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Abstract

The problem of vacuum polarization is discussed with particular emphasis on the nature of
logarithmic factors entering into the renormalization group equations for the quantum
electrodynamic equations of state. A vacuum magnetic instability is clearly indicated, which is also
present in the anomalous magnetic moment of the electron.

1. « Introduction

The purpose of this work is to discuss the problem of QED vacuum polarization with particular
emphasis on logarithmic factors entering into the renormalization group equations of state for the
polarization. It will be seen that the vacuum has a magnetic instability which enters into the stress
tensor. A similar logarithmic dependence is also reflected in the properties of the anomalous
magnetic moment of the electron when placed under an external magnetic field. While the magnetic
instability per se is confined to vanishingly small magnetic fields and hence practically
unobservable, the logarithmic dependence on the applied magnetic field present in the vacuum
permeability should be measureable through precision electronic ciruitry.



2. - The Maxwell Equations:

Intrinsic to the notion of vacuum polarization is the fact that the electrodynamic disturbances,
characterized by the field-strength tensor
Fuv = auAv "avAu J (1)

which propagate through the vacuum induce a vacuum current JV,

IuFHY = ~(4n/c) JV. (2)

Since the current obeys the conservation law
d, V=0, (3)
there exists an anti-symmetric polarization tensor PHY such that
W=c¢ au pHV (4)

In terms of the Maxwell displacement fields

HMV = FUV 4 4 PHV | (5)
Eqgs.(2) and (4) read
3 HLY = 0. (6)

Egs.(1) and (6) completely determine the propagation of electromagnetic disturbances in the
vacuum once constitutive equations of state are derived relating HHV to FV, From an action
principle viewpoint the methods needed to obtain such equations are clear and are discussed next.

3. - Action Principle

Let exp{iW(F)/h} represent the vacuum persistence amplitude under the action of an applied
EM field FHV, The constitutive equations of state-then follow from the action principle variational
equation

W = -(1/8rc) [(d4x) HKY 5F . (7)
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In what follows, we shall take a "thermodynamic equation of state" view in which (for
sufficiently slowly varying EM fields) the effective action is described by a local Lagrange density
L,
cWesr = | (d4x) L. (8)
From Eqs.(7) and (8) one derives the thermodynamic rule (at zero temperature)

8r dl = - HK dFyy - (9)

From considerations of Lorentz invariance, the Lagrange density must be a function of

§=@/4) FWVF, (10)
and
n = (1/4) FW F (11)
where
F:]LLV = (1/2) 6“\,)\'0- F?\‘G . (1 2)

Egs. (9-11) imply that
HWY = -4x{ (9L/0¢) FHV + (9L/am) “FHV } . (13)
4. - Polarizabilities

The vacuum polarizability % and the vacuum magneto-electric coefficient B may be defined by
the polarization equation of state

PHY =  FIV 4 g *FRV | (14)
From Egs. (5),(13) and (14) it follows that

-(9L/3%) = (4n)~1 + 0, (15a)
-(dLl./on) = B. (15b)

Finally from Egs. (2), (4) and (15) one finds that in a local "thermodynamic" theory, an actual
vacuum current exists if and only if the polarizabilities vary in space-time as

{T+dry} V= { FUVO 3+ *FHV 3,8} . (16)



5. - Stress Tensor

The stress tensor implied by the Lagrange density L is given byl)

THY = gV { L-n (3L/an) } - (8L/3L) Fiy FYA, (17)
whose trace
t=TH,
=4 {L- ¢ (3L/37) - n (dL/an) }. (18)

Egs. (13) and (18) then yield
dt=4{¢dy+ndp}. (19)
Eqgs. (18) and (19) allow one to compute the vacuum polarization directly from the trace of the
vacuum stress tensor. The utility of this construction will be evident in the next section where t is

discussed at the one-fermion loop level.

6. - Fermion Loops

The Dirac Green's function for an electron moving in the vacuum obeys

{ - Yu du +K } G(X:YsA) = S(X"Y) ’ (20)

where hK=mc¢ and du=_ au -(ie/hc) Al ) -The trace of the stress ternsorb for electronic vacuum
polarization is then (at the one-fermion loop level)

t(x;F) = -hcK tr{ G(x,x;A) - G(x,x;0) } . (21)
In the second order representation

G(x,y;A) = { 4 dy, + K} D(x,y;A), (22)
so that
{-dy, d¥ + K2 -(e/2hc) oV Fyyy, } D(XY;A) = 5(x-Y) . (23)

In terms of D, Eq.(20) reads



)
t(x;F) = -hcK2 tr{ D(x,x;A) -D(x,x;0) } . ' (24)
In the Schwinger proper time representationl)
D(x,y;A) = i [ds exp(-iK2s) eexp{is;(jdudu +(e/2hC)csqu“V)}, (25)
a direct computation (for EM fields uniform in space-time) yields
t = (hcK4/4x2)[ (dz/z2) e Z {z2abcot(az)cot(bz)-1}, (26)
where a and b are defined by

(ab) = (a/hck#) m, (272)
(b2-a%) = 2(a/hcKH) ¢, (27b)

with the coupling strength o =(62/ hc).
To lowest order in o

t = (a/6n2) C +... . (28)

Thus, as first noted by Schwinger {vedi ref.1, Eqs.(3.45) and (5.5)}, there is a stress
anomaly independent of the electron mass for "small" EM fields

3, }
TULIJ' == (a/24-ﬂ',"') F“V F},LV +... (29)
The consequences of this anomaly are best discussed in terms of the renormalization group
equations of stateé which will now be considered.
7. - Renormalization Group Equations
Under the assumption that a single fermion mass scale exists (i.e., purely electronic vacuum
polarization) the trace of the stress tensor may be calculated from the effective Lagrange density

using

= 2K2(9L/0K2). (30)
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From Eqs.(18) and (30), one obtains the RG equation of state
L - (3L/3t) - n(9L/an) = (1/2)K2(aL/0K?Z). (31)
The general solution of Eq.(31) is given by
L = heK#A(¢/heK#4 , n/hcK4), (32)

where A(X,Y) is an arbitrary function of dimensionless arguments. The functional equation (32)
can be extended to include more than one mass scale in the vacuum polarization, but here we shall
restrict our discussion to pure electronic vacuum polarization.

8. - Lowest Order Polarizability Corrections

To lowest order in a, Eqs.(19) and (28) yield

¢ dy = (a/2472) dC +... (33)
or equivalently,
x = (/2412) Ln{C(e2¢/hcK4)} +... , (34)

where C is an arbitrary integration constant which should be of order unity. Let us now consider the
experimental implications of Eq.(34).

9. - The Ferromagnetic Vacuum

Suppose that a magnetic field B is applied to the vacuum. The vacuum polarizability in Eq.(34)
then becomes

2(B) = (a/2472) Ln{C(eB/hcK2)2} +... (35)

so that the induced magnetization
-M(B) = B x(B), (36)

implies a field-intensity



H=B-4xn M(B), _
= B{1+ (o/6m)Ln{C(eB/hcK?2)2} +...}. (37)

The above equation of state actually represents a ferromagnetic vacuum with a critical field
B* =~ (hcK2/eNC) exp(-3n/a). (38)

Note that the critical field is exponentially small so that errors (i.e., fluctuations in B) in
laboratory field measurements obey

AB >> B, (39)
by a very large margin. Nevertheless, the vacuurn inverse permeability
(dH/dB) = 1 + (/3n){1+(1/2)Ln{C(eB/hcK2)2}+..., (40)

exhibits a logarithmic variation in B which should be observable on laboratory electrical engineering
inductors, i.e.,

1/W(B1) -1/u(Bo) = (a/3m)L.n(B4/Bo) +..., (41)

for vacuum inductors, where

1 = (dB/dH). (42)
10. - Anomalous Magnetic Moment

The logarithmic magnetic terms which produce weak vacuum ferromagnetism should also
appear in other QED magnetic processes as well. In fact, for the anomalous magnetic moment of an
electron, Heitler?) has discussed the lowest order corrections in a to the magnetic field dependent
electronic g-factor as computed by Luttj'mge:rB) and <G:‘upta4). According to ref.(4), upto terms of
order B2 and to order a, this correction is

(1/2)Ag = (a/2r){1 + (47/45)(eB/hcK2)
+(8/3)(eB/hcK2)Ln(2eB/hcK?)
+0(B2) } (43)
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As B approaches zero, one gets the Schwinger result>) (1/2)Ag =~ (o/2x). The reader
should note the similarity between Eqs.(40) and (43) concerning the logarithmic dependences on the
magnetic field.

11. - Concluding Remarks

In this work, we have used the electronic Green‘s function to compute the trace of the
energy-momentum tensor for EM fields which are constant (or slowly varying with frequencies
much smaller than the electron mass). This requires no renormalization and the so-called trace
anomaly term, Eq.(29),is automatically generated. This result is employed to demonstrate the
presence of logarithmic corrections to the polarizability. We find a ferromagnetic vacuum i.e., there
exists a critical field B* for which the resulting magnetic field intensity H vanishes. Since B* is
vanishingly small, for all experimentally accessible fields, H is essentially linearly related to B.
However, the magnetic permeability shows a logarithmic variation with B which is in principle
measureable through precision resonant ciruits.
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