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We construct a new perturbative expansion whose zeroth-order approximation gives the
Migdal-Kadanoff recursion equations. By this expansion it is therefore possible to improve
systematically the Migdal-Kadanoff results. The first-order corrections are computed for the Ising
and bond percolation models. The second-order corrections are computed only for the two-

dimensional Ising model. Our method can be easily extended to other systems like the non-linear o
model or gauge theories.

1. Introduction

The real space normalization group is a very powerful technique which allows one
to compute the critical properties of a system, in particular the transition tempera-
ture and the critical exponents. Unfortunately, in the exact approach one should
consider the renormalization equations for an infinite number of independent
interactions. In practice, when we make a numerical computation, we are forced to
project the infinite-dimensional space of the hamiltonians onto a finite-dimensional
subspace. This projecting operation is the most delicate point of the approximate
approach: it is not clear which principles should guide us.

The Migdal recursion method [1] revised by Kadanoff [2] has a privileged place
among other approaches; it works magnificently for systems whose transition
temperature is very near or equal to zero (i.e., near the lower critical dimension,
when the continuum field theory associated to the low-temperature expansion is
renormalizable). This happens, for example, in dimension D = 2 for the non-linear o
model and in dimension I = 4 for non-abelian gauge theories. The Migdal approx-
imation is the only real space renormalization group approach which reproduces
automatically the ‘“‘asymptotic freedom’ behaviour for systems at the lower critical
dimension [1, 3].

It was stressed to one of us (G.P.) by Migdal that it should be possible to improve
this approach by considering the Migdal recursion formulas at the zeroth-order
approximation of a perturbation theory and by finding higher-order corrections in a
systematic way.
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202 G. Martinelli, G. Parisi /| Migdal recursion formula

Stimulated by this suggestion, we have accomplished this program by computing
the first-order corrections of a few simple cases and the second-order correctionsin a
particular case. The corrections we find are not small and they improve the
Migdal-Kadanoff results in a substantial manner. Our approach is applicable to any
model.

In sect. 2 we recall the principles of the Migdal-Kadanoff recursion formulas and
we describe the principle of the method we shall use to construct this new pertur-
bative expansion. In sect. 3 we apply our method to the two-dimensional Ising model
while in sect. 4 we study the D-dimensional Ising model. In sect. 5 we extend our
results to the bound percolation problem. In sect. 6 we present a general discussion of
the results and the possible developments.

2. The method

In this section we reconsider critically the Migdal-Kadanoff approach to the
renormalization group in order to introduce corrections to their results. For
definiteness we limit ourselves to the two-dimensional Ising model with the nearest
neighbour spin interactions (NNI).

First let us recall the general principles of the renormalization group.

To obtain the renormalization group equations, one proceeds in the following
way: given the initial partition function Z, corresponding to a hamiltonian H"(c),
one eliminates a part of the spins & (this procedure is called decimation). After this,
one obtains the result that Z depends on a new effective hamiltonian H®, where
H"@ is a function of the remaining spins w.

More precisely,

z=3 ewp[-H W)= (3 exp [-H"(3, w) 1)

{a}

We have absorbed the inverse temperature 8 in the definition of H. Eq. (2.1) defines
the renormalization group transformation R which gives H®(u) as a function of the
initial hamiltonian H“(¢)

R: H®=R[H"]. (2.2)
One can also define the hamiltonian H'™ as:
H" =R[H" ], (2.3)

According to the conventional wisdom, the stable fixed points of the transformation
R (i.e., H;= R[H;)) are connected with the phases of the spin system [4].

The domains of attraction of these fixed points are separated by a critical surface
and the unstable fixed point on the critical surface controls the critical properties of
the system (like, for example, the critical exponents). The critical temperature is fixed
by the intersect of the critical surface with the surface of the hamiltonian one is
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considering (e.g., for the NNI, the subspace is one-dimensional and is characterized
only by the parameter £8).

Unfortunately, a very simple hamiltonian under the renormalization group trans-
formation will generate a very complex one. For example, if H M is the NNI Ising
model hamiltonian, H® contains next-to-neighbouring interactions, four-spin
interactions and so on. Then the fixed point will be characterized by an infinite
number of parameters. In practical cases, one tries to avoid these difficulties by
defining an operator P which projects the hamiltonian, after decimation, onto a new
hamiltonian depending on a finite number of parameters. The renormalization group
transformation becomes [4]

‘Hr(n) :RP[I_I(n—l)]___P{R[H(n—l)} ) (24)

Rp is obviously defined as a finite-dimensional space. The choice of P is crucial but it
is not evident a priori how to make a good choice. Another method to simplify the
renormalization group transformation is given by the Kadanoff version of the Migdal
recursion equations [2]. One defines the transformation as

H®=R[HP+H], (2.5)

where H isin general a certain function of H™ choseninsucha way as to simplify the
transformation. The choice of H is equivalent in the previous case to the choice of P.

Let us consider in detail the two-dimensional Ising system. In this case the
Kadanoff operator H is a bond moving operator whose action is pictorially shown in
fig. 1. For the moment we limit the discussion to the simple case where only half of the
bonds have been moved. Then half of the spins are connected to the rest of the
system by only two bonds. The sum over the configurations of these spins can easily
be done using the formulas

exp (Boy02) = cosh (B) - {1 +[tgh (B)]o102}, (2.6a)
Y (+kpo)(d+kous)=1+k>piu,, (2.6b)
{o=xt) '
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Fig. 1. A pictorial representation of the lattice after the shifting operation. The simple lines are the

unshifted bonds. The double lines are the strong bonds, the dashed lines the weak bonds. The

corresponding interaction strength is A8 and 0 in the Migdal-Kadanoft limit, 8, + (A —1)(1 —¢)B, and £8,
in our approach. The x are the decimated spins (J), the @ surviving spins (g ).



204 G. Martinelli, G. Parisi | Migdal recursion formula

from which follows

{ Zi” exp (w10 +ou2) = const - exp {tgh™" [tgh® (8)] - wipa} . @.7)
(If we are not interested in explicitly computing the free energy but only the
renormalization group equations of the coupling constants, the overall multiplicative
factors can be neglected.)
After the decimation in the x direction (see fig. 1) we obtain an anisotropic
hamiltonian whose next neighbour coupling constants are given by

B =tgh ' [tgh® (B)],
By,=28. (2.8)

We proceed to a new decimation by changing the réle of the x and y axes.
After the two transformations we obtain a lattice whose lattice spacing is twice the
original one (L - 2L) and the renormalization group equations are

BL =2tgh " [tgh® (8)],
By =tgh " [tgh® 28)].

The two transformations do not commute and we do not restore the isotropy of the
original system. This effect is an artefact of the transformation we used and can be
eliminated by projecting the final hamiltonian on the space of the isotropic hamil-
tonians by defining

(2.9)

B'=%(BL+B}). (2.10)

The generalization of eqs. (2.8)-(2.10) to the case L—>AL gives the following
“formulas:

B = tgh™'[tgh* (B)],
B, =tgh™' [tgh* (AB)], 2.11)
B =1(BL+By)=fB).

The dilatation of the lattice spacing is defined for integer A. Egs. (2.11) can be
formally continued to non-integer A without difficulties. If we set A =1+ 4, with 4
infinitesimal, we get

Bi=B+f(B)A+0(4Y),
By =B+f(B)A+0(4?, 2.12)
with
f(B) =B +sinh (8) cosh (8) In [tgh (8)].

We see that for A infinitesimal the symmetry between x and y is restored. After N
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spin decimations with a scale factor A =1+ A, the spacing is increased by a factor
(1+4)N ~exp (N4). Calling = N4, in the limit 40, ¢ becomes the continuum
variable and B(¢) satisfies the differential equation:

(] (2.13)

The function f(B8) is positive for large 8, negative for small 8 and it has only one zero
at 8 = B.. The asymptotic behaviour for large ¢ crucially depends on the value of 8 %at

t =0, 1i.e., the value of the NNI when the decimation process starts. One finds that for
t =00

B(H)~0, if 3°< 8.,
B(1) >, it g°>gB., (2.14)
B(t)‘-"ﬁc, ifBOZBc

There are three fixed points: 8 =0 and 8 = are stable fixed points, 8 =8, is
unstable. Putting B° = pB.+ 568 we have

3(1)~ B+ 58 ,
B(t)=B.+8B exp (wt) 015
%f(ﬁ)llhrsc ) for |68 exp (wt)|« 1.

Recalling that the scale has increased by a factor e’ we find B(1)—B.=1"(Bo—B.).
This defines the critical exponent of the correlation length v =1/w.
For general A we have qualitatively the same situation:

ﬁc=f/\(ﬁc)

(), )0

The dependence of 8. and w on A is not very strong in the region A ~ 1. We note that
for reasons which are not clear one gets the exact result for the critical temperature in
the limit A - 1 while the critical exponent v is overestimated. The approach can be
generalized to any dimension D. For infinitesimal 4 one gets

(2.16)

f(B)=(D—1)B +sinh (8) cosh (8) In (tgh (8)] . (2.17)

B. and » as functions of D are shown in figs. 2, 3. The results are rather satisfactory
for low dimensions and their quality deteriorates with increasing D. As expected, if
D =1, there is no transition: if D=1, B.~1/(D—1) and v~ 1/(D —1) [5]. When
D - c0, however, in this approximation B.~¢ ~P-Y and v > 1 while the “exact”
results [6] are B.=1/2D +0O(1/D?% and v =} for D >4.
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Fig. 2. (D —1)8. as a function of the dimension at zeroth order (line I) and at first order (line II) in ¢ (Ising
model).

Let us generalize the Migdal-Kadanoff approach as expressed by eq. (2.5). We
define the transformation R, depending on the parameter ¢ as

H?=R,[HV=RHY+(1-¢)H], (2.18)

where H is still a bond shifting operator. Obviously, for & =0 we recover the
Migdal-Kadanoff transformation while for ¢ =1 we get the exact renormalization
group transformation of eq. (2.2). Using the renormalization group transformation
[eq. (2.18)] we get a critical B, B.= B.(e), and a critical exponent v = v(¢) which
depends on e. It was observed by Kadanoff that if we choose H in an appropriate
way,

ZH)=ZH+(1-e)H)A1+0(1-¢)%), (2.19)

0.5

Fig. 3. v as function of the dimension at zeroth order (line I) and first order (line II) in &. The dashed line
represents the correct result (Ising model) [8].
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the difference between B(e = 1) (which is the exact one) and B.(¢) should be of order
(1-¢)

For & #0 it is not possible to compute B.(g), »(¢) and Hi(e) [the fixed point
hamiltonian satisfying the condition H; = R.(Hj(¢))]in a closed form because of the
infinite number of interactions generated by the decimation. However, we shall
prove that it is possible to decompose the space S of the hamiltonians generated by
the renormalization group transformation in the direct sum of spaces S,, (S=
@::0 S,.) in such a way that the S,,, are finite-dimensional spaces and the component
of the fixed point hamiltonian He(¢) in the space S, is of order e™ (So is the space of
the nearest-neighbour interaction). Indeed if the starting hamiltonian belongs to So
after n transformation, the renormalized hamiltonian H Wieg) will have its
component in S,,, proportional to ¢ ™. Hy(¢), B.(¢) and »(¢) can be expanded in power
series of ¢ and the coefficients of the Taylor expansion can be computed in a closed
form. Calling Pys the projection operator on the space sM =Q—)1,f=0 S (S™ being
finite dimensional) and defining RM = p,R., the results obtained using RM will
differ from those obtained using R, only by O(e™™"). Evidently the coefficients of
the Taylor expansion in e can be computed working with only a finite number of
interactions (for the two-dimensional Ising model, SO, S', $? have dimensions 1, 2,7,
respectively).

Our goal is to compute the critical exponents at ¢ =1, i.e., the exact trans-
formation, using as input the coefficients of the expansion in powers of ¢. The
Migdal-Kadanoff recursion formulas are the zeroth-order approximation of this new
perturbative expansion.

In this approach the analytic properties of physical quantities in the complex ¢
plane are crucial. We do not see any reason for having a singularity around ¢ =0 or
on the 0-1 interval. The most delicate point is £ = 1. It is not clear-if the fixed point
hamiltonian H:(¢) has a *‘good” limit when & > 1 (it may be argued that in this limit it
should become an infinite range hamiltonian); we hope that the behaviour of physical
quantities like v(g) and B (¢) will be smooth enough so that it would be possible to
extrapolate their values around & = 1 from the region € ~ 0. In sect. 3 we shall show
how this method works for the two-dimensional Ising model.”

3. The two-dimensional Ising model

As explained in sect. 2, we study the renormalization group equation for the
hamiltonian H, = H +(1— e)ﬁ, where H is the bond shifting operator whose action
is shown in fig. 1. For the moment let us discuss the case A =2. Then half of the
vertical bonds have strength (2 — £)g, half being weak (= £8). For infinitesimal g, we
construct the perturbative expansion in the weak bonds. Let us consider the
elementary cell of fig. 4:

HY (0,0) = =Bx(p1 + w2)as — Belpa+ ma)os— (2 —&)By (mips + popta) = £8,0°50%6 -
(3.1)
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Fig. 4. The elementary cell for A =2 (a) before (2a) and (b) after (2b) decimation.

Here we have called o the spins that we want to decimate and w: the spins left after
decimation.

Taking care of the effects due to the nearby cells, after decimation we will find
exp (—H e () = exp [B (w1 + pspea)
By (s + popa) + B (ipa+ paps)]+0(e?) (3.2)
(all inessential multiplicative constants have been omitted) where, defining
k. =tgh (Bx),
ke=kz,
ky=tgh[(2-¢)B,],
ky =k, +(1-k2)Ak,,
Ak, =2eB,k2/(1+k2)?,
To this order we have

Bi=tgh™" (k.),

By =tgh™" (k,), (3.3)
Bp = %Aky .
Here we have used the identities (2.6) and (3.4):
1 1

= 1-k?
(K)o el

st o M1t

A+Kmp) (1+kD)

(3.4)

Bp is clearly of order &. Other interactions which are generated by decimation are at
least of order &2,

We then proceed to a new decimation. We have to decide now which are the
bonds to be shifted (having one more coupling B8p). We find it convenient to leave
the diagonal bonds in place and to move only the horizontal (or the vertical bonds).
If we remember that Bp~ O(e), we find all the interactions that can be generated,



G. Martinelli, G. Parisi /| Migdal recursion formula 209

besides By, B, and Bp, are at least of order ¢2. To this order we have only the new
coupling Bp.
The complete renormalization group equations to this order will be as before:
Bl =tgh™ (k)
B, =tgh™" (&), (3.5)
Bp =14k,
but now

2eB,ks: 4k P

Ak = Ak

This defines the transformation R, (decimation along the x axis). The transformation
R, is defined by interchanging the r6le of the x and y axes while S is defined as

pr=8y=LB.+B)), BbL=BD. (3.6)
The total transformation will be
R™M(H) = S{R,[R.(H)]}. 3.7)

Using the transformation (3.7) we find the values for B.(¢) and w(e)=1/v(e) at the
first order in e. [w(g) can be found by linearizing the renormalization group
transformations near the fixed point.] We obtain the following numerical results:

Bo=0.4359 ,
= 4
Ble)=Boxbre, g —0.024,
(3.8)
( )__ + wo=0.687,
WIE)=WoT e, wr=1.14.

For simplicity the values of B; and w1 have been estimated by computing B.(¢) and
w(e) using the transformation (3.7) for finite small values of ¢ and then by
numerically differentiating the results (shown in figs. 5 and 6).

We now face the problem of extrapolating egs. (3.8) to £ =1, it is convenient to
impose the condition

dB.(e) dw(e) ,
24 =7 =0. 3.9
dE e=1 dE g=1 ( )
This can be done by defining the functions

3.(e)=Bo+Pre(1—1e),

Ble)=PBo+ B 3 (3.10)

&(e)=wotwie(1—1e).
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Fig.5. LinesI, Il and Il are, respectively, the values of 8, for the two-dimensional Ising model as function
of g atfirst order in ¢ [egs. (3.5)], atsecond order in ¢ [egs. (3.12), (3.13), (3.14)] and for the modified Padé
approximant [eq. (3.17)]. The dashed lines denote the exact resuit.

One then obtains B.(1)=0.4486, w(1)=1.26>v =0.796. We see that the cor-
rections to the Migdal results go in the correct direction, although there is a tendency
to overshoot.

Let us consider what happens at the next order in e. Four-spin couplings and
next-to-neighbour couplings are needed at order . In total we have eight couplings
after the symmetrization along the two axes by the transformation § (12 for the
asymmetric hamiltonian). Some of the new couplings are pictorially shown in fig. 7
for a 3 x 3 spin cell.

| i | { I |

O 02 04 06 08 10 €

Fig. 6. Lines I, II and III refer to the values of w(e)=1/v(e) for the two-dimensional Ising model,
respectively, at first order in &, second order in ¢, and using the modified Padé approximant.
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Fig. 7. The spins used to define the coupling constants in eq. (3.11) and some of the couplings of order e

We write a typical term of the hamiltonian (the others can be obtained by
translational invariance) making reference to the spins shown in fig. 7:

H =B papis— Byttaphs— Bopits— Byyiairs— Bixitatts
— Bipit1ths — Bypiits — Bap 12 aps — Brylb3phsihelbo

~ Byyttithaphatls = Byxib1pattspbs = Buxb1tathsie T v 0 (3.11)

We define the renormalization group transformation as before by shifting only the
vertical and horizontal nearest neighbour bonds. After a long computation we find
the following transformation equations for the decimation along the x axis:

BL=tgh™ (k.),
B, =tgh ™" (k,),

~ 2 4 (3.12)
k,=ks+(1—ky)Ak,,
k= (k, +4k,)/(1+kyAk,) ,
where k, and k, are defined as before and
Ak, =2(B% +26B,Bo A, +4BL AN —4(eB, AT +2Bp ALY’
+8B, AL+ 4B AL+ B (1+2A0), (3.13)

Ak, = 2eBy Al +2BpA)+6B, AL+ 2B AT
The various couplings 8 are defined by eq. (3.11) and fig. 7:
A, =k J1+k3).
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For the other couplings we have the following transformation equations;
B> =B, AL+2Bp A +4B, AL+ B.n(1+242)
B =BuAz,
By =2(Bo+eB, AL (1-2A0)+28, (AT +24)),
Bip =B.nAZ,
Bip = (Bo+eBy A (1-2A0) +2(Buy AL+ By AD) + B,y A2+ 28,0 A,

) - ) ) ) ) (3.14)
Bi=4A.B5 —2(eB, AL +2BpA,) +2B, AL +2B, A%,
B =—2(eB,AX+BpA,) + B (A +243) 428, A%,
By =BuAl,
Bix = BuAX,
Bix=—2(eByAL+BpA.) +2By AL +28,, A2
The transformation R™ is defined as
RYNH) = S{RPVIRP(H)Y . (3.15)

We show in figs. 5 and 6 the results obtained by using the group transformation R,
These results are corrected only at order £°. As before, by numerical differentiation
we get

B(e)= Lo+ Bre +B2e?, B,=-0.109,

w(e)=wo+wie +wye’, w,=-1.21.

(3.16)

The second-order corrections -are large and have the tendency to correct the
overshooting due to the first-order approximation.

The reader is free to use the method he prefers to extract the values of 8(1) and
w(1) from the numbers of eqgs. (3.8), (3.16). Of course, our series are very short and
the extrapolation is not safe. We found it reasonable to use Padé approximants (the

series has alternative signs). At this stage we can concentrate our attention only on
the [1, 1] Padé approximant:

Bfm](g):30[1+(31/30—32/312152+C€z] . (3.17)
1—(,82/31)84—(.,6 Cc=0
The Padé approximant cannot satisfy the condition (3.9). We can impose this
condition by taking a value different from zero for C (C =1 is appropriate). This is
not the only way to modify the Padé approximation scheme to impose the validity of
eqgs. (3.9). We could also consider, at fixed &, the sequence

Bo,  Bo+Bie(l-1e), Bo+Bie(l1-Le)+(Br+iB)e’(1-2), ...

>

(3.18)
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and to extrapolate the sequence (3.18) we use Padé approximants. Using the two
different methods, we find, respectively,

B(1)=0.4396, r(1)=0.94,
B(1)=0.4395, »(1)=0.92.

The results obtained with the two different methods are practically equivalent.
Many other numerical extrapolations could be used, but it is difficult to judge the
efficacy of the method without knowing the structure of the singularities in £ of the
series.

(3.19)

The results of the second-order approximation are very satisfactory, also if we do
not have computed enough terms of the series to deduce a sensible estimate of the
error of our final predictions.

What happens at higher orders? It is clear that the first decimation, at order &, will
generate interactions connecting spins which are separated, at maximum, by N steps
in the vertical or horizontal directions. It is easy to convince ourselves that if we stop
at order ¢ only a finite number of coupling constants will be generated (so that one
can work always with a finite number of coupling constants).

The computation of higher orders is straightforward but rather long: it could be
simplified by using a computer to do algebraic manipulations. The use of a triangular
lattice, instead of a square one, would strongly shorten the computation and decrease
the number of couplings. We have preferred the square lattice in order to simplify the
generalization to higher dimensions which will be the subject of sect. 4.

4. D-dimensional Ising model

In sect. 3 we have studied the two-dimensional Ising model with a scale factor
A = 2. Itis rather simple to extend the renormalization group transformation (3.5) to
generic A. By repeated use of egs. (2.6) and (3.5) and of the identity

S k"= (1 kMY /(1 —k),

m=0
we find, at first order in &, the following transformation Rf;”:
B.=tgh™ (k}),  k.=tgh(B.),
K, =k, +2(1—k*)Ak,, (4.1)
Ky =teh [, +(1 - (1 -e)B, ],
where B1, and 4k, are solutions of the following equations:

2 k2N +28pk (1 -k
Akyz(HkiAHB,DkiZ[sBy(kx ki) +2Bpk.( )]

B, =tgh™’ k),

1-k2 ’
(4.2)
A
24kyicy +BH(1+ k) = ki[u ~1)eB, + fD (1+ ki)] .
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The details of the computation can be found in the appendix: for A =2 we recover the
results of sect. 3.

For an infinitesimal A —1, R and R’; commute [up to O((A — 1)*)] so that the
application of the renormalization group transformation R[H]= R [R, (H)] does
not introduce an anisotropy in the initially isotropic hamiltonian. In terms of the two
couplings (8 and Bp), eqs. (4.1) and (4.2) become

B-:kln (k)

1__—k2+FB(6:| Bp),

. (4.3)
BD = FBD(B’ BD) .

F; and Fp,, can easily be obtained by differentiating eqgs. (4.1) and (4.2) with respect
to A at A =1 [notice that egs. (4.1) and (4.2) become the identity for A =1].
Again, by computing the fixed points of eqgs. (4.3), we obtain

-0 1 1447
Ble)=Bo+B1e +0(e?), Bo=0.4407 =3 In (1+ /2),

Bl = O’ 3
4.4)
. wo=0.754,
w(e)=wo+wie +0(7),
w;=0.82.

We found rather surprising the result that the exact value for 8, given already by
the zeroth-order Migdal approximation for £ = 0, is preserved at first order in £. The
deep reasons for this success are mysterious, although duality of an Ising model in
two dimensions may play an important role.

By extrapolating 8.(1) and w(1) as done in sect. 3 [egs. (3.9), (3.10)], we find
B.=LIn(+v2), v=0.86. 4.5)

The result obtained for » is of the same quality as the one obtained in the case A = 2.

The equations found for A infinitesimal can be easily generalized to three or more
dimensions. However, in this case, we have to face a new problem.

In two dimensions we decided to move only horizontal and vertical bonds,
leaving the diagonal bonds fixed in place. This choice was arbitrary: all we need is
that there is no bond moving for £ = 1. In dimension three, following the same
procedure as in sect. 3, we would generate new couplings between spins at opposite
vertices of a cube (fig. 8). There is no difficulty in working with more than one
diagonal coupling; however, it would be very difficult to generalize this procedure for
non-integer dimensions (in general we must add D —2 new diagonal couplings).

To avoid this complication we have decided to move a part of the diagonal
couplings also. For example, in the three-dimensional case, we move the diagonal
couplings of the y-z plane when we change the scale in the x direction. Taking the
same for a generic dimension D, we must move all diagonal couplings in the planes
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3 4

V.Y

Fig. 8. The elementary cell in dimension D = 3. When we decimate spins 2 and 3, the diagonal coupling
between them generates a new coupling of the same order between spins 1 and 4.

which do not contain the x direction. For infinitesimal A we obtain

B =———5+(D~-1)Fs(B, Bo),
) 4.6)
BD = (D -_Z)BD+FBD(B! 313) .

Using eqs. (4.6) we find for the critical temperature and for » the results shown in figs.
2,3.

The behaviour of 8. versus D and the values of v definitely improve the Migdal
approximation, although, in our case, the results also deteriorate for higher dimen-
sions. In the limit D - 1 we find numerically:

1-0.156 +O(e?)

vD)=""pq

4.7)

while the expected result [5] is:

1
D)y~——-7, 4.8
y(D)~ 5 4.8)
i.e., the £ =0 resuit.
It is worth noticing, however, that our procedure to move D —2 diagonal bounds
(D —2-—1for D ~ 1) seriously violates the geometry of the lattice near D = 1. It is
possible that with a different bound moving one could obtain the correct results in the

limit D — 1. At this stage of art we have not been worried by the discrepancy between
(4.7) and (4.8).

5. The bond percolation problem

Percolation is a particular case of the Potts model: the N-component Potts model
corresponds to the Ising model, to bond percolation and to the random resistor
model for N =2, 1 and 0, respectively.

In the case of percolation, one assigns to each bond a probability p of its being
occupied and a probability 1—p of its being free. It is then possible to extract
randomly a bond distribution with this probability law: two points x and y are
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connected if there is a chain of occupied bonds which links them; the cluster to
which x belongs is the set of all points connected to x. We call G(x, y, p) the
probability that points x and y are connected: G(x, y, p) is the percolation version of
the two-spin correlation function for the Ising model. It is known that there is a
critical value of p, p., at which the correlation length of G(x, y, p) goes to infinity like
(p—pc)"; our aim is to apply our method to compute p. and ». Following Kirk-
patrick [7], let us define the Migdal transformation starting from A =2 in two
dimensions. The bond shifting operation consists in assigning two bonds to the
double vertical lines of fig. 4 and zero bond to the dashed one. After decimation, for
the points belonging to the remaining half of the lattice, we find that the probability
of being horizontally connected is p* while the probability of being vertically
connected is 2p — p°. Therefore the renormalization group transformation along the
x direction will be

px=pi, py=2p,—p. (5.1)

For generical A we find
pe=pi, py=1-(1-p). (5.2)

For infinitesimal A —1 and generical dimension D using eqs. (5.2), the renor-
malization group transformation after rescaling in all the directions will be:

dp

5=Pln (P)—(D-1)(A-p)In(1-p). (5.3)
(Remember that for infinitesimal A — 1 the isotropy of the system after decimation is
restored.) We want to set up the ¢ expansion for this model. First of al let us define a
partial bond moving (¢ #0); having non-zero internal “weak” bonds we find for
the probabilities along the y axis:

pr=1-(1-p,)=—eIln(1-p,),
weak bonds (dashed lines in fig. 1);

Pexe=1—=(1=p)* " =1-(1-p ) (1=(A =D& In (1-p,)], (5.4)

strong bonds (double lines in fig. 1).

The bond moving is realized by moving the p’s: we can visualize the p’s by saying
that we make connections on the lattice with certain probabilities p. To move the
bonds simply means that we move these connections from site to site on the lattice,
according to (5.2) or (5.4). Secondly we have to find the renormalization group
transformation for the p’s. We have had problerms with the precise definition of the
new couplings and of the bond-moving procedure. After many hesitations we have
decided to use the following description. Let us introduce the probabilities g: g, is
the probability that two nearby points are directly connected along the x axis
independently of whatever happens to the other points. In the same way we can
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define the probabilities ¢, and gp for nearby points in the y direction and diagonal
directions, respectively; we can also define the probabilities g5 and g4 for three or
four nearby points simultaneously connected, independent of whatever happens to
other points. The coupling constants p (p., Py, Pp, P3s ps)* are the elementary
probabilities of having bonds connecting some points on the lattice (with this
definition the same points may be connected by many bounds). For elementary cells
we can express the g probabilities as functions of the p’s. If all the p’s (except p,) are
infinitesimal, we have

qx =P +2p3(1—p)+pa(l—ps),

gy =p,(1+p2)+2p.po+2ps(1+ps) +pa,

o = po(1+p2)+2pype +2p3(1+p.) +pa, (5.5)
g3 =p3(1+3p)+pa+p.(1+p)(p, +pp),

qa=pas+4psp, +2(p, +po)p: .

Atorder ¢ the renormalization will generate only the five couplings p{(g) of egs. (5.5).
Let us now consider a A X A cell. We can compute the g probabilities between points
at the vertices of the cell. After decimation these points will be directly connected
due to the effects of the other points inside the cell (points that we want to eliminate).
These g’s are functions of the p’s and A:

gy =pr+2pspi T (1=p)+papi T (1—-py),

g,(\) = ﬁypi[(—l-z}[f%ﬁ] + Z!propx[(-(ll——_%]

+2ps(1+ px)[(sll__l; i;)) + p4[((11__[£))] ,
ap) =Appps ™ (L+p2) +(A = 1)p,ph +24pspi ™ (L+p) +Apapy™ (5.6)
as(\)=pspi (1 +3px)[%%p;%] + 4pi‘l[%{

+popi(l -+-px)i%~_:€%] + Py ﬁ““[%;).)«] ,

@Aa-1)

ga(A) = )\p4p,2fA b +4Apsp; +(A - l)pypiA +2/\pr§A .

[Note that for A = 1, egs. (5.6) coincide with egs. (5.5) when p, =0.]
By considering a new rescaled cell made only by the points situated at the vertices,
the ¢'s of egs.6 (5.6) can be expressed, using egs. (5.5), as functions of renormalized

* We limit ourselves to these five p’s and ¢'s because at order &, only the probabilities can be generated
by the renormalization group transformation.
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F(A), the new “‘effective” elementary probabilities. In the case we are considering (all
the couplings except p, infinitesimal) p, of eqgs. (5.6) is the internal “weak’ bond
and pex: has not been included. Including p.x: and the effects of the nearby cells, the
final transformation is

px=pi+2(.(\)=pl),

p,y = pext+2(1 —pext)ﬁy(/\) 5

pp =pplA), (5.7)
p3=ps(A),
pa=psr).

p(A)’s are the solutions of the equations obtained when equating the g’s of egs.
(5.5)-(5.7).

The limit A » 1 and the generalization to a generical dimension are straightfor-
ward, One gets the results shown in figs. 9, 10. The behaviour of the correction is
qualitatively similar to that obtained for the Ising model.

6. Conclusions

We have shown in this paper that the Migdal recursion approximation can be
considered as the zeroth-order approximation of a new perturbative expansion.
Explicit computations for the Ising model and for the percolation model show that
higher-order corrections improve the Migdal results. It is possible to extend this
approach to the non-linear o model but we have been unable to find a satisfactory
scheme for computing the corrections (the only one we have found seems to us
unnecessarily complex); however we have checked, at first order in ¢, that the lower

0.5~ §
0.4k ]
&}
= o3t \ .
A
= 02k ]
\ i
ok N ) 4
I

IS DU W S
2 3 4 5 6 D

Fig. 9. (D —1)p. as a function of the dimension at zeroth order (line I) and at first order (line II) in ¢ for
percolation.
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Fig. 10. v as afunction of the dimension at zeroth order (line I) and first order (line I1) in £ for percolation.

critical dimension remains stable at D =2, as it should do. The extension to gauge
theories presents only technical problems. The whole approach appears to be
promising although many questions remain unanswered, in particular the analytic
properties of the functions B(e) and v(e). It would be quite interesting to use the
bond-moving procedure together with other real space renormalization group
techniques like the cumulant expansion or the Monte Carlo renormalization group.
The idea is rather simple: before applying the renormalization group transformation
we move the bonds; the amount of bond moving depends on a parameter ¢ and it is
zero for £ = 1. The values of the critical exponents and of the critical temperature
depend on g, but according to egs. (3.9) they must have zero derivative for e = 1. We
could use this constraint to check the quality of the results of the real space
renormalization groups; one can also argue that the results for 0 <<e # 1 are more
reliable than those at e == 0, so that one could compute the critical exponent (those for
£ = 1) by extrapolating the results from 0 <<e¢ # 1.

It is a pleasure for us to thank A.A. Migdal for having stressed to us that the
computations presented here were feasible: without this suggestion we would never
have started work on this subject.

Appendix

In order to compute the renormalization transformation we start summing over all
the internal spins of the cell shown in fig. 11:

exp [_I'}'(IJ)]: Y oexp{Bpioi oot oaipl)

{o.o’}
+eBy(o101 + o0+ o1 a 1) F Bplpiol F oo

te O o1fa T a0 F OO o)t ) (A1)
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Fig. 11. Cell to be decimated for generical A in two dimensions. All couplings are shown.

After some algebra, by taking into account only the terms up to first order in &, we
obtain

exp [—H (u)]= (1 +kruipo)(1+kpaps)

9 ' +
+[eﬁy(ki —ki‘)+2—[f2 (k2 — K200 J(i"‘f_ e J

X

+[(/\ —1)sBy+’\£D

(1K) [ (gt + o) (A.2)
where k, =tgh (8,).
If we have

exp [_ﬁ(ﬂ)] =exp {B:(uipa+pspas) + ABy (wips+ papa) + Bolp s+ pwaps)},
(A.3)

with 48, and Bp ~ O(g), this can be written as
exp [—H ()] = (1+ ko 1p2) (1 + kepasna)
(s + paua)[AB, (1+k2) +2Bpk. ]+ (1pna + waps)
X[24Byk. +Bp(1+k3)] . (A.4)

Equating (A.2) and (A.4) we find eqs. (4.2). By taking into account the non-
infinitesimal bounds between w1 — w3 and w, ~ i4 and the effects of nearby cells, we
obtain the whole renormalization transformation of egs. (4.1), (4.2).
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