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ABSTRACT

The canonical quantization of gauge theories on a torus is reported. The
main feature introduced by the torus is the presence of zero momentum modes {(zrmm) .
It is shown that the unregularized Hamiltonian is not bounded from below
due to unlimited growth of zmm amplitude both in the abelian and non abelian ca
se. The only regularization which can prevent such a disease is to give a mass
to the gauge field.

Various tricky features of zmm are discussed, related to Schwinger
terms, the massive Schwinger model and the Witten index. It is also shown how
zom allow the introduction of an energy scale in abelian gauge theories.

1.~ INTRODUCTION

A specific feature of field theories on a torus is the existence of zero
momentum modes (zmm). These modes can play a special role in the thermodynamic
limit. While the equations involving other modes go smoothly into the continuum
When the volume of the torus goes to infinity, the equations involving zmm must
be treated separately to investigate wether the measure can develop a singulari
ty at zero momentum. A well known example is Bose-Einstein condensation in sta-
tistical mechanics. Another example is provided by abelian gauge theories where
due to zmm an energy scale can be 1ntroduced(]) through radiative corrections.

In non abelian gauge theories zmm can be expected to be even more import-
ant due to the more complicated infrared structure. This point has been fully

appreciated by some authors, who have emphasized the possible relevance of clas



(2)

sical(*) zmm (torons) in determining the structure of the vacuum'“’.
The importance of zmm is also apparent in the reduced mode1¢3) and the

quenched mode1(4)

. Findlly zmm have been promoted to a central role in the form
ulation of an effective Hamiltonian in the Fock space generated by tmem(5).

In this talk I want to report on the canonical quantization of gauge theo
ries on a torus taking zmm into proper account. zmm enter the Gauss constraint
and complicate its solution. This difficulty is overcome here by introducing a
gauge where the constraint for zmm decouples from the constraint on other modes.
The resulting Hamiltonian is unbounded from below when the gauge fields are cou
pled to fermionic matter both in the abelian and non abelian case. This instabi
19ty is not present if the coupling is with bosonic matter only, but cannot be
prevented if in addition to bosonic matter there is fermionic matter, so that it
is relevant to Supersymmetric theories.

This vacuum instability is an infrared problem, and we know that gauge
theories must anyhow be regularized in the infrared. As a consequence of the
present result, however, the only acceptable regularization on a torus is to
give a mass to the gauge field(6) (to replace the gauge multiplet by a massive
vector multiplet in Supersymmetric theories).

The instability takes place through the coupling of zmm to the volume aver
age of the fermion current. If such an average vanishes, the Hamiltonian is
bounded from below, so that there is no such a problem in the presence of color
confinement. The problem remains, however, in perturbation theory.

The same instability related to zmm affects the theory of a spinor and a
massless scalar with Yukawa coupling, but in this case it can be removed by ad-
ding a gquartic scalar self-interaction, which is also necessary to make the the
ory renormalizable. What makes gauge theories peculiar with respect to zmm is
that there is no interaction term which can regularize them.

One might ask: why study gauge theories on a torus if the zmm, which do
not exist in an infinité volume, give rise to such a pathology?

One motivation is that continuum gauge theories on a torus should be eas-
ier to compare to lattice gauge theories, which are usually studied on a torus
in order to have a good statistics.

Another motivation which, though highly speculative appears far more in-

teresting to me, is to make contact with Cosmology.

(*) We call them classical because they are defined by Hi = E5 = 0.



If we want to include gravity in our theory, a first step is to quantize
in a curved space in which the metric is a background. For a homogeneous Univer
se, we can assume a Robertson-Walker metric. The normal modes with such a metric
are continuous for an open Universe and discrete for a closed Universe. In the
flat limit the normal modes of the open Universe are consistent with the normal
modes in an infinite volume, while those of a closed Universe have some features
in common with the normal modes in a torus, including the existence of zmm. QFT
on a torus can be in this respect considered as the flat approximation to QFT in
a closed curved space. Therefore either zmm do not introduce any spurious effect
but at most make more evident some pecuyliar feature common to an infinite volu-
me, or we have a way to distinguish between a closed and an open Universe by the
infrared properties of gauge theories. Either way it is interesting to investi-
gate gauge theories on a torus.

As a by-product of the general results on the quantization of gauge theo-
ries on a torus I will show how an energy scale can be introduced into abelian
gauge theories, and I will comment on the Schwinger terms,the 6-angle of the mas

sive Schwinger model and the Witten index in. supersymmetric gauge theories.

2.~ THE ABELIAN CASE

3\
* )

The Hamiltonian density is(

, 1,2 .
ES + E—H oA T }fF’ (m

where jk and Jf% are the current and Hamiltonian density of the fermion field,

H B.Ak (2)

LI
P2 Tigk
and Ek is the momentum conjugate to the gauge field Ak

: e -> 3> =
IA G £ -9, 806C- 7). (3)

These variables are subject to the Gauss constraint

G = DE +gj = 0. (4)

Since we perform the quantization on a torus we can expand Ah and £, in

Fourier series

(*)

Repeated indices should always be understood summed over.
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The Fourier coefficients must satisfy the reality conditions

R A* E _ __*
M = A, T Bk,eh

It follows from eq.(3) that the zmm Qk and Py satisfy canonical ‘Poisson
brackets.
Introducing also for the current density a decomposition analogous to (5)

o -
Iy ~ 372 & Ty (6)

we have for the Hamiltonian

1 2

1.2 ‘/‘3 1=z 1 —— .
Ho=g P g dX[ZEkEI<+2H+ngAk+% : (7)

The quantization is now achieved by eliminating the redundant variables
by a gauge fixing and by replacing the remaining variables by quantum operators.
We do not need to specify the gauge fixing-for the present purposes. Let us
only emphasize that it cannot act on Qk which is gauge invariant because & com
mutes with it.

The gauge invariance:of Qk can also be understood in the following way.
Suppose that Qy is changed by a gauge transformation: Q) —> Qk + Cpe This means
that the parameter a(x) of the aauge transformation can be written as a(x) =
= X0t @(x). The matter fields ¥ would accordingly transform. as

X et &(xU
' =e Y, and due to the arbitrariness of ¢

satisfy periodic boundary conditions.

T they would no longer

The above refers to infinitesimal gauge transformations. There are "large"

transformations, however,

. 20
o . . 1 'l:—“ ’V'Xw
Qk - Qk + [f_wk , Y, integer Y- e

3

which do not alter the boundary conditions of the matter fields. They are relat
(2)

ed to torons in the non abelian case. I wi11‘not discuss them because we will

see that the only possible regularization breaks the invariance of the Hamilton



jan w.r. to such large gauge transformations.
It is obvious that the Hamiltonian (7) is unbounded from below. This can

be checked by taking its expectation value in the state

1 2
- (Q, - Q)
¢ = eri) 4 exp | - AL P (8)

where X is a state functional which does not depend on Qk’ such that

<AL > =90, I#0.

k3
Therefore for Q -» oo
< PlHlP > — gIQ .

Gne might object that such a result is not peculiar of gauge theories.

The Hamiltonian of a spinor and a massless scalar with a Yukawa coupling, for
instance, exhibits the same feature related to zmm. In this latter case, howev-
er, the instability can be avoided by adding to the Hamiltonian a selfinterac-
tion ¢4; which is also necessary to make the theory renormalizable. What makes
gauge theories peculiar w.r. to zmm is that there is no term analogous to ¢4
which can prevent the infrared instability. The only way to do it is to regula-
rize by giving to the gauge field a mass.

If the gauge:f1e1d is coupled to a scalar field rather than-to a fermion

field, a term g2 m*!PAZ is present in the Hamiltonian, which prevents the infra
red instability. Addition of such a coupling to-the coupling with a fermion
field, however, cannot obviously avoid it. The present result is therefore re-
levant to Supersymmetric gauge theories on.a torus. The only way we can see to
regularize these‘theories is to replace fhe gauge multiplet by a massive vector
multiplet,

Let me now briefly show how an energy scale can-appear. Due to the presen

ce of radiation of soft quanta the cross-sections can be written

o, 45—%—4ﬂ';3 8 AE - AW) .

A-precise definition. of the symbo1§(appearing in.the above formula.can be
found -in ref.(1). Here it is sufficient to say that o, is proportional to the
cross section evaluated with an infrared cut-off for the momenta of the gauge
quanta, B and W are quantities depending on ingoing and outgoing currents, £

the experimental energy, AE the experimental energy resolution and A the new



parameter
2
A= Tim —g—g ’
o> O,L--OooM L

where pu is the regulator mass of the gauge field.

Since there is no prescription about how L must go to infinity w.r. to how
Amust go to zero, A is an arbitrary parameter. Such a paramefer is obviously
zero in an infinite quantization volume.

If we make contact with Cosmology, however, we see that A is no longer a
free parameter and its value is.so small that we cannot distinguish an open from
a closed Universe. In the. presence of matter, in fact, p must be replaced by the

plasma frequency

where N is the total number of charged particles plus antiparticles in the Uni-
verse, assumed for simplicity to have all the mass m, and L3 is the volume of

the Universe. It follows that

A=

=3

Let me now come to-the subject of the Schwinger terms. Schwinger has ob-

served(7) that the commutator [16th Pkl cannot vanish, as it would result from

canonical commutation relations

16 Py Pk] [[Pk,H],Pk—" = - ig [Ik,Pk] = 0.

In fact by taking the vacuum expectation value of the 1.h.s. of the above

equation we find
/Lm Py qu|> = 2<PkMPk> >0,

if a vacuum-exists which is not annihilated by Pk.‘Schwinger concludes that
le,PKI # 0, implying extra terms in the commutators, namely the Schwinger terms.
A similar. argument also applies to other commutators, about which I have
nothing to say. Concerning the present one, however, we have seen that a vacuum
does not exist for the unregularized Hamiltonian. If we regularize by adding a

term %(LZAZ, on the other hand we have

[16th,PJ = 1[ oL, “sz’Pk_J = - 1‘g[Ik,Pk] v 3l



whose expectation value in the vacuum is positive even in the absence of Schwin
ger terms, i.e. flk,Pkl = 0.

Finally I m&]ﬂ comment on the massive Schwinger model(s) namely an abelian
gauge theory in two space time dimensions. Co]eman(g) has studied this model and
he has concluded that its mass spectrum depends on an angle, which is a new pa-
rameter existing only in two space time dimensions. Coleman does not make any
explicit assumptions about the quantization volume, but a torus is implicitely
assumed in the solution of the Gauss constraint

w1
E, = -g d] o + P

1 1

due to the presence of the constant P]. The angle which would affect the energy

spectrum is
]
g

Coleman's result follows from the assumption that P1 is a constant both
w.r. to space and time. P], however, is the zmm of the canonical variable E1,
and cannot be taken to be time-independent. From the general treatment just pre
sented we see that there are no new parameters (in addition to mass and coupling
constant) in two dimensional gauge theories. The parameter A, in fact, is rela
ted to radiative corrections which are absent in one space dimension. The pre-
sent conclusion cannot be possibly affected by Schwinger terms which, if present,
will not involve zmm as shown above.

The zmn are not expected to play any role in the Schwinger model. This is
because the charge is confined in this model and there being no asymptotic cur-

rents, Ik = 0, and the zmm decouple.

3.- THE NON ABELIAN CASE

In the non abelian case the Hamiltonian is still given by eq.(1) but egs.
(2) and (4) defining the magnetic strength H; and the Gauss constraint ® must

be replaced by

a 1 P Y abe,b ¢

HHA) = 5 e ‘_aj/\k ORI (9)
a_ 4 ab b a

& _Zk {A) Ek * 93, 0, {10}

where fabc are the structure constants of the color group and 52k the covariant



derivative in the adjoint representation

@ib(m) - 0%

abc ¢
 tof A (11)

!

Due to the nonlinearity of H, and ‘P ‘the zmm are coupled to the other mo-
des and we must explicitely define a gauge fixing to perform the quantization.

In order to do'it we need the following definitions

o> for n,#0 ,
in 3
i - 1 Ciﬁ for nZ#O, n3=0, (12)
Diﬁ for n1#0, n2=n3=0 .

We will use the obvious notations

1 o 25> >
B, =—% 2 B,»exp it n-x
i ‘L3/2'ﬁ£0 in L
and so on. We fix the gauge for non zero momentum modes by requiring

B, =C, =D, =0. (13)

We call this gauge the gauge A3~:0, because A ” in the continuum limit is

3
zero almost everywhere in momentum space, i.e. everywhere but on the surface

p3 = ().
We define the variables Fi’ G; and Hi conjugate(*) to By, Ci and Di
J Fiﬁ for n3¢0 s
Eiﬁ = t Giﬁ for n2¢0, n3:0 . (14)
Hiﬁ' for‘n]%o, n2=n3=0 .

The variables F3, GZ and H] conjugate to 83, C2 and D1 are obviously not

independent.
Integrating @ over the volume of the torus and using the gauge fixing we
get

abc_c_b a (15)
QP r R =0, ‘

(*) There will be no occasion of confusion between this latter component of Ei
and the magnetic strength Hy.



where

c,b c
3 3 ﬂ 3

/d abc

N o

We see that R contains only independent variables, so that the volume average
of @& is a constraint on zmm, decoupled from the constraints on the other modes.
Such a decoupling does not occur in the Coulomb gauge, and it is the advantage

of the gauge A,~ 0.

(5

introduce the Fourier transform of the Gauss constraint

Liisher has studied the Coulomb gauge. In this case it is convenient to

a_ . 2m .a abc -3/2 5 b b cb .c b7 .a _
P = T Eptef L L At r-at WEa el [P = 05
m£0 i
nilo R (]7)
a _ .abec -3/2, .c.b c .b .8
(DO = gf L (Qki k+ 2 AkﬁEk,"-fﬁ)*—gJOO . (-‘8)

m#0
In the Coulomb gauge the longitudinal components of 2

k
riables and, unlike the gauge A3*'0, such dependent variables appear also in

are dependent va-

(bg. As a consequence the constraint for zmm does not decouple from the equa-
tions for the other modes, and the PE appearing in eq.(17) should be reguarded
as functions of the longitudinal components of EZ as determined by eq.{(18). Lis
her has suggested to solve 1%7 only for h#0, leaving a residual invariance of
the Hamiltonian w.r. to spatially constant gauge transformations and the corre-
sponding generator Qﬁ as a constraint on the states. In his actual calculations,
however, he does not take into account the term in the sum in eq.(18).

The explicit solution of the constraint for Fj, Gy and M], will be report
ed somwerelse. We will only need here a property of the solution which will be
mentioned later and can be verified almost by inspection. We need instead the so
Jution of the constraint (15) for the zmm, and we will report it for the color
group SU{2). In this case it is convenient to introduce new variables through
the polar representation(]O)

, a
Q; = f, (8)4h (¥)

mn

where f and h are orthogonal matrices, which implies that the sum over n extends
from 1 to 3. The new variables are three angles et which parametrize f, three an

gles ?, which parametrize h and the three ln's
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We can now express the constraints and the Hamiltonian in terms of the new

variables. The constraint for zmm becomes

abc ¢ b a _ ,-lab a _ P
& QkPk+R—'7 P+ R =0 (19)

where
C
ank

1
Tan = 72 8nbchkb '69%[

showing that the angles ¢, are pure gauge variables. We choose for these angles

the gauge fixing

We next perform the transformation for the divferent pieces of the Hamilto
nian. We first rewrite each piece in terms of zmm and other modes. We have for
the electric part

3.1 .a
jd X > EkE

The contribution of the zmm is(10)

1 .aza 1.2 1 ~ 2 .2
Ipppa .12, 5 —-——~—-—((JLP ap, Y2222y
2 1 2 2 ,2.2 nA., ma m
n n<m(,ln,'/lm) N n m
7 (22)
1 2 .2 2 2.2 . L
* ﬁ'(lm+xn) ekmn(1k+Lk) +‘km’nskmn]kLk] ’
where
af
. ‘M _ 1 _ l _.en s
Lk - hka > ]k - fmkémtpet ’ §mt T2 8cbcfbn aem : (23)

In order to transform the magnetic energy it is convenient to use the fol

Towing expression of the magnetic strength

a, a;~ abc b, —C

in which the zmm are separated from the other modes. The magnetic energy becomes

/d::)’x —12— HO(A) = W + /d3x [HZ(K) + gsabcsﬂ cr? (RS + % L7372y

YTy 2 abc ade b d+ce
Hi(A) tge e 8 siij1QjAmAk j
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where we have isolated for Tater convenience the term

1 Zgabc ade b.c de 2

102,,2,2.,2,2 2,2
W =79 im eiijlQmQij =59 (1112+1113+Azl3) . (25)

Finally the interaction energy with a current is
a,a .a.a [ 3 —a-a . N J/ 3 ~<axa
jrngAk = ngIk +j/d xgJ A, = glnfknlk +/d XJkAk . (26)

The main difference concerning vacuum instability w.r. to the abelian case
is the presence of higher powers of the Qz in the pure gauge part of the Hamil-
tonian. Since the coupling to the current remains linear in the Q:, we must show
that the higher powers do not avoid:-the instability. In order to do it we use

the trial state functional

— 2 <
Ji l§+29 (lﬂ-l)z
Q= 3717 exp(-k——f§~0 exp |- ——5— F(l],lz,lg)l . (27)
v Aa.o 2).0 L ¢220

In the above equation F is a correlation function which prevents a diver-

.1 a.a N
gence in Z‘Pkpk when Ai = Aj, for instance
2
a2 -5 ||
F= IIAy1~exp|- ——-1———,?——‘]—-— ,
i<] \ £
0
while X is such that
cal, 23
<xllklx,> = 0%, ,1 . (28)

As a consequence for A - oo

f
3 a,a
<:ﬂ’ jd X ngAk

showing that the coupling to the current behaves as in the ébe]ian case.

.‘P> -5 C.ii ; C] a constant

Let us now consider the new terms. It is immediate toicheck that those con

taining only zmm do not grow-faster than 2

I N D T N
Lolgmpl o> »eh . <ouey =l (29)

In order to estimate the terms involving also the other modes we perform

the transformation

7, - ViE (30)

A —>

<;L‘
ol
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which should be understood to hold only for the independent components. There-
fore B4, G, and Dy remain zero, while Fj, Gy and H, are expressed in terms of
the independent components rescaled according to (30). It can be chécked that
also the dependent components of Ek do not grow faster than Viias the indepen
dent ones. Using the rescaled variables we find that there is no term in the

Hamiltonian which grows faster than i
LZPllp>  — (K + C1)i , K .a constant : (31)

Since we can make K+C,<0 by choosing 1 in eq.(28) large enough and
gl< 0, the Hamiltonian is niot - bounded from below.

The same considerations made in the abelian case concerning the coupling
to bosonic matter and Susy apply obviously also to the non abelian case.

We should note that the unboundedness is due to the existence of ‘an aver-
age value of the fermion current over the quantization volume. If there is color
confinement such an expectation value must be zero. This situatfon ig best illu
strated by the Schwinger mode1(8) where the. same infrared instability would oc-
cur, but we know, because the model has been solved, that the current average
vanishes. Therefore in the non abelian case the present instability might be an
obstacle in the way of perturbation theory just bécause related to another non-
perturbative feature, namely color confinement.

It is perhaps worth while noticing that the Hamiltonian of gauge theories
on a lattice, due to the compactness of the gauge variables, is bounded from be
low. This raises a problem in the way of identifying the thermodynamic limit of
gauge theoriesion a lattice with continuum gauge theories, and frustates one of
our motivations for studying gauge theories on a torus, namely the expected ea

se to compare the continuum to the lattice.

4.- zmm AND THE WITTEN INDEX

As it is known Susy is broken if and only if the vacuum energy is differ-
ent from zero. Since in general the vacuum energy cannot be evaluated exactely,
it is difficult to establish whether Susy is or is not broken.

Witten(1ﬂ) has observed that such a difficulty can be at least in part cir
cumvented, giving a sufficient condition for Susy not to be broken which does
not require the exact evaluation of the vacuum energy. The condition is that the
difference between the number of bosonic and fermionic modes of .zero energy, the
Witten index, lbe different from zero. The Witten index is not expected to depend

on the approximations used in the evaluation of the energy so that it can be cal
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culated easily and reliably in many cases and constitutes a powerful test for
Susy breaking.

The Witten index is well defined only if the energy spectrum is discrete.
In order to realize this condition, one takes advantage of the expected indepen
dence of the index on the parameters of the theory, quantizing in a finite box
and keeping the volume finite. The basic assumption is that the -energy spectrum
in a finite box is discrete, and that the lowest energy states can be construct
ed in terms of the zero-momentum modes of the fields. In order to select these

modes one can impose the constraints

a - |<J _
Fij = A7 le =0 , (32)

where A is the gaugino field. These constraints are gauge invariant but not Lo-
rentz invariant, and one can wonder what is the meaning of using an approxima-
tion which breaking Lorentz invariance also breaks Susy in the study of sponta-
neous Susy breaking.

The answer is. that with the above constraints one obtains a Galilean inva
riant supersynmetric theory. The restriction to Galilean modes iuplyies a con-
traction of the Susy algebra to a Galilean Susy, and the Wititen index should be
the same in the two.cases.

In order to show the Galilean invariance of the constrained theory we ob-
serve that the relativistic Lagrangian

1 .a auv 1 za, g ab,b 1 aa _
ZF[J“)F 21179)‘+3—;DD {33)

becomes, using the constraints

.7d,,0. .ab,b

a ool a8 + % 0%p? . (34)

1. 1
6”2 0" T2
Under - Galilean transformations(12) of parameters vy

A, = A, , AO RN Ao + vak , A=A, (35)

so that
i > Fij , Foi - Foi + Vkai (36)
and ,Q% is-Galilei-invariant under the constraints (32).

The Hamiltonian corresponding to £ is

8,01 aca jaga A gl @ ga asa
HG~fdx{2 EE; AO¢ r¢H€b]+¢2¢2+¢3¢3§ (37)
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where E? are -the momenta canonically conjugate to A?, ¢$1 are Lagrange multi-

pliers and
x| a a
0® - 2% - Tigr 20 b5 = Eig sk
(38)
a k2 _abb* a __k_abb
(Pz-oo@kl , (p3_.a@kl .

are the constraints. ®° is the Gauss constraint, !b?i is the first of the pri-

mary constraints (32), while ¢€:and dg are obtained from the second of the

primary constraints (32) by putting

_ p _l
/’L=‘ 627(* . (39)

sy

The constraints <Da, @; and <bf§ commute with the Hamiltonian, but (b?

does not, which means that if it is satisfied at some time it will no Tonger

hold at a later time. By applying the Dirac theory(]3)

of constrained systems
we must impose ithe vanishing of (H’qb?i] , which yields the secondary con-

straint

a ab_b
= 6 . = i,
(‘blh' ‘c’ﬁjk‘jj [k 0. (40)

The general solution{14) of all the constraints with the gauge fixing (13)

for SU(2) contains only zmm

a _ -3/2 pa a _  -3/2,, na -2 .,a
A= LTV By =L (PV"+ Q701 ),
(41)
a _ -3/2za a* -3/2pa.*
Xg =L V', > Xy =1 VE, s
where
a
a a 2asb b P ~a _V_
12 - (PN ‘_Qi,Pil =0 U=y

_ (42)
[vta®] =% (g, £ - oy

The gauge fixﬁng(13) does not act on the zmm and correspondingly the zero moment
um component of P2, eq.(15) is left as a condition on the physical states .

With the above'so1utions such condition takes the form

Ty (43)



- 15 -

Finally the Hamiltonian: is

2

Ho= %~P + 1

2

LA (44)
L

Q2

1

N [t

and has a continuum spectrum which makes the Witten index i11 defined.

(1)
(2)

(6)
(7)
(8)
(9)
(10)

(1)
(12)
(13)

(14)
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