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Spherical-wave corrections in X-ray-absorption
novel high-energy approximation which replaces t
in excellent agreement all the way to the absorpt
is recovered in terms of distance-dependent backscattering
XAFS of Cu yields results in close agreement with the corresponding e
scattering contributions in XAFS and spherical-wave corrections in an

are trealed similarly.

Extended x-ray-absorption fine structure (EXAFS) is a
valuable technique for determining local atomic structure
in molecules and solids.! The usual approximations in EX.-
AFS analysis'* are the small-atom, plane-wave approxi-
mation (PWA), and the restriction to single-scattering
paths. Recent evidence® suggests that the discrepancy be-
tween this EXAFS theory and experiment in x-ray-
absorption near-edge structure (XANES) is due primarily
to the failure of the PWA. This is corroborated here. It
has also been thought that correcting the PWA requires
exact calculations. We show, in fact, that the appropriate
high-energy approximation is not the PWA, but rather an
asymptotic theory which is almost as simple that includes
spherical-wave corrections.® This approximation is termed
the spherical-wave approximation (SWA). We find that
the SWA yields excellent agreement with exact calcula-
tions all the way to the absorption edge, thereby giving a
unified treatment of XAFS, ie, both EXAFS and
XANES. As recognized previously’ the exact theory can
be recovered by replacing the backscattering amplitude
S(#) in the PWA EXAFS formula [Eq. (1) below] with
an effective, distance-dependent backscattering amplitude,
Sf{x,R). Here we give an explicit expression for f(x,R) in
terms of atomic phase shifts, together with an accurate
SWA formula. The smooth dependence on 1/R permits
J{x,R) to be tabulated for analysis purposes. Similar
SWA’s are developed for multiple-scattering terms in
XAFS and for spherical-wave corrections in photoemis-
sion. A model calculation of the K-shell XAFS spectrum
for Cu is presented as an initial application.

Before describing our approximation, we briefly recall
the results of single-scattering XAFS theory. For simplici-
ty we restrict our attention in this paper to K-shell absorp-
tion in polycrystalline materials. The normalized XAFS
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fine structure (XAFS) are incorporated using a
he plane-wave approximation and is found to be
ion edge. The single-scattering theory of XAFS

amplitudes. Application to the K-shell
Xact treatment. Multiple-
gle-resolved photoemission

spectrum is defined in terms of the X-ray-absorption coeffi-
cient u as X(E) =(u — po)/u,, where Ho is the atomiclike
background. The PWA formula for X(E) is®

2E)=-3 | k(,fz)' sin[2kR +25,(0) +®le ~ R, ~20%",
R

(D

Here the sum is over scattering sites R with backscattering
amplitude f(x) = | f(x) |e'®, k =/ is the photoelectron
wave number (in atomic Rydberg units, & =2m =¢2/2
=1), e=E —E, is the energy relative to the muffin-tin
zero in Rydbergs and 8,(0), the / =1 phase shift of an ab-
sorbing atom at R =0, The cxponential decay factors are
due to the mean free path A and to the Debye-Waller fac-
tor (assuming small disorder), respectively.

The starting point for our SWA is the exact single-
scattering XAFS formula??

XE)=—Ime™ L 5 G (R),(R)G, ,7(~R)
m.L R

V)

where G; ; «(R) is the dimensionless free propagator in an
angular momentum L=(/,m), and site R basis, and
1L (R)=e'"sing; is the dimensionless atomic ¢ matrix at
site R. Formally G, is given by the expansion

G R) =4z 3 (Y Y | Y 2h 5 (R) 3)
L

where A" (R)=i'h* (0) Y, (R), h;* is a spherical Hankel
function, and p=kR. Carrying out the L sums in Eq (2
using Eq. (3) and 3-j symbol identities gives the Miiller-
Schaich XAFS formula.’

The PWA theory can be derived by using an extreme-
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high-energy limit for the G’s in Eq. (2). Our SWA con-
sists of replacing this form with a better high-energy ap-
proximation, based on rapidly convergent, asymptotic ex-
pansions of modulus and phase similar to the WKB ap-
proximation, which takes into account the centrifugal bar-
rier seen by the photoelectron. We then obtain an approxi-
mate XAFS formula that has exactly the same form as Eq.
(1), but with f(x) replaced by f (n,R).

Qur derivation is summarized as follows; details will be
presented elsewhere:® Choosing the z axis along the R
direction, we may define G, ;' in terms of its extreme-
high-energy behavior and a dimensionless correction fac-

tor glfj"" b (p) -g‘,(ull "D(p) as

- D e m
Gy =4n¥s RYoR) =gt ()3, e, (4)

R=+R3z.

In the extreme-high-energy limit, ie., p>/(/+1)+/
x(I'+1), g,ff") (p)— 6pmpas p— oo. If one uses this limit
to evaluate Eq. (2), the conventional PWA EXAFS for-
mula is recovered. Unfortunately, this extreme limit can-
not be achieved for all / and is therefore not the appropri-
ate high-energy limit for EXAFS. The physical reason is
that the centrifugal barrier introduces a phase correction
in each partial wave of order /(/ +1)/kR which is not
negligible. To see this note that /-wave scattering is only
important when the turnin int is smaller than the
muffin-tin radius, ie, VIU+1)/k <Ryr. Hence /(/
+1MkR <VIT+1)Rm1/R, but this is not negligible for
all significant /, especially for small R. Although this
phase error grows with /, 1; becomes smaller, and hence the
"X AFS still converges to the PWA at sufficiently high en-
ergies. Using the PWA together with an ad hoc energy
shift, such phase shifts can be accounted for only in some
average sense, since this prescription introduces an /-
independent phase correction varying as 1/k. However, a
significant improvement at all energies results by using our
SWA as we now show.

We find it advantageous to calculate g',f’")(p) in two
ways, depending on whether / or /' is small or large: (1)
For small / or I, the number of nonvanishing coefficients
(¥L¥;~Y;? in Eq. (3) is small, so G, ;' reduces to a sum
over a small number of spherical Hankel functions. For
example, for /=1 (ie., for single-scattering, K-shell ab-

sorption), g™ (p) is given exactly by

(1 +1 .)C[ + ] (p) +1€1 -1 (p)
(0) = L

& (p) 20+1 '
1/2

(5a)

10+1)
2

ci+1(p) —c-1(p)

(1) =
&n (P) 21_‘_1 B

(5b)

where ¢;(p) are the correction factors to limiting high-
energy form of spherical Hankel functions, ie., h* (p)
=i "e'"/p)e;(p). Replacing the exact ¢;(p) with that
from the leading terms of asymptotic expansions of the
modulus and phase of h* (p), we obtain®

2 172 A
c,(p)sg,%”(p)ﬁ[”'f?] et (6)
p

where L=1(I+1). Note that when l-wave scattering is
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significant (ie., ¢ non-negligible), I/ P<RmT/R <1,
which implies the high-energy limit. Subsequent terms are
smaller than those retained in Eq. (6) and can be neglect-
ed. The dominant spherical-wave correction is seen to be
the non-negligible phase shift L?/2p. Formulae similar to
Egs. (5a) and (5b) can be developed for larger / or I, but
they involve an intermediate / sum and hence become pro-
gressively more cumbersome.” Thus we adopt an alterna-
tive procedure: (2) For general I or I'=1] (i.e., for higher
shells Ly, L, M, etc., and for multiple-scattering correc-
tions) we develop® new asymptotic expansions for the
modulus and phase of g,f"") (p), starting from a more gen-
eral integral equation for G The leading terms are

172 1/2
L+ | e L2L7?
gl;?) (p) =~ |1+ ¥ el[l. +(L )Zl/ZpJO[___z_ ,
P P
(7a)
L)V ,
g]f‘“) "p) == p2 } ei[L2+(L )2 =2¥/2p , (7b)

where Jo is the Bessel function of order zero. For
nonshadowing multiple-scattering contributions to X(E),
one also needs propagators for general directions R=3.
Applying rotation matrices to Eq. (3), and keeping only
the dominant term, we find

G, (R) = 4x¥} (R) YL'(ﬁ)E[Tpg,f9) () . @)

The leading corrections to Eq. (8) are proportional to
g (o).

An exact single-scattering XAFS equation can now be
obtained by using Eqgs. (5a) and (5b) in (4) and summing
over m. The result now has the same form as Eq. (1), ex-
cept that the backscattering amplitude and phase ® are re-
placed by f(x,R) =| f(x,R) |e/®R) where

fGR) -=-]i—z (=D'QI+1)y
i

x (1+1)C‘{2+1 (kR)+lC[2—| (kR)
20 +1 )

As R — oo the term in brackets in Eq. (9) becomes unity,
and f(x,R) reduces to f(x). We emphasize that this re-
sult is exact. Our approximate (SWA) expresssion for
S(x.R) results by replacing ¢;,(p) in Eq. (9) with the
asymptotic formula in Eq. (6) and thereby avoids the ex-
plicit calculation of spherical Hankel functions,

We have applied our SWA to a model calculation of the
K-shell XAFS of fcc Cu. The potential and lattice con-
stant used are those of the self-consistent linear augment-
ed-plane-wave band-structure calculations of Ref. 10.
Thus the core-hole potential is neglected, a reasonable ap-
proximation for metallic Cu. To achieve good conver-
gence, we used 0=</=<19 phase shifts and 34 shells of
neighbors. Finally, the resultant spectrum was Lorentzian
broadened using a constant imaginary potential,? =4 ¢V,
To illustrate the importance of spherical-wave effects we
plot in Fig. | the amplitude and phase of the effective
backscattering amplitude f(x,R) given by Egs. (9) and
(6); this is compared with the usual definition,

9
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FIG. 1. (@) Modulus and (b) phase of the effective back-
scattering amplitude f(x,R) vs wave number k beyond k¢ for

the first (solid line) and fourth (dotted line) neighbors in Cu

(R, =4.80 and R, =2R;=9.60 bohrs) and for the standard
backscattering amplitude, f(x) =7 (x,00) (dashed curves). For
other R, f(x,R) is given approximately by interpolation in 1/R.

SGx) = f(r,0). At k == 10 a.u., I,y was increased to 29
for better convergence. Note that there are sizable correc-
tions to the amplitude and phase at low energies. Since the
phase difference ®(R) — & is slowly varying at high ener-
gies, the PWA can eventually approximate the SWA, but
it requires an (unphysical) ad hoc energy shift to do so.

In Fig. 2 we compare our SWA result for X(E) both
with corresponding exact results, and with band-structure
calculations.'® We have included, in addition to single-
scattering terms, multiple-scattering contributions due to
shadowing®’ for the fourth, eighth, and twelfth shelis.
Note that the SWA and the exact results are practically
indistinguishable all the way to the edge (=7 ¢V for Cu).
Thus the high-energy regime where the SWA is valid is
indeed reached rapidly, ie., within several eV of the
muffin-tin zero which is comparable to threshold energies.
Note too (cf. Ref. 7) that XAFS theory agrees fairly well
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FIG. 2. K-shell EXAFS spectrum X(E) for Cu as calculated
using SWA formulae for single-scattering and shadowing correc-
tions (solid line), the corresponding exact formulae (Ref. 7)
(dashed line), and the LAPW band-structure approach (Ref.
10) (dotted lin). All spectra are broadened by a Lorentzian of
half-width n =4 eV. The absorption edge begins at =7 ¢V.

with band-structure calculations for ¢ < 10 Ry. However,
significant deviations are evident in the EXAFS region
beyond about 10 Ry, which cannot be fully explained by
shadowing corrections.? We will discuss general (i.e.,
type-1 and type-2) multiple-scattering corrections® using
the SWA formulae Egs. (7a), (7b), and (8) in a subse.
quent paper.®

Finally, we note that analogous SWA can be developed
for other physical processes. For example, angle-resolved
photoemission'"'? also exhibits EXAFS-like oscillatory
structure and spherical-wave corrections are substantial.
The intensity of a beam of outgoing p waves at large dis-
tances Ro™Rok, with interfering single-scattering contri-
butions from scatterers at sites R, is given by I«lé-k
+ 3R R(f(8,R)/R)e*RU—cos0) |2 Hore the angular
dependence of the outgoing p wave is Yio(t)~e¢- 7,
8=cos " '(R-k) is the scattering angle; and f(6,R) is the
effective scattering amplitude given by

F(0,R) = % S QI+ D P (coso)g? | (10)
i

where P; is the Legendre polynomial of order /. Our ex-
pression for f(6,R) differs from the PWA formula'' by
the factor g (p); a SWA results by evaluating (10) us-
ing Eqgs. (5a) and (6). Applications of Eq. (10) will be
given separately.'?

In summary, we have introduced a new, efficient high-
energy approximation of XAFS which replaces the PWA
yet is accurate all the way to the absorption edge. Re-
markably, XANES can be treated as a high-energy
phenomenon. This was not recognized previously because
of the failure to incorporate spherical-wave effects correct-
ly at high energies. The appropriate limit leads to simple,
analytical forms for the electron propagators, even when
spherical-wave effects are important. Compared to the ex-
act formulae, our SWA is simpler and hence faster compu-
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tationally with little loss of accuracy. These advantages
are especially important for multiple-scattering contribu-
tions; for example, for the calculations presented here in-
cluding shadowing, the SWA is more efficient by a factor
of about 20 on a CRAY-1A computer. By compar-
isom,'>! other formulations seem unnecessarily complicat-
ed; also, due to various uncertainties in the theory (e.g.,
muffin-tin corrections, and many-body effects) even the
“exact” treatments are only approximate at low energies.
The standard EXAFS formula can be recovered and ex-
tended by using, in place of f(x), the effective scattering
amplitude f(x,R) defined in Eq. (9). Because S(n,R) is
an atomic quantity and is smoothly varying in 1/R, it is
conveniently tabulated. We plan to do so for a number of
elements.® Finally, our approach yields a unified treat-
ment of XAFS, valid for both EXAFS and XANES. Be-
cause it permits XAFS data to be analyzed all the way to
the edge using standard techniques,! it should improve the
utility of XAFS for determinations of local atomic struc-
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ture, particularly for low-Z atoms and/or large disorder.

Note added. McKale, Knapp, and Chan'® have recently
calculated backscattering amplitudes S (x,R) based on the
exact Miiller-Schaich formula [cf. Eq. (9)], confirming
their utility in practice.
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