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1. INTRODUCTION

The Nusex and Soudan underground detectors, have reported (ref. 12} the
distribution of arrival times of muons pointing to the Cygnus X3 direction, displaying a
characteristic 4.8 hours modulation which coincides with the Binary period cxf the X-ray
emission. -

This effect wauld indicate, etther the existence ol a new neutral and stable paruc'lcf
or anomalous interactions of photons or neutrinoes. producing showers with a muoﬂ
content equal to that of hadronic cascades.

Because the number of events coming from Ci}fg§X§§ direction is not significdtively
different from that found in any off source region, the evidence for the signal arises
from the phase plot structure.

For this reason it is very important to understand if collected 'off source’ data are
really randomly distributed in time.

To attribute a confidence level to the detected signal we have to make some well
established bypothesis on the background temporal structure. from which depends
critically the statistical significance attributed to the signal

We describe a method to identily time correlations in samples of cosmic ray muons,
which aliows, 1n case of negative result. to prove the random temporal distribution of
the analfvzed data.

2. ANALYSIS METHOD

The analysis is performed on the sqguared modulus of the Fourier transform of the

pulse temporal sequence x(t)=ZnN=, B{t-1,). eq
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Flwi= [ (Z N, comwy, )7 (N, sinwi 37 1 /N (el 3.45),
that is an estimator of the signal distribution among the various frequencies

The frequency resciution depends on the totat observation time: Aw=2w/{Ty -7}, and

the number of structures that can be idenlified between wy and w- is {wWo-w; VAR
tref.3.4)

If arrival times of the events are uniformly distributed. the F(w! wvalues are
exponentially distributed, and  P{ Flw} 2 Flwg) )= o W) (per 35).

Using the knowledge of the distribution function, a confidence level can be assigned
to the hypothesis that the muon sampie exhibits a time modulation

The probability fora uniform succession of events of F{w) being greater or equal to
the calculated value, e g f:'H “‘:', is the error on the assumption that the event samplf:
has a periodicity P= 2nsw

Spectra of F(w) have bheen examined in several frequency ranges, for uniform
samples and for samples where periodic signals of different shapes have been added to
various background levels by these simulations the lowest value of the signal to
background ratio to which the method is sensitive, has been determined

In fig.l is shown the Fourier spectrum of a muon sample generated assuming a
generatized Poisson distribution, with mean A(i)= An + Ay coswt and essentially no

background (Ap-Ay= ) This spectrum and that corresponding lo higher harmonics
have-heen compared to those produced by a periodic rectangular signal, lasting 10 % of
the whole period (always without background), which s shewn in fig. 2

In the latter case the signal appears also in the higher harmonics, suggesting that
the values of ‘Fiw} for freguencies multiple of the fundamental should be also

considered
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FIG. 1 - Power spectra of a generalized Poisson signal with sinusoidal shape, refer
ring to fundamental and first harmonic. Contiguous points have been chosen so that

Aw

= 20/T, where T is the total sampling time.



80

L0

Fid

0

i

n

%

W

]

-3 -

Power spectrum vs. period

7'¢- ¥
D, 2 A L
r r
;— 00 |
L - ,o-u
r 30 |
b -
- L
L -
- 20 jmn
- 10 [

D ... N5 L SR USSR . S
PV R W B W U ol P B U BV BT AN S - B
b8 Th802 4£.804 4.806 k.8 ' 2xk 202 2nh 8304 2x4,806
H

L . 1ok

i
-

L LA

107

i
w

Iii-
»

||ll|||ltl!(|lvll|

e e e e e e Prob._ 07t 1= +
PP PR <N H SRR GRS D VN S TP KNV BV VS S R
Ixk.8 Ixk.BO2 3x4.80& be:ﬂloﬁl bk B hxk 802 . bxk.804 hxk 806

FIG. 2 - Power spectra of a generalized Poissono signal with rectangular periodic shape,
referring to fundamental and its successive harmonic. o
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F1G. 3 - Power spectrum of a sinusoidal signal as in Fig.1, supérimposed to a back-
ground uniformly distributed in time. The relative contribution‘to the sample, in-
tegrated over a period, is 1:1. oo '




A method to take into account these further enhancements could be to sum up the
F(w) values corresponding to several harmonics This sum, performed over n

frequencies, has a probability of exceeding the actual S, value, given by
P25 )= (&% § 01 1/ (re 1) with = £M | Flhw).

The number of harmonics among which the signal is distributed, is higher the
shorter signal is with respect to the period 1If the actual width of the signal i3
unknown, we can constder all the harmonics whose amplitude is greater than ior
instance, 80% of fundamental

Fig 3 shows the spectrum of a sinusoidal signal superimposed to an uncorrefated
background, in the ratio 1:1 The periodic component is identified with a confidence
level of 99 97

Figg 4 and 5 show the spectra of a rectangular signal lasting 10% of the period
embedded in a constant background S and 10 times the periodic component. In the first
case 29 events, aver 153 collected, come from the time modulated signal; in the second
case they are 15, over 153.

By using the fundamental frequency and its first harmonic. the characleristic
period is picked out with an ¢rror probability less than 10-% 1n the first casc.and 51077
in the second

To understand the relevance of these numbers and the method efficiency. it 15
useful to consuder the result of phase plot analysis

Fig.6 shows the phase plot corresponding to the case of fig. 5, c.g 15 signal events
over 13595

By phase plot analysis, once optimized the binning at 10 bins, we find an excess of
15 events in-the first bin and obtain an error probability of X 107% o the hypothesis of
the signal existence. However in the case of phase plot analvsis we have o take into
account the number of trials performed to obtain the binnihg oplmzation

It is worth mentioning that this analysis allows the eliminavon of known and
uninteresting periodic components, which - could blot out weak signals. A typical
example is the appearance of an enhancement in F(w) at the sideral day frequency
when events coming from a given region of the celestial sphere are sclected This
enhancement can be cancelled by constructing a function 00!}, which 15 zero
whenever the apparatus does not look at the selected region. and 1 during "data taking
lis Fourier transform O(w), 15 1ntroduced into F(w), and the analvzed function becomes

M= | (N coswt o+ 1 (5N, smwy ) - Ap Olw) </ 1,
with Ap= N/T; ,and T4 is the total data taking lime (ref 3]

Fig.7 showsthe differences between spectra, without and with 0(w) subtracuen

A typical distribution of F(w/ values referring to the analysis of a muon sample of
the Nusex data, with 1000 scanned frequencies. has been reporied in fig 8 The straipnt
line in semilogarithmic plot. renresents ‘the expected distribution for a uniform
scquence of arrival times

There is a good agreement between Lthe actual data distribution and the expectation
values, providing a prove of the temporal uniformity of the data sample
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ground uniformly distributed in time. Twentyfive events, over 155, come from the time modu-
Tated signal. It is also shown the spectrum referring to the first harmonic, together with
the probability that the F(@) value belongs to the distribution of a time-uniform sample.
This value has been computed considering the power of fundamental and first harmonic.
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FIG. 6 - Phase plot of the sample whose
power spectrum has been shown in Fig.5.
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FIG. 8 - Typical distribution of Flw) va
lues for a cosmic ray data sample (Nusex

data) referring to 1000 scanned frequen-

cies. The straight Tine in the semiloga-

rithmic plot, represents the expected di

stribution for a uniform sequence of ar-

rival times.
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Fourier transform of the data-taking ti-
mes, and after the correction.

In the case of known source emission characteristics. the method provides a test of

the signal statistical significance by the calculation of the power Flw), relerring to

fundamental and successive harmonics. including,

the source period.

for example, the time evolution of

In this case the frequency can be a function of the muon arrival time. and the

analysis is commonly known as momenta analysis of 2 circular distribution. with the
momentum order coinciding ‘With the harmonic which F(w) refers



We performed this analysis on Nusex muon sample caming from a window of 100 109
centered on CygX3 position, after appiying the heliocentric correction to the arrivai
times of the muons.

By the X-ray measurements is known thal the Binary period is a weak function ef

the time, and P=P;+(60/85(1-1,), where Pa=0.1996830, ty=.J D. 24409426956,

Q
and BP/Bt)g=1.18 to~9

We performed a sum of F{w) over fundamental and first harmonic. obtaining a
f'(w) value egual 1o 5.4 . corresponding to a probability of 2 10 ~2, to find the same
Fltw) value in the hypothesis of random distribution of the arrival times

3. CONCLUSIONS

The described method can be used in cosmic ray analysis, in three ways:

1} to test the temporal uniformity of the data sample;

2) to individuate time correlations : in this case by a preliminary scanning of n
frequencies we are able to identify temporal structures whose statistical
significance is better than 107 1) and which differ more than Aw=2w/T (T-total
observation time). The provided information can be used to direct successive,
more specific analysis.

3) to perform 4 statistical test on periodic signals with defined characteristics,
known as momenta analysis of a circular distribution.

We studied the method performing various simulations of the periodic signal shape

and background levels, and we analyzed arrival times of Nusex muon samples.

These latter applications allowed to test the uniformity of the background time

distribution (fig.7}, while considering the time variations of CygX3 period as known by
X-ray measurements, we obtained for Nusex modulated signal from this source, a

confidence level equal to 98% .
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