation). In such a case very many paths contribute to the shape of the absorption
coefficlent or an infinite number of them, depending on whether p(TaG) is less or
greater than one. This is the region of the shape resonances where the scattering
power of the environment is strong enough that
times. It might be adequate to call it full mul
only a global information in this case.
also occur, D(TaG) may stay near one at
as the energy decreases toward the edge.

it can scatter the photoelectron many
tiple scattering (FMS) region. One has
However a rather unexpected. situation may
some intermediate energies and then decrease
This situation is encountered in the Cupper
K-edge spectrum, where in the first 50 eV above the edge the EXAFS signal Xx,{€) alone

is capable :
Y band calculation

50 + 200 eV [11]. This
to the peculiarity of the relevant atomic phase shifts that are small
at low energy and cross /2 (| b~ 1) at - 130 ev.

contributions show up in the absorption coefficient.

of reproducing the experimental spectrum and the exact
[13]. However deviations begin to show up in the energy range
behavior is due

Around this energy MS
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Summarizing we can say that at least in principle any X-ray absorption
spectrum contains all three regions mentioned above. Their order with increasing
energy and their energy extent are abviously system dependent. The only feature
common to all systems i3 that in the limit of high energy the IMS structure should
continuously merge intoc the SS region and finally reduce to a pure atomic absorption.

The experimental situation presents additional complicating factors some of
wirich however have a simplifying effect on the shape of the absorption spectrum, with
a corresponding loss of Informational content. It is clear that the finite core hole
lifetime, the limited experimental resolution, the damping of the photoelectron in
the final state (extrinsic losses), the thermal and configurational disorder, when
present, all conjure up to reduce the size of p(TaG) at such a point that sometimes
only the SS term survives as the dominant signal. There are already indications that
in some crystalline materials (Si, Al) lifetime effects alone are sufficient to make
the series convergent in the whole energy range except perhaps 10-15 eV near the edge
[14]. The use of the Fourier transform technique in following the organization of
crystalline order with annealing temperature in amorphous thin films of Ge grown on a
substrate finds its rationale in this kind of considerations [15]. On the other hand
shake-up and shake-off processes of intrinsic origin tend to add features to the
spectrum that modify the expected one electron shape. In this case the analysis in
terms of MS paths should be done after the removal of these extra features. We have
found an example of this situation in analysing the MnOu cluster [12].

In any case a careful theoretical assessment of all these effects is highly
desirable and work is In progress. In particular the a priori garantee that the MS
serles is convergent gives confidence that one can parametrize the experimental data
by a series of functions of the type shown in Eq. (18) with a well defined expression
for An and ¢i. This poinf is essential if one wish to address the problem of the
determination of the gn(Ri )'s for n>2. Otherwise alternative ways for analysing
photoabsorption data must be devised.
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