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ABSTRAOT

‘We propose to formulate the perturbative expansion for field theory gtarting from the Langevin
equation which deseribes the approach to equilibrium. We show that this formulation ean b applied
to gauge theories to compute gauge invariant quantities without fixing the gauge. A very simple
example i3 worked.out in detail. We also discuss the speed of approaching to equilibrium of the
solution of the Langevin equation in the framework of perturbation theory.

I. INTRODUCTION

In the standard perturbative approach to gauge theories, it is mecessary to intro-
duce a gauge fixing term. In the Abelian case this introduction does not give serious
problems (if one uses a linear gauge condition), while in non-abelian gauge theories it
is necessary to introduce the Faddeev-Popov ghost™. However, this procedure breaks
down . in- a nonperturbative approach if one uses a. covariant gauge: the gauge
condition does not fix uniquely the gauge for large gauge potentials and this phenom-
enon goes under the nmame of Gribov ambiguity™.

In lattice gauge theories the situation is very different: no gauge fixing is needed
and owing to the compactness of the gauge group, all quantities whick are not gauge
invariant are zero®. -

The aim of our work is to construct a new perturbation theory for continuum
gauge theories without introducing a gauge fixing. The quantization method we
propose has the advantage of working also in the non-perturbative region independently
of the Gribov ambiguity. Moreover, we think that it is better to respect as far as
possible the symmetry of the problem at all stages in the computation. In our case
we would still find that quantities which transform hemogeneously under a gauge
transformation (e.g. a charged field ¢:8¢ ==iadp) must have vanishing expectation
values. Therefore, quantities such as the propagator for a charged field become zero
when the group charge e¢ is different from zero. This discontinuity in the behaviour
of non-gauge-invariant quantities as a function of e will be reflected in the presence
of divergences in their perturbative expansion. However, the perturbative expansion
for gauge invariant quantities is obviously free of these divergences. '
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Our approach i§ based on the Langevin equation of mnon-equilibrium statistical
mechanics™.  As it will be clear later, the Langevin equation (a stochastic evolution
equation) is. strongly —connected to the Monte Carlo procedure which. is used to do
computer simulation in gauge theories™ . Now it is interesting to study in the
framework of perturbation theory the -speed of approaching to equilibrium of these
random construective procedures, as we shall do in this paper.

We first reeall the general properties of the Langevin equation in See. II, and
write down the dia,grammatic rules in See. TOI. Then, in See. IV we show how to
obtain the correct results in a case where standard perturbation theory cannot be used.
In Sec. V we write the Langevin equation and the diagrammatical rules for gaunge
theories, and present a simple -computation to show how the correct result is obtained.
The arguments for the correectness:of-our new perturbative expansion at all orders are
given in See. VI, and finally Seec. VII is devoted to the presentation of our
conclusions. ’

II. LanceviN EQUATION .

Let us consider, for definiteness, ‘an Euclidean scalar field theory. Usually we
want to compute the correlation function, e.g., (¢(2)$(y)), where the bracket denotes
the statistical expeetation value at a temperature T':

dl1o(@) p(y)exp{ —pV ()}

{p(2)p(y)) = g : , (2.1)

'j" dl ¢ Texpl —V ()}
where § = 1/kT.

It may be convenient to generalize the problem. We can consider that:the field
¢ is also a function of a time #(0 <t < o0), and it is coupled with a heat reservoir
at temperature T. It will reach the equilibrium distribution for large time . If we
know the evolution -equation of the field ¢(x,%), we can use it to compute the large
time behaviour of ¢(x,t), and consequently the equilibrium distribution and the
correlation function Eq. (2.1). In other words, we have the freedom to assign to the
field ¢(z,¢) any time evolution equation so as to reach equilibrium for large times.

The simplest equation we can write is the so-called Langevin equation™,

0 (z,t) - sV
== + ,1), 2.2
ot 5z, t) SR (2:2)

where 5(z,t) are Gaussian random variables:

{n(z,t)) =0,

1) In certain cages the Monte Carlo procedurs can b2 considerad as a time-diserstized Langevin equation,
whera the digeretization is done in such a way as to pregerve the same agymptotie’ limit for large
times. s - ) :
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(e Dy(y,)) = 2676(x — )8t — 1)
B Sd[»?)]w(x,t)n(y,t’)exp {—-—g g d%dtnz(m,t)}

g d[ylexp {— i;;_ g dedtnz(m,t)} ) (2.3)

Commameye = Cpvnzisng — Cnopa) Snamey — Crena) e
— (qmap{nms) =0, (2.4)

where 7; = g(z,#,)(¢ = 1,2,8,4). If we impose a bouﬁdary condition at ¢ = 0 (in
the following we will assume ¢(z,0) = 0 and V(0) = 0), the solution of Eq. (2.2) is
uniquely given in terms of u; let us eall it ¢7(z,#). The stochastic correlation
function are defined by (¢"(z,#)$7(2’,#)), where the bracket indicates the mean
value over 7. (In the rest of the paper we shall write ¢(z,t) at the place of o"(z,
£).)® It is a well-known theorem of statistical mechanics™ that when ¢ goes to
infinity,

(@@ D)) — (H(@) b)) (2.5)

i.e. the equal time non-equilibrium correlation funetions tend to the equilibrium ones
for large times.

We mnote that the probability distribution P(¢,t) satisfies the Fokker-Planck
equation, as is proved in [4], (we set £ =1)

dt 562?66 (@) \ 84(x)
— 9 exp <— -%— V) I?i [P(qb,t) exp <% V)] s (2.6)
where o '
= %_ﬁf(x_). +v, v-1 (%) -1 g’;ﬁ . @1

" Eq. (2.5) can be proved in many ways. In the following we present a simple
proof in the case in which ¢ is defined only on one point, i.e. it is'a number ¢, not
o funection. In this case we have

B = % P+ U(g). (2.8)

If V(g) increases fast at infinity, H has a diserete spectrum. Let us denote by
$(g) and 1, its eigenvectors and eigenvalues:

A, (@) = 2,8,(0) 5 (hi > 1,). (2.9)

We can write the correlation funections at equal times as

(g(®¥) == 5_2 ¢, exp (—22,1) quq’%bn(q‘)%(q). (2.10)

- 1) We write the ‘Langevin equation using a. simple, but not mathematically correct notation. The
rigorous notation uses the Ite differantial caleulugt*l,
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It is very easy to verify that exp <——;— V(q)) is an eigenvector of H with eigenvalue
7er0; exp <— —;— V(q)) is also the ground state of bz , because it is a function without

zeros. 'Therefore, for large times we have
g dgq*exp (—V(2))

{g(O¥) =
S dg exp (—V ()

4+ Ofexp (—24,) 1, (2.11)

i.e. for large times we reach the equilibrium distribution exp (—V(q)), and the
corrections are exponentially small. It will be useful to note that the exponent 1, can
be written as the eigenvalue of a Schrodinger operator. This implies that 1, must be
a continuous funetion of V.

. The same argument can be done for the general case. The Hamiltonian now is

= S dPz {%‘ w(x)? + U (d’(x))}’ [7"(@) sp(y) 1 = —16(x — Y)s (2-12)
and

bl ] =exp{-— _;- ‘gd%v@(x))} ' | (2.13)
is the solution of the following Sehriidinger funectional equation with 1y == 0:

1 = ‘
{ 2 50 )1+U(¢'(x))}¢'o[¢'] Jobol 1. ;, (2.14)

I_t i_s possible to eonsider a more general Langevin equation:

. . D sV _
dat) = — | @y ) s+ e (2.15)
(@, Dy, t)) = 2M (z,y)8¢ — 1) (2.16)

and M is a positive matrix, one finds the same conclusions of the previous casé.

These results imply that the functional integral. formulation of field theories can
be replaced by a parabolic nonlinear stochastic equation”. The Langevin equation can
e tsed both in perturbative theory or in & monperturbative framework. In this paper
we will show how to use the Langevin equation for construeting a perturbative
expansion in cases where the standard perturbative approach ‘must be modified.

III. VDIA(_;vlv{AMS

" Let us study the diagrammatic approach to the solution of the Langevin equation.
We will consider for simplicity: the case in which,

7(@) = |@e {1 @07 + Lwe+ L ow) 3D

w1 In Ref. [6].it is shown how fo use an .elliptie nonlinear stochastie equation imstead of va parabolic
one. — - Lo .
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The Langevin equation with M (x,y) = 6(z — y) is

~

¢ = 0% — mPp + g¢* + 7, } (3.2)
(n(x,,t)n(:c',tf)> = 26(zx — 2 )s(t — 1) '
Let us first study the case g == 0. The solution of Eq. (3.2) can be written as
1
¢ (z,t) = So_dr S dPyG(z — y,t — t)n(y,7), (3.3)
where G(z,t) is the retarded Green function which satisfies
D g(w,8) = (8" — m)@(z,t) + 5(2)5(D),
0i T (3.4)
G(z,t) = 0. (for t <0)
It is obvious that
D
G(ﬁb t) = S —(;S?Z—;;%; exp {':"t(kz + mz) + ik - a:}@(t). (35)
ATE

Eq. (8.3) implies that &(z,t) is a Gaussian stochastic variable, being the linear
combination of Gaussian variables. Now the correlation function

<d')(:1?»,t)<{>($’,t)‘>‘ = D($ — x’;t’t')b

can be easily computed. We find
Dz — ' 3t,8) =2 go dr S Py@(a —y,t — )& — .t — 7). (3.6)
In the momentum space we have, for ¢ << t,

D(k;t, ) = eXP[‘_’CkZZ’f}‘_”:ZZ@’ =] {1 —exp [—208 + D1} (BT)

When ¢ — 0o, the second term can be mneglected. At equal times (¢ =={'-> c0) we
obtain the equilibrium result 1/(k* 4+ m?).

For g 2= 0, we can write

d(z,1) = S;dr g dPy@(x — y,t — ) [7(y,7) + g6*(y,7) 1. (3.8)

If we denote G by a line, n by a eross and ¢ by a point, assign a factor g to. each
three-line vertex and integrate over the times and coordinates of all crosses and
vertices, then we obtain by iterating Eq. (8.8)

D= e X o :)):+ é+... (39)

The mean over 7 is zero, if two crosses do not coincide. So we get up to the order
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g% (if we neglect tadpole-like diagrams),

A s g S (D S R TS ) STa

(a) (b) (e) ‘ (a) (3.10)

The diagram (a) gives the free prbpaga‘tdi' Eq. (3.6) or (13.7 ), and the contributions
of the diagrams (b), (e¢) and (d) are respectively:

— g | PR ("
b d‘fl d’t zer‘(k tl _ ‘L])G(k tz - f;)

(2x)? Jo
x D(kl;fl,fz)D(k o kl;'fl,'l'z)y E ’ (3.11)
A%k (=
c+d= S ‘Sdr dvA Dk — k37,7
g (2m)P 1 ] AD( 1371, T2)

X [‘D(k;tl;fl)G("d;T'z —“Tl’,)G(k;tz — 73)
-+ D(k§t2,'fz)G(7‘31;f1 - Tz)G(k;tl — 1]
+ terms obtained by k == &k — L }. (3.12)

A simple ecomputation shows that we recover the correct equilibrium result at equal
large times (#; == f,—> o©):

2 dPly 1

b E—1
g (2=)2 (12 + m?) (12 +.m®) (k2 + m» (P + &2 + I + 3m?)’

(3.13)

d°k 1 1 1
c+d= S L ( + ) , (3.14
g @Ce)? \B+m? K+ mPl (B 4 mP) (R A+ B+ k4 3mP) (314)
dPk 1

btc+d= ZX .
"I ) 2P (B + m) R+ mh) (I +

(3.15)

where k, =k — k;. 'This is an example showing explicitly the validity of Eq. (2.5)
to the order g®. That it is generally true for.-all orders follow from .the -generaf
consideration of the previous section or, alternatively, from a dlagrammatlcal prool
given by De Dominicis for the ease (3.1)1.

IV. A Swvere Exampre

In this section we will present a simple example of a more general phenomenon.
Let, us consider the potential

V(@) = — = g + 5 0@, (41)

where ¢ is an n-dimensional veetor, and ¢* = Z (o)™
i=1
If we want to compute



No. 4 .+ PERTURBATION THEORY WITHOUT GAUGE FIXING 489

(g*) cc f dlqlg*exp {—V(q)} (4.2)

in perturbation theory in ¢, we have first to find the minimum of V(q). The
minimum happens at |g|* = /g, but owing to the O(n) symmetry of the potential

V(q), it is not an isolated minimum. If we choose the minimum
\

qg=q= (\/ﬁg-,o, -",0>:

we' can Wwrite g ==gqo+ § and develop the exponent in powers of g, but we shall
get divergent intergals. Indeed, let us write

—
g =(_\/% -+ §r.» qT'>; (4:3)
where g is an (n — 1)-dimensional vector. We find

V(@) = 3 + V 195.(G + ¢3)
+Lg@+ar—L o, (44)

4 49
and the integration over gy is not damped for g =0. If we add a regularizing term
hq% and send h to zero, we would get the wrong result at the first order in g. The

correct result can always be obtained by doing the nonlinear transformation to the

variable r = (¢*)"* and the set of angular coordinates of the (m — 1)-dimensional
sphere,

_ E dre¥=2? exp {-— (Z— rt— —;f r2>}
‘= drr¥~lex [ (2 rt— # r? .
| g P ( 4 D) )}

We want to show that from the Langevin equation one can get the eorrect result
without having to do the nonlinear transformation. ~Let us consider the first order
in g. We know that we must have

(45)

. 2 .
() == é‘- + A(n—1) + B. (4.6)
If m ==1, we obtain automatically the correct result, so we can only- compute the term

proportional to (n'— 1). Now the Langevin equations are

=1+ 0(¢"), }

G = — 220, — /P9 (3% + qi) + 0(g) + .. (+7)

An easy computation shows that
(&(® () = 26, min (¢,1). (4.8)

In order to get {(¢*), we must compute §, at the order g“2. The only diagram (for
the term proportional to (n — 1)) is
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o~ sk

~—

= pg'? g; di’{gt(¥")) exp [ —247(t — 1
= — (n =D W9/ —1/2D), (4.9)

where the dashed line stands for the transverse propagator, and we have neglected
terms which vanish when ¢-—>co. If we compute the terms proportional.to (n—1)
in

Co =—;—‘—+2. %- (@) + @) + {at), (4.10)

we find they are

—2(n — 1)(t — --1—'>,+ o(n— 1)t =21 (4.11)
. " 2/‘52 . ST ‘uz

From this equation we seethat the terms proportional to ¢ coming from {§;) and
{g%) cancel each other, and the finite contribution gives the correct result as can be
easily checked from Eq. (4.5) by the saddle point method.

Of course, we can also apply the mnonlinear transformations to the Langevin
equation. Let us consider the case n=2. 1t can be shown that if we go fo the
variables 7(#) and 6(#), the Langevin equation

-V, (4.12)
Oq
becomes® k )
f=— L V() + ]+,
| dr , (4.18)
é = 7g,
where

(D, (D)) = 26 — 1), Lne(ms(t)) = % 8@t —1).

The evolution for r is  decoupled from that for €, and the perturbative expansion
in ¢ is uniform at all times. However, we do not -need at any rate to do explicitly
the mnonlinear transformation. The solution of the Langevin equation is finite at all
¢ (¢ plays the role of a regulator), and we get the correect résults automatieally. Of
course, if we compute {q%y = (r?sin*6) 'we would get divergent results in perturbation
theory:

(gi) =t + g+ --- (4.14)

indicating that the equilibrium is reachnec'l( -on'ly for times > 1/g. Therefore, the

1) If one is not careful in doing the nonlinear transformation, one would misg the lnr term.
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only distinetion is between quantities which go fast to equilibrium (24 ~ 0(1)) and
those which go slowly (4; ~ 0(1/¢)); only the first ones can be correctly computed
in perturbation theory. For example, we obtain

(g =2 0 (exp (—19)). (4.15)

The existence of an equation for r being decoupled from the equation for 6 is a
general consequence of the symmetry of the problem, and it implies that the approach
to equilibrium must be fast for symmetric invariant quantities.

Indeed, let us consider the Fokker-Planck equation for ¢ = P(q,t) exp <% V(q)>

Using the radial variables r and 6 we can see that the “S-wave®” component of ¢,

b5 (ryt) = | a6 (r,0,0) (4.16)

satisfies the radial equation

'%*Ps(’":t) == ﬁsﬁbs(r’t)- (4'17)

The eigenvalue 2; of A s controls the approach to equilibrium of radially symmetrie
quantities. By general theorems 1, is a continuously differentiable function of the

coupling constant, so that we expeet that the approach to equilibrium must be uniform
in g and time.

As the reader can see, this approach has the virtue of giving automatically the
correct results in perturbation theory without worrying about the nonlinear transfor-
mations. This is in contrast with the approach consisting in adding to V a symmetry
breaking term hg} and firstly expanding in ¢ and later sending % to zero.

V.- Gauce TueoriES
Now we proceed to consider a gauge theory, the Euclidean Hamiltonian being
V= S dPx {(Dﬂdf") (D) + -;— TrFﬁ,,}, (5.1)
where
D, = (0, —1ed,)d, F,, =0,4,— 0,4, —1ie[d,,A4,]
A, = Alr,, F,=F.,r,, Tr(rr,)= —;— 8.

The associate Langevin equations are

{4'3 = P'2¢ + g, &7 = D¥* + qf, 5.2)
A,=D,JF, +J,+ ,,
‘Where
Jo=Jit,, Ji=1ed .0, + 2o {v,,4,}¢,
(noe,OImf (e,8)) = 28(2 — a')6(t — 1), } (5.8)
Nz, D, (2, 1)) = 28,,6(x — 2)6(—1)C,, )
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and €, = 8"z, is the second Casimir operator, which is a multiple of the unit
matrix.

Tet us first consider the free Abelian ‘case in which,
4,=0"4,— 0,04, + n,. (5.4)
After being imposed the boundary condition '
A#(ﬁ:t) lt=0 = 0, : (55)
the solution of the Eq. (5:4) for ¢ > 0 (in the momentum ‘space) is,
5 3. [t . -
A, (hy0) = So 4Gy (ot — ) (st 5 (5.6)
where the retarded Green function defined only for ¢ > ¢, is
Gt — t) = (a,w — ’”—;ﬁ-) exp [ — 1t — ¢)] + k—zlf— | (5.7)

The expectation value of A,(z,t)4,(y,t") in the momentum space is

D, (k;t, ) = (sy» — %H kl {exp [—2|t —#]]
2 4 k/’]cv [ i ’ ’
— exp [— Rt + 1)1} +—k72m1n (t,t). (5.8)

For large .equal times (f =t — ), we find

D, (k3t,8) = <a,w - k“k”> Lt opkels

e )+

= k2 (5.9)

Diagrammatically, Eq. (5.7) is the (retarded) propagator without any cross and Eq.
(5.8) is the propagator with a cross.

‘We note that; Eq. (5.9) is just the usual Feynman propagator in the Landau
gauge plus a longitudinal term which is divergent as the time. Indeed, we can write
A (z,t) = AL(z,t) + O,0(z,t), (5.10)

where AL(x,t) satisfies , ,
0,45 (x,t) = 0. (5.11)

AZ(x,t) is gauge invariant and o(x,t) looks like a gauge transformation. Then we
find in the momentum space,

(AZ(e) AT (— 8,0y = (5, — 2ot} L
) (5.12)
{a(kst)a(— k: )= 2 i.

This means that the evolution for gauge invariant quantities is fast, while the system
undergoes a random walk in the gauge parameter space.
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Jia PP=R
. iﬁﬁﬂ *m‘ y_m*..
——Nf——e -+ &t | @ -+
H z L

z > &t
(a) (b) (© (d)
&, ¢
AN
. r Y Y
+«+ff;l R % TR A + ~—§2~—~
(e (ty R () G))
Fig. 1

Now let us consider the ¢*p propagator in the Abelian theory at equal times.
The diagrammatical rules for scalar QED are very similar to those in Sec. TIT. In
addition to the propagators given by Hgs. (8.7), (5.7) and (5.8), what we should
add here are only the rules- for the A,p*p and A,4,¢%¢ vertices, but they are the
same as in usual Feynman diagrams. We shall do the computation up. to the order
¢*, keeping only the terms which survive at large ¢. The diagrams are shown in
Fig. 1, where the straight line stands for the ¢ field, and the wavy line the photon.
Their contributions at equal times # are given as follows for large ¢ (after being
integrated over the times, # and t;, of the vertices):

: .
a =2 50 dt’ exp(—2p%’) = L

=
b= ez‘.‘ ~(Z§£% PP (p? j— P+ ) [(;p ) - Qf_;z_pZX]
ezg (O;Z:gf’ p’p'z(p21+' p?) [% B Zf_i p* ii] Qf‘%ﬁ’ ©19
et A2, -z
“Hlas el e O ew
g+ h = —3¢ S ZO%B p%,'z — e ( %517 [215 — -;—2] (5.15)

Here & = p — p'; the first and the second integrals represent respectively the contribu-
tions of the transverse and longitudinal part of the 4, field.

If we sum all the contributions of the transverse part, we find the usual: result
in the Liandau gauge. For the contribution of the longitudinal part, at large times
the term proportional to ¢ is equal to the variation of the equilibrium. ¢*¢ propagator
induced by adding the gauge term t(k,/EY) to the equilibrium A,A, propagator.
Indeed, the main contribution to the diagrams comes from the region of integration
where ¢ — #;,t — £, are of order 1, so that at the leading order in # we can substi-
tute ¢ for #,%,. In this way we lose terms of 0(1) when t—> co, but we compute
correctly the terms of order ¢. This argument can be generalized to the leading order
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in f.at fixéd e®. TUsing the standard theorem on the variation of Green functions
under a gauge transformation™, we get

<¢*'(x,t)¢(y:t)>:m (p*(@)p(y)); exp [ —eHw(z — 9T, (5.16)

where w(z) oc 1/]x|P~? is the Fourier transform of 1/k*, and {¢*(x)¢(y)); is the
free propagator. Eq. (5.16) implies that for large times the charged field propagator
is very mear to zero, but this happens only for times ¢ greater than.l/e’w(x — y).
In the asymptotic limit ¢-— oo, the sum of the leading terms in ¢ for each order in.
¢ goes to zero. However, a completely different result would be.obtained considering
only a finite number of terms in the perturbation expansion.

Let us consider a gauge invariant quantity. The simplest one is ¢+ (z,t)P(z,1).
The contribution proportional to # is obviously zero, because it corresponds to a gauge
transformation. This can be explicitly checked from Egs. (5.18)—(5.15) by using
dimensional regularization. As for the remaining finite terms, after some algebraic
operation and having eliminated terms odd in k= p— p’, we find they are equal
to the well-known contribution in the Landau gauge plus the following term,

S d%p _dPp’ P . (5.17)
(22)? (2=)” P (P* + p*) (p — P')? ’

Being odd under the exchange p<«—>p’, this term is equal to zero, as required by
consistency.

We have seen that also in gauge theories, at least in this simple example, the
correct results for gauge invariant quantities can be obtained in our approach with
the Langevin equation by expanding in powers of the coupling constant without having
to fix the gauge as is done in the conventional approach. The only breaking of gauge
invariance is in the boundary conditions at t = 0:4,(,t)|,~0 =0, but the large #
behaviour is independent of the boundary conditions.

What happens at higher orders? Diagrams must be regularized by dimefls‘ional
regularization or lattice regularization (i.e., by a gauge invariant procedure). In
principle, it is known that for a renormalizable theory dynamic correlation functions
are finite only after a renormalization of the matrix M (x,y) in Eq. (2.15). This
phenomenon which is wellknown in the theory of the second-order phase transitions™,
does not modify the static (equal-time) correlation functions at large times. We have
therefore two possibilities:

1) Add the counterterms in M (z,y) in order to have finite results at all times.

2) Take the limit ¢— oo before sending the cutoff to infinity or the spaece
dimensions D to the physical one. The first alternative would be the best, if we want
to find explicitly the convergence rate of the Langevin equation (e.g., to compare
with Monte Carlo procedures), while the second alternative is the simplest if we are
interested only in equilibrium properties.

Tn the next section we will argue that. also in non-Abelian theories we obtain the
correct results which correspond to the effect of the Faddeev-Popov ghost.
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VI. Generar CoONSIDERATIONS

The general theorems on the approaching to equilibrium of the solution of the
Liangevin (or the Fokker-Planck) equation can be applied to our case, therefore there
is. no doubt that the large-time behaviour of the ecorrelation functions is the correct
one. The main problem is to show that for gauge invariant quantities equilibrium is
approached uniformly in ¢ and in ¢ so that the Taylor expansion in ¢ and the limit
t — 0o can be freely exchanged. As is seen in the previous sections, this is not true
for quantities which are not gauge invariant, Therefore, it is better to present the
argument in detail (although it is rather similar to that. in Sec. IV).

It is convenient to introduce the quantities AL(z,t) o(x,t) and ¢7(x,t) defined
by
0,4%(z,t) =0,
—tedL(x,t) = exp [ —iea(x,t)](8,=1ied,) expiea(z,t)], (6.1)
¢7(z,t) = exp [ —tea(w,t) 1p(x,1).

In perturbation theory in e these equations fix uniquely o(z,t),A%(x,t) and $7(z,t)
in terms of A,(x,t) and ¢(z,t)?. AL(z,t) and ¢"(z,t) are gauge invariant quantities,
ie., they do not change under a gauge transformation for A,(z,t). All gauge
invariant quantities can be written in terms of AL(z,t) and ¢7(x,1).

The gauge invariance of the Langevin equation or of the associated Fokker-Planck
equation implies that- the evolution of AZ(x,t) and $7(x,t) is independent of the
evolution of a(x,#). Therefore we can write

AL(z,t) = F(AL, 7, 1"7),
(1) 1(‘¢>‘n)} (6.2)

¢ (2, 1) = Fo(4%, 5.

‘We are not interested in the detailed form of!these equations or of the associated
Fokker-Planck equations. From Xq. (4.2) we have already seen that the approach
to equilibrium is controlled by the smallest positive eigenvalues 4, of an operator H
which acts on gauge invariant quantities, so that the slow approach to equilibrium for
gauge non-invariant quantities like the distribution of o(z,#) has no effect on the
evolution of gauge invariant quantities. Thus, apart from possible ultraviolet or
infrared divergences®, equilibrium is approached in the interacting theory at roughly
the same rate as in the free theory. Divergences. should be eliminated by introducing
the needed cutoffs and counterterms - in order to obtain finite results.

These. arguments show that no term linear in ¢ appears in the expectation value
of gauge invariant quantities, and that one finds automatically the ecorrect results
‘which corresponds to the contribution of the Faddeev-Popov ghost. Of course, this

1) More precisely, the uniqueness of @(x,?) holds only for fixed 4.(z,t) and sufficiently small e. The
existenee of A4.(x,t) such that there ars many solutions for «(w,t) is just the Gribov ambiguity.

2) In order to make the argument complete, one should first consider the ease of finite lattics and impose
the appropriate boundary conditions in such a way thatlthe spectrum of H becomes diserete and that
the corrections to the equilibrium distributions are exponentially small.
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contribution would show up as a finite remainder of incomplete cancellation of terms
which are dependent on #, if we do perturbative expansions directly for A,(x,?).

VII. ConcrLusions

The method we have proposed here is not very useful for practical computation.
The number of diagrams is much higher than that in the conventional approach and
the algebraic operation is longer. Some additional difficulties arise in the compuita-
tion of the § matrix for charged fields. Indeed, the Green functions of charged
fields are zero at equilibrium, so that ‘the LSZ formalism cannot be used. We have
not investigated the possibility of using the gauge invariant path-dependent operators
0f Mandelstam in the LSZ formalism. In principle, all' physical measurable informs-
tions, like cross sections, can be extracted from the Green functions of gauge invari-
ant quantities, although this operation is very complicated in practice. It is important,
however, to know that, at least in principle, we can avoid the use of the Faddeev-
Popov trick, whose correctness has been questioned beyond perturbation theory.

We note that the equality between the Green functioms of a field theory and the
equal-time stochastic correlation functions of the Langevin equation ecan ‘be the starting
point of a reformulation of field theory using a different language. - In this paper,
we show that this formulation may be useful to construct a perturbative expansion for
systems for which a nonlinear transformation is needed in the conventional approach
to obtain the correct results. It is possible that the same technique can be of a wider
application. Indeed, the Langevin equation (or its discretized version, the Monte Carlo
procedure) is a really constructive approach to field theory in the sense that it can be
used as a practical starting point for computer simulations.

We are very grateful to Prof. Hao Bailin for many discussions and suggestions.
One of us (G. Parisi) is happy to thank the Institute of Theoretical Physics, Academia
Sinica for the warm hospitality extended to him.
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