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ABSTRACT

Multiple-dip structures in pp and pp elastic differential cross sections, predicted by many
models, but unconfirmed experimentally may be due simply to an error. Glauber-type models,
with composite Gaussian wave functions are in general not directly applicable in the limit in
which the amplitudes factorise or partially factorise in their "hard" and "soft" components. A
wrong combination of wave functions with eigenvalues may be involved. The description of
diffraction scattering with Gaussian and related wave functions involves a completely different
kind of limit in which the corresponding cross sections have only single-dip structures. The
clarification of this point requires the introduction of the concept of equivalence of states with
respect to an operator, which generalises that of degeneracy. It is required in order to be able to
formulate precisely the idea of quasi-elastic scattering. Factorisation is still possible but must
be used with more complicated wave functions defined over the unit circle.
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Quasi-elastic scattering is a well known example of a situation where "hard" and "soft"
processes are assumed to be factorised. Underlying the assumption is the idea of "closeness"
of states, that is, the approximate degeneracy of certain states having dominant internal
quantum numbers corresponding to those of the elastic channel. The property of factorisation
of the scattering amplitude into its "hard" and "soft" components is well defined(1). The
concept of “closeness" of states is not. There is in it, however, an implication that the wealth
of the set of "close" states reflects on the compositeness of the particles involved in the
collision. On the other hand "closeness" is related to the existence of soft processes which are
responsible for the approximate degeneracy of the states. It is this connection with internal
structure on the one hand and with factorisation on the other, which makes of the concept of
“closeness" an important dynamical input. It would therefore be useful to have for it a
serviceable formal definition and show how it characterises quasi-elastic and, in particular,
diffraction scattering.

This is the purpose of this paper. The problem is an old one. In hadron-hadron scattering it
is associated with the names of Good and Walker(2). There are many different but essentially
equivalent formulations(3-8),

The mediation of these approximately degenerate states in elastic scattering does not
exhaust inelastic shadowing. We shall, however, show that if there are sufficiently many such
states and their unitarity contributions are not truncated but properly summed over, they do
build up the elastic diffraction cross section well beyond the dip and in agreement with data for
all CM energies. Comparison is made with experimental data on pp and pp elastic differential
cross sections do(s,t)/dt(9-12), a5 functions of the invariant momentum transfer t and for CM
energies Vs from 5-600 GeV.

Let us start by recalling the well known approximation

T=2iD,; Df =D, (1)

for the scattering operator T, which describes high energy scattering in terms of purely
imaginary amplitudes. The operator Dy is said to be "diffractive” or purely absorptive.

Unitarity implies that it is a projection operator

2
Dlo = Do (2)

A given state | i > may then be decomposed into its "diffractive” and "non-diffractive"
components, | d; > and | n; >, respectively, defined by(5:6)



|dj>=Dgli>

(3)
Inj>=(1-Dy)|i>
They are eigenstates of T, that is
T|d;>=2i|dj>=T]|i> (4a)
Tin>=0 (4b)

On the basis of these equations it seems natural to approximate(5,6) the state | i > by its -
component | d; >, in this so-called limit of diffraction scattering. The approximation is

motivated by Eq. (4a) which says that as far as the scattering operator is concerned, the two
states are essentially degenerate. This approximation and the idea behind it may be generalised
and formulated as an equivalence relation in Hilbert space.

To see this consider, in place of Eq. (1), the unitary transformation

T=elAT, A ®)

of the complete scattering operator T to the basis of physical states | i > in which the operator
T, is diagonal, i. e. '

Toli>=mjli> ; i=1,23, ... (6)

Introduce the operator

1 .
=-2—(1 -CIA) (7)

It satisfies the unitarity equation

DD+ = -i— D + D+ (8)

of which Eg. (2) is obviously a special case. The main idea in using (5) and (6) to describe
quasi elastic scattering is that T,, gives the hard scattering part of the amplitude while the

operator elA or equivalently D is responsible for the soft scattering corrections. This is
arranged by means of an extension of the concept of degeneracy of the eigenstates of T, which

allows some of these eigenstates to be identified as equivalent or "close" even if they
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correspond to different eigenvalues. Here is the formal definition: two eigenstates | i > and
| j > of T, degenerate or not, will be said to be asymptotically equivalent with respect to the

operator D (|i> =|j > modulo D), if there exists a state | A > and non-zero complex functions
¢, and @jy, such that one has

Dli>  DJj>
Pix Pin

= |A> ¢))

This is an equivalence relation in Hilbert space. By iterating it, it is easy to establish that the
state | A > is necessarily an eigenstate of D. Let A be the corresponding eigenvalue, that is

DIA>=A|A> (10)

If the eigenvalue A is degenerate, one has

||?~>=§,ua [ Ao > (1)

.and hence, from egs. (9)-(11)

li>=2 @p(0) | Ao>+X2 @oB) | 0,8 > (12a)
o B
Pip (@) :=<A, ali>=p, op (12b)

where the states | 0, B > correspond to zero modes or states of "soft quanta”. They satisfy
D|0,B>=<0,B|D* =0 (13)

Compared to the physical states | i >, the states | A, o > with no soft quanta are "bare
states". Physical states may thus be characterised by the quantum numbers of D and T even

Ihough D and T, do not commute. The state |i>= ] A, n > so characterised satisfies the
equations

Tol An>=n | ALn> (14a)

| 21>~ ony (@) [ 10>+ Z.0no (B)108> (14b)

Egs. (9), (12) and (13) generalise Egs. (3) and (4) while the constraint



(D2-AD)|A,n>=0 (15)

generalises Eq. (2). It follows from Eqs. (14) that the zero mode state | O, > is a physical state
if
To l 07B >= %'(p[so (B,) I O:B, > (16a)

N ono B)= §' Pno (B) @po B) (16b)

Eqs. (13) and (16a) then imply

[T D110,8>=0 (17)

At this point one observes that the concept of equivalence may be extended to operators (13),
Two operators A and B are said to be equivalent modulo D if their commutators with D are
proportional to D. In formulae, A = B mod D if

[A,D]=F,D ,
a8
[B,D]=FgD )

where F, and Fp are functions (in general operators) depending on A and B respectively. The

equivalence classes are algebras. In fact from the Jacobi identity, one has

C:=[A, B]
[C,D]=F.D (19)
F. =[A, Fgl - [B, Fal - [ Fa, Fgl

Operators which have the property in Eq. (18) form the set of symmetries of D(13), An
immediate application of this concept is that one obtains Eq. (16a) directly from (13), without
the mediation of (14), if it is assumed that the scattering operator T, is a symmetry of D. Eq.
(5) then implies that T = T, mod D since one has

[T,D]=[TyD]:=FD (20)

Taking matrix elements of (20) between the states | A, & > one has

A ? .
<)\,',a’!Tol7\,,(X,>= ﬂ;‘(k,(’.lle;a;’ (21)



Hence if F is a c-number or more generally if < A, o| F | A, o > # 0 then the scattering
operator has singular matrix elements between equivalent (i.e. degenerate) bare states. The

divergence is compensated by the zero modes when one passes to the dressed physical
states | A, 1 > . In fact rewriting (5) as

T =T + 2D Ty + 2T, D+ + 4D T, D+ 22)

and taking matrix elements of T between the states |[i> :=|A,m; > and [ > :=| A/, g >, and
making use of (14), one finds

Tgi =< f| T|i>=m; 85+ S 20, ¢ [ i(ANp-Ang) ImQ) + (Any, + Ang)) Re(V)]

(23)
where
AN, =1, N, (24a)
m :=>1.;.nk| O 2=<A|To| A>=<A|T| A> (24b)
We have also made use of Eq. (8) in the form
|A2=Re () (25)

in terms of thie eigenvalues of D.

In the elastic limit Eq. (23) becomes
Tii =N + 12A op, [2 Anyy, (26)

The eigenvalue A functions therefore as a coupling constant. In the "weak coupling" limit

IAN2—0, Re()<< |Im@Q)] 27
- Eq. (23) is in a form in which "hard" and "soft" processes are completely factorised, that is

T ————31; O +1 @ O Im (A - MN; 28
fi |7L|2-->0) MNi fl+1(Pfk o Im (A) (Me—1y) (28)

This approximation corresponds to keeping only the single commutator between T and A
in the expansion of T in Eq. (5) in terms of multiple commutators.

We shall argue that it is the uncritical use of this approximation, in one form or the other,
which gives rise to the multiple-dip structures predicted by many models in the elastic
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differential cross sections dopp(s,t)/dt and d(!f]pf,(s,ﬂ:)/dt. Only one dip is observed
experimentally.

It is reproduced at the correct place by a proper use of Eq. (26). To illustrate this we
compare Eq. (26) with pp and pp data®-12) inFig. 1 for three CM energies, Vs = 4.5,
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FIG. 1 - Plots of the pp and pp elastic differential cross sections do(s,t)/dt against the
momentum transfer t, for three CM energies Vs = 4.5, 53 and 456-630 GeV. Full circles (+) are
pp; 4.5 GeV data(®10); open circles (o) are pp 53 GeV data(10) and triangles are pp data at 546
and 630(12) GeV. Dashed curves are theoretical predictions for small values of the coupling
parameter in Eq.(26) of the text. Full curves are the predictions for large values of A. Ratio of

real to imaginary parts of the amplitudes are taken into account by means of the replacements
Gpp(s) - cpp(s) (1+i ap), cpq(s) - orpq(s) (I+1i ocq). The parameters Op, Olq Were not least
squares fitted because values different from zero were found to give satisfactory fits to the data.
The values used are shown in Table 1.

53 and 546 - 630 GeV. We take for the state | i > =| A, 1 >, equivalent to the proton, the state

| p, n q > with one proton and n quanta (e.g. pions, quarks, etc.) (n = 1,2,3 ...). For the wave
functions of these states we take, in the impact parameter representation(®),

n
| @ir 2 1= @q (b1,-..bp) 2= PoIl 1w (b2 : (29a)
i=1
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c-b2/4 R,
((b) = 2
(o) v (27 Ry) (290)
- 73N
P,=en —(—132—— (29¢)
n!

For simplicity, we assume that the n quanta are Poisson-distributed. R, is a free parameter.
For the elastic amplitudes 1;:=Tp,(s,b,by,...by), we take, following Glauber(14)

n
Tpn(S:b,b1,...bg) = 1 - (1-Mpp(s,0) T (1- Mpg(s,b + by) (302)

i=1

Gpp(s) . -b2%/2a,,(s)

o) = 72 (300)
Coq(S) -b22 (s)
Tpq(sb) = z;cp:((;s) el O (300)

where cpp(s) and o'pq(s) are the pp and pq total cross sections and ap(s), aq(s) the
corresponding slopes. Substituting from Eqs. (29) and (30) into (26) and taking Fourier
transforms, one finds, for the differential cross section

do(s,t
Lot )==15|T(s,t)|5’~’ (31a)
dlt]
T =i dbbI(bV9) T (s,b) (31b)
0
(1-n,,(s,b)) -
T (56) = Tpp (50) + [ 24 P —T2 (1 —¢ " (31c)
(I-e™m)
where
ﬁC" (S) -—lb2/2F{ o)
h(s,b) =i g (322)
4nR(s)
R(s) =R, + aq(s) (32b)

We shall neglect e with respect to unity so that the free parameters in Egs. (31) are ap(s),
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R(s), | A |2 and Oq(s) =1 Opq(0).0pp(s) is essentially fixed by ap(s). The values of these

parameters for the fits in Fig. (1) are shown in Table I. The dashed curves in Fig. (1)

TABLE I - Values of the parameters used in the fits in Fig. 1. Small A values refer to the
dashed curves and large A values to the full curves. The parameters (o, 0tg) are the

ratios of the real to imaginary parts of the scattering amplitudes.

s AR a o "R_. o Aj2cs a C
(GeV) ¢h?) (b (fm?  (mb) (mb) P M
0.542 0.367 3287 0194 1972 107 -0.5 -0.5
4.5 ' ‘ :
61526 0305  32.20 0.178 1.1x10-2  6.97 -038  0.56
0.824 0484  40.71 0304 431 3.55 0.018 0.72
53
605.21 0481  40.63 0317 6.44x10-3 3.89 0085  -0.83
1.0 0567  56.75 0435  6.77 6.77 0.191  0.60
546 -
225.49 0575  55.99 0.461 3.66x102 825 0.187 0502

correspond to small values of A and the full curves to large values of A. The latter values of A,
as can be seen from the Table, are in conflict with the unitarity constraint in Eq. (25). The
conflict is only apparent and will be presently explained. But first we point out that the dashed
curves are characterized by multiple dips and that these are absent in the full curve, except for
the single one observed experimentally. Moreover, note from Table I that the product | A |2
Oq(s) is approximately constant over the energy range Vs=4.5-600 GeV. This is consistent
with taking the Bjorken-type limit: B; (| A |2 0g(s)) == [ A |2 — oo, Oy(s)—> Oand | A2 A0
fixed, in Eq. (31c). Large values of A seem thus very natural when the cross sections Opq(s)
tend to zero. Such vanishing cross sections may be expected asymptotically if q is point-like.
But there is a further justification: intuitively diffraction should correspond to the situation in
which Any, := <Mpn > —Mpp — 0 asymptotically, but with nevertheless a finite contribution to
the cross section. This is possible in Eq. (23), if JA [2 — co. We therefore characterise the
diffractive limit of the amplitude Ty; in Eq. (23) as the Bjorken-type limit

B; (1L 12} An)- Ty (1A, Ang, Ang) =TS (33)

This limit is not inconsistent with the unitarity constraint in Eq. (25). The eigenvalue in the
latter equation is of the operator D with eigenfunctions defined over the unit circle. The large
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values of A in the fits and in eq. (33) refer not to D but to the related unbounded Hermitian

operator A with eigenvalues and eigenfunctions defined over the real line. The relationship
between the two sets of eigenfunctions is given by the well known transformation(15)

z— Z=-1(1+z)/(1-z) (34)

which maps the unit circle on to the real line. An explicit model for the operator A is given by
the familiar soft radiation or coherent state models(6:7). The Gaussian wave function used in
the calculations(8) is not an eigenfunction of D but the ground state eigenfunction of A in such a
model. The eigenfunctions of A are Hermite polynomials multipled by a Gaussian. The ground
state of A does not necessarily correspond to a small value of A.
Eigenfunctions of D are much more complicated and will be given elsewhere. Using them,
 the corresponding eigenvalues are indeed small and satisfy Eq. (25). Since the use of Gaussian
wave functions in theoretical descriptions of diffraction scattering is, for reasons of simplicity,
so common-place we conclude that wave function representations are erroneously being mixed
when A is forced to be small, in particular to satisfy Eq. (25). The predicted multiple-dip
structures in the differential cross sections seem to be a consequence of this error. They
- disappear leaving only the experimentally observed dips when the correct combination of wave
functions and eigenvalues is used.

By the same token the fits given by the full curves may be improved and extended to large
values of t by assuming A to be given by the coupling of a classical current to a quantised field.
We shall present the results of this model using both eigenfunctions of A and D in a
forthcoming publication. Details of our approach will also be given then.

The approach of this paper is not entirely new. One arrives at it easily through the well
known extension of the idea of symmetries of an operator(13) and the associated generalised
concept of degeneracy or equivalence of states modulo the operator in question. A similar
extension of the concept of degeneracy of states has been attempted by Carruthers(16),
Motivated by the problem of violations of KNO scaling(17), he introduced mixed states by
means of Ansitze on the density of states. The resulting transformations in Hilbert space are
similar to ours: |i>—>|A>, given in Eq. (12). He operates directly on probabilities, not on
probability amplitudes as we do, his interest being in gaining better understanding of the
negative binomial distribution and such-like that can accornmodate violations of KNO scaling.
QOur main idea is that the concept of equivalence of states is a mathematical realisation of quasi-
elastic scattering.

The relationship of our approach to the geometrical model of Chou and Yang(18) is not very
direct. There is a basic and similar statistical assumption common to both. The geometrical
model is essentially a classical description using an averaged hadronic matter density.
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Our definition of the diffractive limit is however new. It does not require the amplitude to
be purely imaginary. It is consistent with a composite structure of hadrons in terms of some
elementary constituents.
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