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ABSTRACT

A dipole magnetic resonance has been predicted in deformed nuclei by a two-rotor model, as a state in
which the nucleus rotates while the proton neutron symmetry axes stay a fixed angle in a scissors-like
configuration.

This resonance has been also predicted in the VPM and in the IBA, and has been experimentally
confirmed by high resolution electron scattering in three regions of the periodic table, i.e. the deformed rare
earth nuclei, the f75-shell nuclei 46:48Tj and the actinides.

I will report the theoretical description in terms of the two-rotor model and the RPA, and I will give a
survey of the experimental status,

1. - INTRODUCTION

As it is well known the E1 giant resonance is a collettive mode existing in all nuclei. It has a simple
semiclassical description in terms of translational oscillations of protons against neutrons(1),

This two-fluid picture suggests the existence of another collective mode which can occur only in
deformed nuclei. Protons and neutrons can be assumed to form two separate rigid bodies of ellipsoidal
shape, free to rotate independently around a common axis with opposite velocities. In such a two-rotor
model (TRM) the restoring force generated by the displacement of protons against neutrons gives rise
classically either to relative rotational oscillations or to a configuration in which the nucleus rotates while the
proton-neutron symmetry axes stay at a fixed angle in a scissors-like configuration (Fig. 1). This latter state
is strongly excited by M1-radiation through the coupling to the convection current(2),

The existence of this magnetic resonance, which has been predicted also in the VPM®) and in the
IBA®™), has been proved for the first time by a high resolution electron scattering experiment(S) in 156Gd,
and it is by now confirmed in three regions of the periodic table, i.e. the deformed rare earth nuclei(6), the
f775-shell nuclei(?) 4648Tj and the actinidies(®).

While there is little doubt that the magnetic resonances found experimentally correspond to the scissors
mode, a detailed understanding of the related phenomenolpgy is still lacking. The present situation is in fact
more complex than that of the E1 mode.

Unlike the E1 state, the M1 state is bound, so that instead of reproducing a broad pick the theoretical
models have to reproduce the pattern of fragmentation, which is remarkably modest. Although the
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investigation of the excitation spectrum at higher energy has not so far been completed, it seems that with a
few exceptions the M1 strength is concentrated in few fragments of much smaller intensity than the main
level and very close to it®). In the few exceptions the M1 state rather than fragmented, is splitted into two
fragments of comparable strengh. This has suggested(10) that also in these cases one cannot talk of
fragmentation in the ordinary sense and that the observed splitting might be related to a triaxial deformation.
Now there exists no systematic theoretical description of this pattern of fragmentation, although the
spectrum of 156Gd is fairly reproduced in a HFB calculation(11).

FIG. 1 - Classical motions in the TRM: (a) rotation around the §
axis; (b) rotational oscillation around the & axis.

Other theoretical features specific to the Ml-mode which complicate its description are
superconductivity, deformation and strong coupling of the scissors mode with quadrupole oscillations(312).

The mentioned reasons of complexity are, however, also the reasons why the Mi1-mode is the ‘potential
source of a lot of information about nuclear structure.

In these lectures I will report the theoretical description in terms of the TRM and the RPA, and T will
give a survey of the experimental status. I will not discuss the important subject of the IBA approach, apart
from reporting that it yields the same eigenstate equation for the M1-mode as the TRM, and for mentioning
its success in some quantitative predictions.

I will be detailed in the description of the semiclassical TRM in spite of the existence of sophisticated
calculations, because it is very transparent and leads to an understanding of the physics of the scissors-
mode which is then conceptually simple to describe in terms of microscopic models.



2. - THE TWO ROTOR MODEL

If relative translational motion is neglected, the classical Hamiltonian of the TRM is

2 2
1 1
— 1P L™ Ly @.1)

I‘:[ =
27, 2,

where I(P), I(n), Jp and J,, are the angular momenta and moments of inertia of protons and neutrons, while
V is the potential energy.
It is now convenient to introduce the total an gular momentum I

[=1I0 + 1),

2.2)
S = I(p) - I(n),
and rewrite H as
1 2 A Jn =/ P
H=s —(0% $9+ —-P 1.5 +V, 2.3)
2 47, Jp
where
47, J.
J= 2P (2.4)
Jp+.ln

We assume the potential to depend on the angle 26 between the symmetry axes {®), {(™ of the proton
and neutron ellipsoids

cos(20) = {®.{m) (2.5)
It is therefore natural to introduce this variable along with a set of other variables necessary to identify
L®), {®). These variables may be the Euler angles «, fi, yof the intrinsic frame defined by
@) x {n
= —2— | (2.6)

O+ L@

L mt————

The correspondence {(®), {®} = {a, B, y, 0} is one to one and regular for 0 <0 < /2.
The variables ((®, {) = {a, B, ¥, 0} are not sufficient to describe the configurations of the classical
system. However, they describe uniquely the quantized system owing to the constraints

@ _ 0 _
J[c o= IC @ = 0, 2.7
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appropriate to rigid bodies with axial symmetry. These constraints are automatically satisfied if we take
wave functions depending on {®), {(® only.

We quantize by replacing I and S by their Cartesian operator realizations and then perform the change of
variable ({®, {M) — (o, B, ¥, 0). This change of variables is a unitary transformation provided the scalar
product in the new variables is defined by

2 . m 2n w2
< yly'> = j docj stin’B,[ dyJ. d(20) sin (20) y * (0fy0) v '(afye). (2.8)
0 0 0 0

The properties of this transformation are given in the second of the refs. (2), where it is shown that the
transformed S operator and Hamiltonian are

Sg =i 0/08, Sy = - cot @Iy, Sg = —tan 61y, 2.9)

H=1/2] ) 2+H,,

Hy=1/(27 ) [cot20 Tr 2 + tan2 0 1,2 - 92 /262 - 2c01(26)  / 30 I+ Gn=I @1
(2.10)
[tand Iely- cotd InTy + il 9/0 ] + V.

We assume an harmonic approximation for the potential which, due to the geometry of the system must
have the form

1/2CO2, 0 <0< /4,
V()= (2.11)

12C[nr2-0]2, ni4 <o<nn.

3. - THE EIGENVALUE PROBLEM

The general expression for the eigenfunctions is
Vimo = [@I+1)(@r) ]2 2 D vk (0BVPiko(®), 3.1

where o stands for all necessary quantum numbers.

These eigenfunctions must satisfy the constraint

Re®) (1) Yimo = Re® (M) Yimo = ViMo G.2)
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owing to the fact that configurations of the system differing by a rotation of protons or neutrons of &
around the & axis are indistinguishable. The symmetry of the system imposes two sets of relations.
The first one is

D 0) = (1) Dk (6). (3.3)

Using this relation we can rewrite the eigenfunctions as

Fivo = [QLDI( 1672112 X 1/ V1+8gg [ Dlpg + Dy k] Ps®). (3.4
K>0

The second set of constraints relates the values of the @'s in the regions 0<0<n/4 and n/4<0<n/2

Doog (M/2-6) = Py (6),

Dige (W2-0) =~ D1k (0),

P (W2-0) = 112 Dyp5 (8) = 1/2 V312 s (B), (3.5)
Dr15 (M/2-6) = Dy (6),

Doog (1/2-8) = — V312 Dype; (8) = 1/2 Do ().

It is therefore sufficient to solve the eigenvalue problem for 0 <0 < /4. The solution of the eigenvalue
problem is simplified by the following transformation, which eliminates the first term linear in the 6
derivative from the Hamiltonian (2.10),

def
(Udrko)(8) = Vsin(20)@1g(0) = @rxo(0), (3.6)

H' =UHU-1= 1/2)) {cot2 6 2+ tan2 6 12— 82/202 —[2+cot26]}

(3.7)
+ UnTp) (475 )[172 (cot + tan®) (I Iy +1nI)-ilg /06 ] + Vi(@).

Consistently with the harmonic approximation for V we expand H’ in powers of 6 up to second order

H =1/Q2J])[ 1/82 (12-1/4)-0%/062-2 1 + 1/2 CO%+1/(2J) 62124 (J— IUCYNN
[1/2(1/6+0)(I Iy +IyI)~ilg 9/06] , 0<6 < m/4. (3.8)

Let us introduce the definitions
o =VCl, 8y=(JC) 14, x=0/0 . (3.9)
Omitting the constant term —1/J, H’ can be rewritten

H =120 [-0%0x2 + 1x2 (12~ 1/4)+x2) ]+ 172 0b4) x2 Pt @ 89 Un=Jp)/(Utp)
| (3.10)
[172 (x + 62, (1/x)) (I Iy Hg L) — il 9/9x ).
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According to the estimates made in Section (6) for a heavy nucleus 6~ 0.05, so that (J,=/p)
/(J, +Jp) 8¢ is of order of 1%, and we can neglect the last term in the Hamiltonian

H =120 [-0%0x2+ 1x2 (12,-1/4) +x2) ], 0 < x < 7/(4 8). (3.11)

This Hamiltonian does not contain any coupling between states with different K. In the region n/4 <@
< /2 states with different K are instead coupled, because in that region, writing [n/2-6] /8y =y, we have

H =120 [-0%3y2+ 1y2 @2 -14)+yD) ] . (3.12)

Constraints (3.5) can be shown to be in agreement with the above approximate expression of the
Hamiltonian. In this approximation the nucleus still has axial symmetry.

Note, however, that the terms we have neglected in H’, while small with respect to the intrinsic
excitation energies, are comparable to the rotational energy, so that deviation from pure rotational spectrum
might be expected.

The eigenfunctions of H' are

Ok 8) = Opn ©) = [ n((+K+1)8g) [V2 (8/69)K+112

~1/2(6/09)2 3.13
X € %) L,‘,‘(e2/920), (3.13)
with eigenvalues
En =0 2n+K + 1), (3.14)

The total eigenfunctions are

Winmkn ©) = [ @I+1)/(16n2 (148,0)) JV2 [Dly + (- DI Dly g 10 N20  (3.15)

We remark that states with n=1, K=0, correspond to the classical vibrations shown in Fig. 1a, while
states with n=0, K=1, correspond to the classical rotations shown in Fig. 1b.

4. - ELECTROMAGNETIC TRANSITION PROBABILITIES AND FORM FACTORS

The electromagnetic strengths are evaluated to leading order in the deformation parameter 8. To first
order only the B(M1) and B(E2) are nonvanishing, while the B(M3) turns out to be of order |83. The
strengths of higher multipoles are much smaller than the single particle value and will not be reported.

While the M1-transition is the signature of the mode, the study of the E2- and M3-transitions is
important to establish whether a rotational band exists as predicted by the model.



A - Magnetic Transitions

The general expression for the magnetic transition operator is

MMAW) = -1/A+1) [ dr (T ) (r xV)(r MYy,
==1/(A+1) [ dr py(r vy )+ (r XV)(x Ay, = 4.1)
==1(mQA+1)) [ dr pp(r ) V(r Py ,)
where m is the proton mass, 1 the angular momentum and Pp the charge density normalized to the total

number of protons.
The transition operator can be conveniently rewritten by using the classical relations

l=mr@ Q)-mr2Q
Q= 1pT,. (4.2)

After some straightforward algebra we obtain

MOMAp) = =1/QOH1) ) Syl f dr pp(a Y 20,x 1Y) (14 . (4.3)
For A =1 we get

MM1Lp) =8, 41 V3/(32m) S, iy 4.4)

and the corresponding strength is

BM1)T=3/(16m) Joo u2y. 4.5)

For A > 1 the integral in Eq. (4.3) vanishes unless the density deformation is taken into account. We
therefore use the full expression of the density

Pp() = ppl r(1- B Yo0) 1, (4.6)
where
B=Vdn5s 2138 (4.7)

and 3 is the deformation parameter

3= R3-R/R, R=1/3 (2R4R3) (4.8)
For A =3 we get (third of refs.2)

MM3,1)=9,, + ¢ V7/(3m) 1/5 |8 | mZ <> Sx (117p) s 4.9)

and the corresponding strength is




BM3)T= 14/(757 ) 82 m2 A2 <4 >2 o/J pp?2 fmd. (4.10)
For the numerical estimates we will assume

<" >=73/(3+n) RN 4.11)

B - Electric Strength

The E2 operator is
M(E2, p)=e[drp, Rg~1r) 2 Yy,

=efdrpy(r) 12Yy Rer) =¢ X QP <2vlexp (-i0 1) 21> (4.12)
v >

where

Qo = [ dr py(r) 12 Yo = Qoo 8yyg =V 5/(16m) Q5 850 (4:13)
for an ellipsoidal shape. To first order in 8 and n/2 ~ 6, Eq. (4.12) becomes

M(E2, 1) = Mo(E2, 1) + Mo(E2, ), (4.14)

where

M(E2, p) = e QP [ 5;10 S(8-n/4) + < 20 | exp (—i /4 Ig)l 2u> S (n/4-0)] (4.15)

Mo(E2, 1) =i ¢ Qo® V 3/2 &, [0 S (8-1/4) + (/2-9) S (n/4-6)] (4.16)
and
1,x<0
S(x) =
0,x>0.

Using Egs. (3.5) and (3.13) we get

<I=2,K=1,n=0||ME2,K=)||I=K=n=0> &
/4
=-ieQu®2V3fy d0¢210(8)8 Pooo® =iV 3 QyPege.

The E2-transition probability results

B(E2)T=3e20,2 (Qu®))2 = 15/(167) €2 1/(J 0 ) (Qq®)))2 (4.17)

For the numerical estimates we will assume



QP =43Z|5|<r2>, (4.18)

C - Magnetic Form Factors

The general expression of the magnetic operator for electron scatterin gis

TOm (MA,Q) =—1/N & (1) drjp ()T x V (AN Y2,
= =i /2N A1) S, W, [ dr pp (1) G (a0 it [(y2+2299, (4.19)
—Xydy-x 29, | (1'7~qu).

For A =1 the only nonvanishing matrix element is
<I=K=1,n=0] Ty, ()| I=K =n=0> =

(4.20)

=-Va3 Vo I3 drdpw i (qn).
In the above equation p(r) is the kspherica]. density normalized to the total number of nucleons and we
have checked that the first order correction in § is of the order of 1%.
For A = 3 the only nonvanishing matrix element is
<I=3,K=1,n=0] Tm(m) @II=K=n=0>=
(4.21)
=415V 207 |81V qldredp) i, (qo).

$. - SPLITTING OF THE M1 STATE AND TRIAXIAL DEFORMATION

- If the nucleus has axial symmetry the relative rotation of protons against neutrons can occur only around
one of the axes orthogonal to the symmetry axis, but if the nucleus has triaxial symmetry, rotations around
each of the three axes become obviously possible.

Let us assume a small deviation from axial symmetry and let us consider relative rotations around the
axes orthogonal to the axis of approximate symmetry. In such a case to first order in the deformation
parameter we can retain the results of the TRM, but we must take into account that the restoring constant C
is now different for rotations around the &- or 1)- axes, so that we have two different frequences

og = N Celly = VO [Re-RyIR
5.1)
0= V Cyfy = VU Re-ReIR

In the above formula J=1/2 (Jg +y ).
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Expressing R; (i = &, 1, {) in terms of the deformation parameters [ and y

Re=R+ V541 B Reos (y - 2nk/3), (5.2)
we get
(-0 / (ep+wy)=1N3tgy. (5.3)

Since according to Eq. (4.5) the B(M1) is proportional to the excitation energy

ByMDT/BMDT =( 1+ 1N3tgy) /1 (1- 13 tgy). (5.4)

Note that the above equation provides a check of the hypotesis of triaxiality, relating the strengths of the
fragments to the energy splitting. Once the triaxial shape is established Eqs. (5.3), (5.4) allow a very
precise measurement of the y-parameter.

6. - NUMERICAL ESTIMATES

The TRM has been developed in analogy to the Goldhaber and Teller model for the El giant resonance.
The analogy has been followed also in the evaluation of the parameters @ and 6.

Untill now we have only assumed the rotors to be rigid, and this is the only assumption intrinsic to the
model.

Let us now assume the rotors to have a constant density and the same deformation for protons and
neutrons. In such a case the moments of inertia are

Jp=2/5ZmR2 (1+ 0.31 B)
6.1)
J, =2/5N mR2 (1+ 0.31 B).

In order to evaluate C we observe that when @ becomes larger than a critical value 8, 1/2 pAv (9)

neutron-proton pairs do not interact any longer causing an increase of the nuclear potential energy
AVy =1/2 pAv (8) V. 6.2)

Here p is the nuclear density, Vis the neutron-proton interaction potential and 1/2 Av the volume

variation of the nucleus due to the neutron-proton relative rotation
Av (8) ~ 16/3 6 | R23-R2; |/ R2; R3;. (6.3)

The value of 8 has been determined by requiring that for 0=8the relative displacement of neutrons
w.r, to protons be equal to the range of the interaction r,,

1o~ 4/(31) 6, | R23-R2; |/ R2, R5. (6.4)
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At 6=0, the restoring force given by AVyy must be equal to that given by V
C=32/97m) pVolr, |R23-R?; 2 Ry/ Ry (6.5)
To lowest order in the deformation parameter
d=(R3-R;)/R (6.6)
wé obtain
C=128/(9m) Vo, /r, 82 pR4. 6.7

Assuming the usual parametrization for p,

Po=A/4n/3R3) , R=12Al3fm (6.8)
and

Vo=40Mev ; 15=2fm, (6.9)
we obtain

0=42|3| AV MeV;  0.2=17A32|51 (6.10)
For A=156, & =0.25, 0=4.7 MeV, | 6,2 | = 3-10-3, B(M1)T= 172y ,

B(E2)T=289 €2 fm#, BM3)T =0.4 p2y b2. (6.11)
These values are to be compared to the orbital single-particle estimates(13:19)

BMDT ~ 0.1 u2y
(6.12)
BE2)T ~ 270 €2 fm#4

It should be noted that the above estimates for o and 8, are very crude. Let me mention some effects
which should appreciably alter them.

The first one is common to the E1 mode, and is related to the fact that the volume Av (8) lies on the
surface of the nucleus. The average density Po should therefore be replaced by the surface density. This
effect, which is taken into account when the restoring force is determined by comparison with the
symmetry energy(14) would lower C and therefore energy and M1 strength. To have an idea of its
importance we can compare with the E1-mode where, when it is neglected, one still gets a qualitative
agreement with experiment with the same values of the parameters given by Egs.(6.9).

The other features which make the above estimate inadequate are specific of deformed nuclei.
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The first one is related to the geomietry. To see where the geometry makes a substantial difference with
respect to the E1 mode let us rewrite Eq. (6.4) by introducing the deformation parameter

1, = 8/(3n)6, 13| R. (6.13)

For 156Gd we get 8, ~n/2, which exceeds the maximum value of 0 = 1t/4, (there exists no analogous
limitation in the translation displacement of the E1 mode) not to mention that all our formulae have been
derived by retaining the dominant terms in the expansion for small 8. The estimate (6.7) however, could be
considered the extrapolation of aresult valid for a very large nucleus, and in fact a similar result has been
obtained by a different method(12),

The second reason of inadequacy of the estimates (6.10) is that, due to superfluidity, the moment of
inertia is half the rigid body value. Such a reduction can be accounted for in a two-fluid model(15), in which
the moment of inertia is the rigid body moment evaluated for the normal fluid com]pohe:nt‘ of the nucleus.
This is the nuclear region external to the largest sphere enclosed in the nucleus, the latter being the
rotationally invariant superfluid components. (This-picture is similar to that resulting in the IBA, where
only the bosons describing Cooper pairs of valence nucleons are dynamical). Let me emphasize that it is
perfectly consistent to-introduce in this way superfluidity into the TRM, whose only assumption is that of
rigid motion of protons against neutrons.

The last point to be mentioned in connection with the numerical estimates is related to the possibility that
protons and neutrons have a different shape, as suggested by the fact that the pairing strength for protons is
larger than for neutrons(16), Assuming R to be the same for protons-and neutrons, and R3®) < R3®), we
would obviously get a restoring force constant smaller than for R3(P) = R3(™) (Fig. 2). Let me mention
however, that there is experimental evidence(17) that the protons are more deformed than the neutrons in
154Sm.

;EM%
| W//,

While the relevance of all the above effects is under investigation(18), it is perhaps worth-while to
empasize that the procedure adopted to evaluate the parameters @ and 8, is not intrinsic to the TRM.

FIG. 2 - Different proton-neitron deformation Hmm

"
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7. « THE SCHEMATIC RPA

The relation between TRM and RPA can be easily established in the framework of the unified theory of
collective motion. ‘

To this purpose it is necessary to observe that a rotation of protons against neutrons around one of the
infrinsic axes, for instance the x-axis, induces a density variation of the type

8p o £(r)r2 1/(iV2) (Y214 Y2 1) T36. (7.1

One would then be tempted to follow the prescriptions of the unified theory to conclude that for axially

symmetric nuclei the TRM is equivalent to a (quasi-) degenerate RPA eigenvalue problem with a separable
interaction of the form

V(1,2) = x F*(1) F(2), (7.2)
where the field F has the expression
F= T3 1‘2 Y21.. (73)

This however would be correct only if the particle-hole (p-h) states excited by F were all (quasi-)
degenerate, which is not the case.

et us in fact assume that the nucleons move in an anisotropic harmonic oscillator potential of frequency
®, and 3. These obey the usual volume conserving condition 3 w2, = w3, where @, is the frequency
for zero deformation.

The field F can be decomposed into the sum.of two terms(3)

F =F,+Fy=Fy +iFp+Fy +iFp (7.4)
where
For=— V 15/(8n) 1/(2rm/m | 3) (azaty+a*tya;)

(7.5)
Fyq == V15/(81) 1/(2mVe) @3) (a3a; +a*ya*s)

with analogous expressions for Fyy and F,,. Here the a* and a are creation and annihilation operators
for oscillator quanta in different directions.

Now the Fy terms excite p-h states of energy €,= |0 —w3| = | 8 | @,, which are the ones entering into the
M1-TRM state. The F terms however excite p-h states of energy €;= m |+ w3 = 20,, which enter into a

state describing isovector quadrupole oscillations. In other words the scissors-mode is coupled to surface
vibrations(12),
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Such a coupling can be accounted for in the framework of a two levels RPA schematic model, whose
eigenvalue equation is

eo/(@2-e,?) T |<O|F|ph>R+ep/(@2-e2) T |<O|F|ph>P=1/2y) (7.6)
pheg, phe s

The lowest eigenvalue is

0 =8|,V (1+2b)/(1+b) (7.7)
where

b=%/C, (7.8)
and ‘ "

X=TA Vi<1d>,Co =8/5 nm w2y/(A <i2>), (7.9)

V1 being the symmetry potential.
The M1 strenght is

BMNDT = 3/(167) Jo (g, - g,) p2y. (7.10)

It should be noted that the above expression coincides with that of the TRM, Eq. (4.5).
If the coupling with the.quadrupole oscillation is neglected one gets

Odegenerate =161 @y Vi+b, {1.11)

which is the value which can be directly compared to the TRM one.
The E2 strength is (3:19)

BEDT = 1/(1+ b2 BEDT gegenerate AT
where
BE2)T | gegencrate = 5/(32m) 82A <25/ (mw) . (7.13)

While the coupling with the quadrupole oscillations lowers the value of the energy but does not alter the
expression of the M1 strength, it drastically reduces the B(E2)Tbecause, as we will see, b~2.

The pairing has the following renormalizing effect(20)

w->(Ele)w

BM1) - (UpVp-UpVe2 BMD) = (Up2=V2) B(M1) = (¢/E)2 BML),  (7.14)

where E is the two quasi-particle (qp) energy, Vp,V, (Un;Up) the occupation (vacancy) probability
amplitudes respectively for the single-hole and-particle states entering into the p-h state of energy | §| Wy,
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The ratio €/E can be estimated by imposing that the moment of inertia be half the rigid body value
12 =Jlig = €/E (Up2-Vp232 ~ (e/E)3 (7.15)

This gives €/E = 0.79. A furter 10% reduction in the M1 strength comes from the neutron excess(20),

For numerical estimates we assume

V; = 130 MeV

P, S n2
«2>=3/5R (7.16)

<1d>=3/TR4
@ = 41 A-13 MeV

which yields b = 2.
For 156Gd we get Ogegenerate = 3.4 MeV, = 2.6 MeV. Such a reduction, due to the coupling with the

quadrupole mode, cannot obviously be accounted for in the semiclassical TRM. Taking into account
superconductivity and neutron excess we get the general formulae

W~ 66 | 8] A~13 MeV (7.1
BM1)T ~0.024| 8| A43u2y. (7.18)
B(E2)T ~ 0.003 A2|5]e2 fm4. (7.19)

For 156Gd, w=3.2 MeV, B(M1)T= 5.8 n2y, and B(E2)T =18 ¢2 fm4, to be compared with the
experimental values @=3.1 MeV, BM1)T= 2.3 % 0.5 p2y and B(E2)T =40+ 6 €2 fm4.

8. - TRIAXIALITY IN THE SCHEMATIC RPA

In the triaxial case we assume that in the intrinsic frame the nucleons move in an anisotropic potential
with frequencies

0; = 0 exp (o) (8.1)
where
oy = o cos (Y —i 2n/3) 8.2)

We assume as before a schematic interaction of the form
Vi=xF () Fi(2) (8.3)

where the fields F; are given by (second of Refs. 10)
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Fy =13 r2/(iV2) (Y1 + Yg,_)

Fp = 13 12N2 (Yo, - Ya, 1) (8.4)

F3 =13 12/(V2) (Yo - Y5, 3)

The x4- and x,- eigenmodes are

0= cos Y[ I-(-1i 1N3 tg y]w, i=1,2 (8.5)
where @ is the RPA eigenvalue in the axial limit (y=0). The splitting between the two levels is

Aw =2/3 sin y (8.6)

The M1 strenghts are

BiM1)T=1/2cosy [ 1= (=1)i 113 tg y] BMDT, i=1,2 (8.7

where BM1)T is the value in the axially symmetric limit v=0.
The above equations agree with Eqs. (5.3) and (5.4) of the TRM.
A third mode absent in axial nuclei emerges with an energy

03 = 23 sinyo (8.8)

and a M1 strenght

ByM1)T= 23 sin y BoM1)T (8.9)

The two quantities vanish in the axial limit consistently with the fact that in this limit the state must
disappear. For very small values of ¥, the x3- mode is very low in energy and weakly excited, so that it is

very unliked to be observed, if it exists at all.

9. - REALISTIC CALCULATIONS

A number of realistic calculations have been performed for 156G, They all give a value of the total
strength more than twice the experimental one. All these calculations with one exception give an M1
strength concentrated into 2 regions.

In ref. (21) wave functions of a deformed Wood-Saxon potential with a I-s term are used. The two-
body potential contains paring, quadrupole and spin-spin interactions (Third plot of Fig. 3). In spite of the
orbital nature of the main state, the authors question its interpretation as a scissors mode.
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In ref. (22) wave functions of a deformed oscillator with a Skyrme interaction are used (Fourth plot of
Fig. 3), and in ref. (23) wave functions of an axially symmetric Wood-Saxon potential with a quadrupole
interaction (Fifth plot of Fig. 3).

The exception is ref. (11), which gives a strength of the main level much higher than the strength of the
other fragments (second plot of Fig. 3). The distinctive feature of the calculation is the addition of a
quadrupole pairing to a quadrupole interaction. Wave functions of a Nillson potential with a 1-s term are
used. A Hartree-Bogoliubov plus RPA calculation shows that the quadrupole paring plays an important role
in bringing collectivity into the M1-state, while the 1-s produces a significant fragmentation with a result
similar to the experimental one.

Finally a calculation(24) on nuclei of mass around A=130 shows a pattern of fragmentation analogous to
the papers of the first group (Fig. 4). The wave functions are linear combinations of particle-number and

spin-projected 0 q-p and 2 g-p determinants obtained from an optimal HFB mean field. The interaction is a
sligthly renormalized Bruckner G-matrix.
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10. - THE IBA

I will only sketch how the M1 state in the IBA is related to the scissors mode of the TRM and then I will
report some IBA predictions.
The Hamiltonian used is

H=ggng+K (Qy +Qy) * (Qr+Qy) +AM (10.1)

The first term accounts for the pairing, the second bnc for the quadrupole and the third one for Majorana
interaction. The operators Q and M are given in second quantized form using the boson creation and
annihilation operators for bosons of angular momentum zero and two (s and b bosons) as

o ~
-Qp = (s+p dp + d+p Sp)(z) +Xp (dp+dp)(‘:)s (10.2)
M= (stpdty + dtpsh)@ (s, d, + dysp@-2 3 (A 4,00 - (d*,, d*,)®
k=1,3 (10.3)

with.p = (7, v ) denoting proton and neutron bosons, respectively.
If the structure constants of the quadrupole operator are equal, i.e. A=Xx=Xy, the Hamiltonian is

symmetri¢ under the interchange of proton and neutron variables. This symmetry is related to the boson
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quantum number F. Bosons are assumed to have F-spin F=1/2 with projection F, = 1/2 for proton and
F,=-1/2 for neutron bosons. With the help of this new quantum number the boson states can be labeled

according to their symmetry in the proton neutron degree of freedom. The low lying symmetric states have
Fax= Np+Ny)/2 while the mixed symmetric J%=1+ states have F=Fy,,-1. The Majorana operator (10.3)

used in the Hamiltonian (10.1) reduces to a simple form in the presence of this symmetry, namely

M = Fay Fmax + 1) - F(E+1) (10.4)

The parameters of the pairing and quadrupole part have been fixed by the well known low energy
spectra and the strength of the Majorana force has been determined from the excitation energy of the J™=1+
state.

By use of coherent states of the form

| W >=exp (}E, (asp sp+ + Ol d*‘p )10> (10.5)
a classical Hamiltonian can be constructed

He (Otgps Clgys Oy Cav) = < Yo | H Yo > (10.6)

A procedure analogous to the ‘one,adopted for the TRM can be followed at this stage. By transforming
to the intrinsic deformation parameters By Y and By ¥y and to Euler angles for the whole nucleus, the

intrinsic part of the energy becomes a function of the intrinsic deformation parameters and of three angles
0, 6, 03 describing the relative orientation of protons versus neutrons. If both neutrons and protons posses
axial symmetry and equal deformation Y, =y,=0, Br=By=P and a single angle 0 is needed to specify the
relative orientation. For small values of 6 the TRM Hamiltonian of Eq (4.11) is obtained.

LLet me now list the predictions of the model for 14Dy

BMDT=4.1 u2y
B(E2)T= 102 €2 fm* (10.7)
BM3)T=0.07 u2 b2

The B(M3) estimate is very uncertain, however, due to the difficulty of making the appropriate fermion-
boson mapping. The value reported above has been obtained in ref. (9) by fitting the gyromagnetic factors.

11. - EXPERIMENTAL RESULTS

A state with the properties of the JT=1+, K=1 state predicted by the TRM has been first discovered(®) in

a high resolution (e,e") experiment on 156Gd. It is now confirmed in three regions of the periodic table, i.c.
the deformed rare earth nuclei(5.6) (Figs. 5, 6), the fy5-shell nuclei(?) 4648Ti (Fig. 7) and the actinides(®)

(Fig. 8).
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Two features of these states give special support to their interpretation as the scissors mode.

"The first one is that the electron scattering form factors are in good agreement with the predictions
which assume an orbital excitation mode and no deviations have been observed so far (see for instance Fig.
9).
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The second is that the (p,p') reactions do not appreciably excite these states(). Since the intermediate
energy proton scattering at small angles excites magnetic dipole states only through the spin part of the
nucleon-nucleon interaction(26), this finding is consistent with the orbital nature of the M1-states,

The comparison between (e,e') and (p,p") experiments allows a quantitative evaluation of the orbital and
spin contribution to the strength. In electron scattering one measures

BM1) T=3/16m) | 12 g, <)) §5K1:K||i>+ g,<ﬂf§1,g,,<|ui>l2
for a AT=1 transition. Hence
VBM1) T= | +VB@)+VB@) |,

where the * accounts for the uncertainty in the relative phase between ‘/B(l) and \/B(G).
The (p,p’) cross-section at q~0 can be written

do/dQ |9 = (W(2m))2 kk; Np | V5, 12] < 1) Zoylli > |2

where i is the total energy of the projectile, Np a distortion factor andV g, the 61 nucleon-nucleon

interaction. The (p,p") cross-section is therefore proportional to B(c).
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The result of the comparison is reported in Table 1, which shows that the orbital contribution is always
dominant with the exception 46Ti. In this connection we must note that Zamick2?) has been the first to
point out that low lying J®=1+ states should exist also in medium light nuclei, but with important spin
effects. He has calculated that the B(1)/B(0) ratio in the fy/5-shell should be of order 1, while the
experimental value is 3.

Having established the nature of the state let us have a quantitative loock at energy and strength,

The energy scales rather well according to the RPA result
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w=066 8] A-13Mev,
with the exception of 46Ti, while the TRM predicts a larger value. In this connection we must recall that the

coupling to the quadrupole oscillations is essential to lower the RPA energy.
The experimental strength in 156Gd is B(M1)T = 2.3 £ 0.5 p\2. This is less than half the schematic

RPA with pairing and the realistic calculations value, and much smaller than the TRM prediction.

TABLE I - B(M1)T strength and ratio YB(1)/YB(c) from (e,e’) and (p,p")
scattering: b) assuming the positive sign; ©) assuming the negative sign.

Nucleus Ex pov)T  VB(1)WB(o)

MeV) M2 (range)
154Sm 3.2 0.840.2  >(0.8-1.4)b)
>(0.8-3.4)°)
156Gd 2.18 >(1.3-1.7)b)
3.075 1.3£0.2  >(3.3-3.7)°)
ledpy 3.11 1.5+0.3  >(1.8-2.3)»)
3.16 +1.440.4  >(3.4-4.3)0)

=2.910.5
46Tj 4.32 1.0£0.2 -2.5b)

We must remind, however, that the expression for the strength is exactly the same in the TRM and in
the RPA, so that this difference is only due to the different values of ® and J used in the two cases. The
agreement with the IBA is instead good.

Let us now come to the pattern of fragmentation. The investigation of the energy spectra above 4 MeV
has not yet been completed, but preliminary results show no Ml1-strength in this region®). All the strength
seems therefore concentrated very closely around the main level (Fig. 3) in fragments of very small
individual strength, with the exception of 164Dy, 157Yb, 48Ti and 238U. Apart from this latter nucleus, in
these cases we actually have a splitting rather than a fragmentation. It was in fact this observation in 164Dy
and 174Yb which suggested a relation to triaxiality(10). Now recent results with higher resolution have
shown that there are three levels in 164Dy rather than two, at energies 3.111, 3.159 and 3.173 MeV with
BOMMDT 1.3, 1.25 and 1.1 pp? respectively(28). These results are no longer compatible with a splitting due
to triaxiality.

In conclusion the pattem of fragmentation is reproduced only by the calculation of ref. (11), which
seems and indication of the importance of the quadrupole pairing.

It remains only to mention that there exists a candidate for the J®=2+ member of the band(29), with a
strength




By(E2) T =40+ 6 e2fmd.
in reasonable agreement with the RPA and IBA predictions.

12. - CONCLUSION

We have seen that there is a new collective mode in deformed nuclei, which is described in essentially
the same way in different models. It is remarkable that the expression for the B(M1) in the TRM and in the
RPA coincide, as it is the case for the eigenstate equation in the TRM and in the IBA.

While the general features of this mode are well understood, there are a few points which deserve
further investigation.

From the experimental side it is necessary
i) to complete the measurement of the M1 strenght at higher energy.

ii) to study the members J = 2+, 3+ of the band, in particular with respect to the orbital and spin
contribution to the strength. Let me remind in this connection that in the latest IBA analysis the M3
mode is not expected to be a dominantly orbital mode(9).

iii} tostudy triaxial nuclei.

From the theoretical side I think it would bé.v«ery interesting to investigate the effect of a different
proton-neutron deformation on the total strenght and fragmentation of the M1-mode. A quantitive prediction
of these features of the mode remains in fact the main open problem.
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