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We study lattice gauge theories at large space-time dimension D. In the strong coupl-
ing (high-temperature) phase, the appropriate expansion parameter is p~1/4, We find
that this phase, which becomes metastable at a certain temperature, is limited by a
singular point which looks like a second-order phase transition. For the Z, gauge group,
this happens at D tanh45 = —1—2—8. At this temperature, the correlation length of two

3125 ’
plaquettes becomes infinite. At D = e, the same result holds for any gauge group, only
the value at which the transition occurs depends on the group. The corrections of order
D~1/4 are different for different gauge groups. It is not yet clear to us if the Wilson loop
changes its behaviour when the plaquette-plaquette correlation function does.

1. Introduction

Very little is known unfortunately, about the long-distance behaviour of quantum
chromodynamics (QCD). In particular, the two existing approximation schemes, the
usual perturbation theory (which is supposed to break down at long distances) and
the strong coupling expansion of the discretized version of QCD (lattice gauge
theories [1—4]) exhibit a completely different behaviour. In the first case, the
asymptotic states contain zero-mass excitations and colour is not confined. In the
strong coupling approximation of lattice gauge theories, there are no zero-mass
excitations of the gauge degrees of freedom and colour is confined.

It is reasonable to assume that there is some kind of phase transition in QCD and
that one can encounter the first or the second long-distance regime, depending on
the value of the gauge coupling constant. The nature and the mechanism of such a
transition and, a fortiori, the value of the coupling constant at which it occurs are
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398 J.-M. Drouffe et al. [ Strong coupling phase

completely unknown except for some particular cases of discrete gauge groups [2]
where duality arguments can be applied. This is also partly the case for the U(1)
gauge group [5].

The simplest way to study the existence of different phases in statistical mecha-
nics is the mean-field approximation. This technique gives a qualitative picture of
the transition and, provided one works in sufficiently high dimensions, it also gives
good quantitative results. It is nevertheless difficult to apply this approximation
directly in lattice gauge theories; in its crudest version, it indeed breaks gauge
invariance, while it is well-known [6] that no such breaking can occur.

An interesting tool developed by Englert, Fisher and Gaunt, Abe [7] for the
case of spin systems is the 1/D expansion. One computes only those diagrams of
the high-temperature expansion, which become dominant when the dimension D
of the lattice system is large. Each dominant diagram contributes a power in x =
28D. The sum of the contributions converges for x <x.. At x = x, one finds a sin-
gularity which is interpreted as a second-order phase transition (the susceptibility
becomes infinite). For the spin systems the leading term in the 1/D expansion is
equivalent to the mean-field approximation and the 1/D corrections have been com-
puted {[7]. First-order phase transitions cannot be seen by this method. We recall
that they are characterized by a discontinuity of the first derivative of the free energy
with respect to the temperature (i.e., the internal energy). Each of the two branches
of the free energy is C. However, according to the conventional wisdom, they are
not analytic, but have an essential singularity. Unfortunately this singularity is absent
in the mean-field approximation as well as in any type of perturbative expansion.

If a first-order transition occurs at x = x; <x, the high-temperature expansion will
continue to converge and will describe for x; <x <x. a metastable phase. Such
techniques have been extended to the gauge systems [2] and corrections can also be
computed [8] in this case.

In this paper we study large-dimensional pure gauge systems (no matter fields are
considered) in a way which explicitly maintains gauge invariance and the other sym-
metries of the problem. It turns out that the relevant parameter for pure gauge
fields is x = 28*D (instead of 28D for spin systems) and we find a singularity at
certain value x = x.. We interpret this as a second-order phase transition at which the
plaquette-plaquette correlation length becomes infinite. This transition is very
similar to the condensation of branched polymers [9]. Chains of three-dimensional
cubes in tree-like configurations is the analog of the polymer. The situation is less
clear for the Wilson loop. It seems that the transition we found is not a deconfine-
ment transition. The continuation to the other side of the strong coupling phase is
not yet clear in this formalism. All our results are valid for any gauge group at
infinite dimensions. Next we argue that the high-temperature phase is stable only in
a part of the interval 0 <x <x.. In fact there exists rigorous lower bounds on the
free energy, F, of the pure gauge system due to the convexity of the exponential
function (see, for example, ref. [2]) and for large, but finite, D there exists an x; <
X, such that the free energy we have computed violates this bound for x >>x,. We
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conclude that there exists a first-order phase transition beyond which the high-
temperature phase becomes metastable. The stable phase cannot be reached by the
high-temperature expansion we have considered.

The study of gauge theories in the D — o limit has also been proposed indepen-
dently by Polyakov [10]. However, this approach differs from ours.

This paper is organized as follows. In sect. 2, we review the D ~ e approxima-
tion for lattice spin systems. Sect. 3 contains a brief review of the high-temperature
expansion of lattice gauge theories and a discussion of the D -> oo approximation.
All technical details have been left to the appendices. The conclusions are presented
in sect. 4.

Appendix A explains in more technical details the diagrammatic rules of the high-
temperature expansion. In appendix B, we discuss which are the dominant diagrams
in the D — o= limit and in appendix C we proceed to their counting. Corrections are

investigated in appendix D. Some inequalities concerning the free energy are recalled
in appendix E.

2. Ising model

For illustrative purposes, we start by summarizing the situation for the Ising
model on a hypercubical lattice in D dimensions.
The partition function Z and the susceptibility are given by

20)= , 21 exp[poioy] @.1)
{oj=21} 4
1 <\ <

(@) = P E 2 000y explB Ls 0;07] , 2.2)
Z & {op=t1} ()

where (i) represents all the nearest neighbours in the lattice. The first formula can
be written as

2(8) = cosh BYY 22 11 (1 + t0,0)) , (2.3)
;)
with ¢ = tanh 3, and where &V is the number of sites in the lattice and the product
runs over all the Nd links ). At sufficiently high temperature (small ¢), the expan-
sions of Z and x in powers of ¢ are convergent. From the high-temperature expan-
sion, one can compute the location of the singularities of the “free energy”™ F = (1/
N)1n Z and extract the critical temperature.

These expansions have obvious diagrammatic representations. In case of the
partition function or of the free energy F, we sum over closed paths on the lattice,
while for the susceptibility we consider the open paths going from the site O to any
possible site k. Note that, in the #-expansion (2.3), each link appears at most once
while, in the § expansion (2.1), it can appear several times (with different weights)

{11].
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We proceed as follows. We start by drawing all the possible diagrams @ (defined
by the topological properties of a set of links) and multiply their contributions by
the number of times they can be mapped as a graph on the lattice. An estimation
of this number is easily done provided the diagram does not intersect with itself.
The simplification at I) = e comes from the fact that the probability of such an
intersection vanishes at D — e and thus the incorrect treatment of diagrams with
such intersections becomes unimportant.

The limit D - 0 may be taken in several ways and this may lead to apparently
contradictory results. We illustrate this point with the following two estimations.

(A) We consider the high-temperature expansion of the free energy

F=2JF " (2.4)
n

(which is an even expansion in # since any closed path contains an even number of
links). F), is the number of all closed connected paths of length 2n (up to a transla-
tion), evaluated for large D. From every such path we can get another one of length
2(n + 1) in the following way. Cut the original path (at two arbitrary points) into
two pieces (there are n(2n + 1) possibilities), then translate one of the two pieces by
one unit on the lattice (2D possibilities at large D) and finally tie the pieces again
by adding two links. The same new path (of length 2(z + 1)) can be obtained in this
way from n + 1 different paths of length 2n (because it involves n + 1 different, but
equivalent, pairs of links); so finally we get

F«2n)(4£*Dy" . (2.5)
n
(B) In the same expansion for the susceptibility,
X= 21Xal" (2.6)
n

Xn 18 now the number of open paths of length n, with a fixed origin. We get a path
of length n + 1 by adding a link at its end. This can be done in 2D ways again neg-
lecting 1/D corrections). Therefore X,, 41 = 20X, and

1

Y 2.7

x 20 (2Dt)' =
n=0
In case A, we have taken the limit D — oo, keeping #%D fixed while, in case B, D
is kept fixed. The treatment A of the free energy is incorrect and this can be seen
from the fact that the series in #2D has a zero radius of convergence *. The con-

* This is not always the case in spin systems. For instance, the spherical model with frozen
random interactions (spin glasses in the Edwards-Anderson model) has a critical inverse tem-
perature which behaves as 1 /\/D. The series (2.6) have an infinite radius of convergence and
similarly (2.4) is convergent. However, the sum (2.4) does not lead, in this particular case, to
the correct free energy, due to an additional singularity in the 1/D correction [12].
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vergence of (2.4) is governed by the large-n behaviour of F,, and one can suspect
that the two limits # - °0 and D - °° do not commute in the expression (2.4). That
this is indeed the case, can be seen by a more careful counting argument at large
(but not infinite) and fixed D. When n << D, the path of length 2D will contain
links pointing in 7 directions which are all different with a high probability; this is
the origin of our #! factor. Now, for # >>> D, each direction will be used several
times. Let 2n; be the number of links pointing in the ith direction (half of them
point forwards, half backwards). The freedom we are left in constructing the path
is the permutation of only those links which point in different directions. Hence a
factor (2n)!/{(n,)? ... (np")?] . When n >> D, this factor is important only for

n; ~ n/D, and behaves indeed as (2D)?" instead of n!. Therefore, we again recover
a behaviour in (2¢D)?", in agreement with the case B of the susceptibility. The
expansion in #2D is indeed not appropriate.

In the case of the susceptibility, we get a convergent expansion with a singularity
at t, = 1/2D. This is exactly the mean-field approximation result. Thus 2D - 0 and
this is why the simple-minded method A has a zero radius of convergence. One
could expect a priori that the proposed method fails for the free energy because we
expect (from scaling arguments) F ~ (8, — 8)°/?/sin(}nD) and the singularity
becomes softer and softer with increasing dimension.

3. Gauge theories

We shall now apply the same method to the slightly more complicated case of
pure gauge theories, not coupled to other fields. For completeness, we start by
recalling well-known results for the high-temperature expansion of lattice gauge
theories. More details can be found in appendix A and in ref. [2]. One associates
one element R;; of the group G with each link # of the D-dimensional hypercubical
lattice. The free energy is given in this case by

F=];1[-_an, @G.D
z=[{1oRy) 4, (3.2)
2]
1 <
4 =zg—2§;x(up), (3.3)

where DR is the invariant group measure, g is the gauge coupling constant (8 = 1/2g?),
U,, is the product of fields R;; (gauge group elements) around the plaquette p, X is
any real class function on the group (i.e., a real function of the traces of the represen-
tations) and the sum X, runs over all the elementary plaquettes of the lattice.
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We shall take the “Fourier” transform of e, using [4]

XU =23F,x,(Uy) = Bo2td %, Up) (34)

The sum runs over all irreducible representations 7 of the group, including the trivial
one r = 0; d, and x, denote, respectively, the dimension of the representation » and
its character (trace of Up, in this representation). The coefficients §, = §,(8) are given
by

B,=Bod,8, = [DUX(U) ™D, 35

We shall argue later that the range of validity of the high- -temperature expansion is
for 8 very small at large D (more precisely 8= O(D~1/#)). Therefore 50 =cst +
0(8?), B, ~ B’ where v, is some positive integer. If we restrict to the case where x =
X1, the fundamental character (or more generally where ¥ is chosen as a trace of an
irreducible representation) v, is the minimum number of times the fundamental
representation has to be taken in order to obtain by composition the representa-
tion r. Because of this property, only the 8, coefficient of the fundamental repre-
sentation of a group will play a role as D goes to infinity, the other ones contribut-
ing only to the corrections. In this case, our argument is valid for any gauge group
at large D, only the D% corrections will depend on the group.

The factor ¢ associated with the trivial representation gives a simple volume
factor and does not play any important role.

Using the orthogonality properties of the group characters, we get

f ‘Der(SU)xs(TU)=‘~— (ST . (3.6)

Because of this orthogonality property, any link must belong to, at least, two
plaquettes and only closed two-dimensional surfaces (built up from elementary
plaquettes) will contribute in the diagrammatic expansion of F. This generalizes

the expansion (2.3) for the Ising model. Here again, because we construct the
diagrammatic expansion once the Fourier transform (3.4) has been performed,

each plaquette of the lattice has to be taken at most once, when constructing the
diagrams. The temperature-dependent part of each diagram is 18‘}‘ » where S is the num-
ber of plaquettes (area) of which the surface is made. The smallest contributing
diagram is the surface of a three-dimensional cube.

The high-temperature expansion of the free energy has been computed for
various groups in ref. [2], up to order §'%, for any space-time dimension. Retaining
from these results the dominant terms as D goes to infinity, we see that they have a
very simple structure; the degree in D increases by one unit every time the degree in
B increases by four units. It seems therefore that 83D would be the appropriate
variable in the large-dimension limit. The interested reader can find a detailed analysis
in appendix B, and we restrict here to a qualitative discussion. The important point
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is that the dominant diagrams have a structure of three-dimensional cubes arranged
in a tree. Asin sect. 2, we look for a recursive construction of the dominant diagrams.
Adding a new dimension may be done by cutting the surface along a closed curve,
then by shifting one of the pieces to a new dimension, and finally, by joining the
two pieces together again with a chain of plaquettes. (In sect. 2, the analog opera-
tion needed two links). The number of new plaquettes equals the length of the
cutting curve (in lattice units); its minimum is 4 (for an elementary square). Starting
now from the lowest-order diagram (a 3-dimensional cube), we thus obtain trees of
cubes.

The appearance of the variable §{D is also easily understood. The construction
consists of “sticking”a cube on a plaquette (yielding a factor 8¢ since a cube has
six faces) and of suppressing the frontier made of the two contact plaquettes (yield-
ing a factor B7°#). The new cube may point out in any of the 2D—4 (~2D for large
dimensions) directions orthogonal to the selected plaquette. We thus see that the
variable x = 287D arises naturally. We have neglected the possibility that the added
cube touches any other cube of the parent configuration. The probability of such
an accident, however, vanishes as D goes to infinity.

The next problem is the counting of these configurations. As a cube has only
six faces, a tree of cubes may be associated with a connected graph on a Cayley
tree of coordination number 6. The counting problem is easily solved using standard
methods. In appendix C, we proceed to this evaluation, using the generating func-
tion for the connected trees. Here we quote the result

Fe ﬁﬂﬁus/fz(l 3u)(1+ 0D~ %) @7
1243 - ' ’ |
with
= 2D641; - u(l _ u)4 . (3.8)

Let us recall that 8, is related to § by (3.5) and, for instance, $; = tanh § in the
case of the Z, gauge group. A graphical representation of the curve is given in figs.
1 and 2. F starts at point A, increasing from O regularly until x = x. = 4%/5% (part
AB of the curve) and shows a curious behaviour. The point B is a cusp and the
curve comes back (part BCD of the curve). Also, a complex branch starts at B. This
would suggest a “zeroth-order” transition at x = x., with a jump in the free energy.
However, as one knows, thermodynamics forbids such a transition and it is well-
known that F is a convex function of 8. (We give in appendix E a proof of this well-
known result). Therefore only the branch AB may be physically acceptable.

What may be the physical significance of point B? It is easy to verify that the
second derivative of FF,
OF 52 M _a—1/2
g2 3D 1~ s (B1c — B1) )

has a singularity. But this expression is the plaquette-plaquette “susceptibility”
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Fig. 1. The free energy (minus the trivial term %D(D ~ 1) In cosh Eo discussed in appendix B)

as a function of the coupling constant x = ZDB‘I‘. The dashed curve is Peierls’ lower bound for

D = 8 and the Z, gauge group.

(the plaquette-plaquette correlation function summed over the positions of the
plaquettes). Our system undergoes, therefore, a second-order phase transition, since
the corresponding correlation length becomes infinite. It is indeed proportional to
(B1c — B)” with » = 1, as was conjectured in ref. [13]. In the language of ref. [14],

this corresponds to a zero-mass boxciton excitation.
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Fig. 2. Fig. 1, on a larger scale.
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The next object we want to discuss is the Wilson loop [1]. We treat the case where
the loop is contained in a coordinate 2-plane of the lattice. The lowest contribution
is obtained by filling with plaquettes the plane surface enclosed by the loop and
hence is equal to [3‘? , where § is the area of this minimal surface. However, this is not
the general case; for any other orientation of the loop, the minimal surface is not
unique and furthermore their number may go to infinity as D and S increase. This
fact throws doubt on the reliability of our results for the generic orientation of the
loop. The general case is certainly difficult and we were unfortunately unable to
solve it. In our particular case, the minimal surface can be deformed as follows,
Each plaquette may be replaced by a “tube” made of three-dimensional cubes as in
the case of the free energy. The number of these tubes is computed in the appendix

C and f(¢) denotes the corresponding generating function. Therefore the total con-
tribution is

W(C) = [Byf(x)]S = eS| (3.9)
with

a= —In[f(x)] =} In %Q, (3.10)

using the parametric representation of eq..(3.8). The parameter « increases as D goes
to infinity. For large D, nothing special happens to it at the singular point B for u =
% and o remains strictly positive.

The picture we get of the singularity is that the tree configurations of these tubes
of cubes (hydra-like configurations, using the terminology of the percolation prob-
lem [15]) become larger and larger, reaching an infinite length at the singularity.
This looks very much like the condensation of (branched) polymers. A plaquette can
very easily be deformed into a tube; at high dimension, a large surface is therefore
very easily deformed locally, but it seems to maintain its global rigidity.

4. Discussion and conclusions

As discussed in sect. 1, there remains the possibility of a first-order transition; this
problem cannot be handled by only the high-temperature expansion. A possible tool
is provided by some rigorous inequalities on the free energy. A lower bound may be
obtained from the mean-field approximation using Peierls’ inequality. We recall the
argument in appendix E, and in figs. 1 and 2 we draw this lower bound for D=8 in
the Z, case. As D increases, this curve goes towards the left until it reaches the
vertical axis as D goes to infinity. It is thus clear that only the beginning of the arc
AB remains physically acceptable. In the x variable, this region furthermore shrinks
as D increases. As we did not meet any singularity before the point B, we can only
imagine one possibility. Somewhere at a point T on AB, the system undergoes a
first-order transition. This does not correspond to a singularity in the free energy.
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Indeed cooling the system from high temperature across this postulated transition
will leave it momentarily on the same arc AB, which acts now as a metastable region,
before jumping into the new phase after some relaxation time. There is evidence of
such a behaviour in a recent Monte-Carlo “experiment” on a four-dimensional Z,
gauge system {16]. In this picture, F appears as a multi-valued function. In our
expansion, however, we do not observe the stable branch of F beyond the transition
point T, which coincides (in the x variable and at infinite D) with the vertical axis.
New methods are needed to find this branch and this is the subject of a forthcom-
ing paper [8].

In any case, our expansion is relevant for the study of the whole strong coupling
phase, including the metastability region. As D decreases, the first-order transition
point moves towards higher values on the arc AB and may reach B at some critical
dimension D, which quite likely depends on the gauge group. In appendix D, we
have computed the first two corrections. There the transition acquires the char-
acteristics of a second-order transition and is correctly described by the behaviour
around the singular point B. At this value, the correlation length of two plaquette
becomes infinite. It seems, however, that nothing happens to the Wilson loop in
high enough dimension. Nevertheless the corrections involved at this critical dimen-
sion may force a zero in the coefficient a of the area law (3.9) at the critical tem-
perature. Simple-minded power-counting arguments suggest that logarithmic correc-
tions to the area law are present at the critical point, at least in dimensions D = 6
and become stronger as D decreases.

An open problem, which we have not been able to solve, is the computation of
the critical dimension for the second-order transition at x = x, i.e., in which dimen-
sion the critical exponent 7y defined by x, ~ 1/[(x¢ — x)?] (xp is the plaquette sus-
ceptibility) is no longer equal to % A possible way to attack this problem would con-
sist in finding the connection with polymer physics also for finite dimension and in
using the techniques of ref. [9].

We are grateful to C. Itzykson for stimulating discussions. One of us (G.P.) would
also like to thank A.A. Migdal and A.M. Polyakov for discussions on the relevance
of closed and open surfaces to gauge theories.

Appendix A
Diagrammatic rules and notations

This appendix contains a brief review of some aspects of the high-temperature
expansion in lattice gauge theories. More details can be found in ref. [1]. The
exponentiated action is decomposed in Fourier series (see egs. (3.4), (3.5)) on the
gauge group G as follows

expA =151+ §0 4,8.(U,)) , (A1)
P r
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where  labels the irreducible representations of the group G. U, is the product of
the gauge fields along the boundary of the plaquette p. d, and x, are the dimension
and the character (trace) of the representation . The trivial representation r = 0
contributes a factor o which has been factorized out. 8, are the coupling constants
[related to the Yang-Mills coupling constant g (or the inverse temperature § =
1/2g%) and vanishing as g goes to infinity].

For instance, in the Z, case,

A= 3Zp)Oij0jk0k10n , (A2)

where the fields o;;, located on the links 7, take the values 1. There are only two
one-dimensional representations, the trivial one » = 0 and the fundamental one r =1
(Z, itself). Therefore,

~

Bo=cosh §3, By =tanh 8. (A3)

Expanding the product in (A.1), we introduce the following definitions:

A graph is a function of the plaquettes into the set of representations (i.e., a
representation is assigned to each plaquette of the lattice). As the trivial representa-
tion plays a trivial role, a graph is also a subset @ of the set of all plaquettes, to
each of which a non-trivial representation has been assigned.

A diagram D is defined by the topologic properties of a set of plaquettes. The
number of way a diagram can be mapped on the lattice (with N sites and periodic
boundary conditions) is called the configuration number (cn) of the diagram and is
denoted by {D }. {D } is a polynomial in N and vanishes for N = 0; its degree is
the number of connected parts of @D . It is also a polynomial in the dimension D of
the lattice, which vanishes for D=0, 1, and 2. The linear part in N of {® } is called
the reduced configuration number (rcn) of D and will be denoted by [D]. Finally,
the degree of D of the ren [D] is defined as the dimensionality dim (D) of the
diagram.

The expansion of the product (A.1) associates a contribution to each graph. The
sum of the contributions of all graphs pertaining to the same diagram D is called
the contribution of this diagram. Its contribution to the partition function Z fac-
torizes into the product of {D} and a factor ¢(D), independent of D and N, homo-
genous of degree n(D) (where n(D) is the number of plaquettes of the diagram) in
the set of variables 8,. After integration over the gauge fields, this factor vanishes,
unless the product of the representations assigned to the plaquettes adjacent to each
link contains the trivial representation. A diagram fulfilling this condition is said
to be closed. In particular, it has no boundary (no link belonging to only one plag-
uette). For the Z, gauge group, closed diagrams are those for which each link is
shared by an even number of plaquettes. Finally

7 = §yp(O-1)12 b D} (D). (A4)
closedD
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Furthermore, ¢(D) factorizes into the product II; ¢(D;), where D; are all the con-
nected parts of the diagram

An example of closed diagrams is given by the diagrams homeomorphic to the
sphere. For the corresponding graphs, all plaquettes-must belong to the same repre-
sentation r. Furthermore, we have

(D)= 2) azer® (A.5)

for this class of diagrams. Lowest-order diagrams are:

(i) the cube, with n (cube) = 6, {cube} = tNDD — 1)(D - 2);

(ii) the double-cube (surface of two cubes sharing a face), with n(double-cube) =
10, {double-cube} = IND(D — 1)(D — 2)(2D - 5).

Rule for the “‘free energy”

The free energy F = (1/N) In Z differs, in our definition, from the one of usual
thermodynamics by a factor —f. Due to the existence of the thermodynamic limit
N - oo for F, one has

F=4DD ~)nfo+ 27 _[D] (D), (A.6)
closedD
where the rcn now replaces the cn. Note that the summation must be carried over
all diagrams, including disconnected ones. Indeed some effects of excluded volume
appear since we do not use cumulants. However, the contribution of disconnected
parts may be easily obtained. We have already noticed that ¢(D) factorizes. Let us
now construct the product {D,}{D,} by superposition of two realizations of dia-
grams D, and D, on the lattice; this product is therefore a linear combination of
the D;, where D; are all possible diagrams obtained from D, and D, by identifica-
tion of some plaquettes. Among these diagrars, the one made of D, and ‘D, dis-
connected (i.e., without any identification of plaquettes) has more connected parts
than any other one. A recursive use of these identities allows the reduction of the
cn of any disconnected diagram to the cn of connected diagrams only. We point
out that taking the factor of NV in these relation gives identically zero on the left-
hand side ({D; } {D,} ~ N?); hence there arises a linear relation between the corre-
sponding rcn, which will be used later on in appendix B.

Appendix B
Dominant diagrams at high dimensions

In order to find the dominant diagram as D' — oo, we will use the following
theorem.

B.1. Theorem

+
dim(D) < n(fZ)4) Ll , if D is closed , (8.1)
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The equality is reached only for those diagrams bounding a connected tree of three-
dimensional cubes (i.e., a set of cubes such that, if one joins the centers of adjacent
cubes (cubes sharing a plaquette), the obtained figure is a connected tree). The
proof is two-fold.

(a) Connected diagrams. dim(D) is, in this case, the maximum number of effec-
tively used dimensions for a geometrical realization on the lattice of the diagram
D. Let us consider such a maximal realization and perform the following reduction
process. Suppress a part of the lattice limited by two consecutive hyperplanes k <
x; <k + 1 and containing at least one plaquette of the diagram. Due to the closure
condition, at least four plaquettes have disappeared in this process; other plaquettes
may be duplicated and must be replaced by a single plaquette or no plaquette at all,
in order to obtain a new closed diagram. This operation decreases the number of
plaquettes, by at least 4, while the dimensionality decreases at most one. Therefore,
if the inequality is valid for the reduced diagram, it is a fortiori valid for the original
one. This allows a proof by recurrence of the inequality because the lowest-order
diagram is the cube, which fulfills eq. (B.1).

The equality is reached only if, in this reduction process, exactly four plaquettes
disappear at each step and if we finally obtain the cube, which is the only 3-dimen-
sional diagram saturating the inequality. These four plaquettes are arranged as the
lateral surface of a three-dimensional cube. So we obtain that the connected tree of
cubes saturates the inequality (B.1).

(b) Disconnected diagrams. At the end of appendix A, a recursive process for
computing the rcn of disconnected diagrams has been discussed. In these relations,
the diagram with the most important number of connected parts also have strictly
more plaquettes than any other diagram for which some identifications have been
done. Hence the strict inequality (B.1) results by recurrence.

We conclude that the connected trees of three-dimensional cubes are the only
diagrams saturating (B.1).

B.2. Summation of the dominant diagrams

We recall that the contribution of a diagram to the free energy F is given by eq.
(A.6). As D goes to infinity, only the diagrams which saturate the inequality (B.1)
(that is only trees of cubes) will contribute.

Let us map such a dominant diagram on the lattice. In a step-by-step process, we
add a cube adjacent to an already placed cube. After the choice of the common
plaquette, we are left with 2D — 5 ~ 2D possibilities. In fact, some of those may
be forbidden (if they touch already placed cubes) but they are finite in number and
the choice is always of order 2D, where D is large. Apart from this factor 2D for
each added cube (and also the choice of the first placed cube), this construction
process is exactly the same as the drawing of a tree on a Bethe lattice of coordina-
tion number 6 (since a cube has 6 faces). The counting is performed in appendix
C; we have only to replace the counting variable ¢ by 2D} [2D is the previously
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discussed factor; each added cube brings four plaquettes; the final graph is homeo-

morphic to the sphere and thus all plaquettes must be assigned (see appendix A) to

the same representation r; hence the term Bf]I. We have furthermore to adjust the

multiplicative constant for the first placed cube. Hence the final result at large D:
dzg;D’

12

F=1D(D — 1)Info+ § 2(2Dg%) (B.2)
r+0

with the function g(¢) of appendix C for ¢ = 6. In the paper, we used the fact that
setting Eo to unity changes F by a trivial constant and that only 8 contributes as
D goes to infinity (when the action involves only the fundamental trace representa-
tion) in order to write the simplified formula (3.7). Using the variables

x,=2Dg?, (B.3)

we finally recast the result as

_ p3r
F-1DD —1)Infy= 20 d2xM2%(x,) + O(DS%) . (B.4)

12\/2_4#0

The first two corrections to this formula are computed in appendix D,

Appendix C
Graph counting on a q-coordinated Bethe lattice

Let us recall that, in a g-coordinated Bethe lattice (Cayley tree), each vertex is
linked to g other vertices and that no closed paths exist. We consider a lattice with
N nodes and neglect the surface effects due to the finite size of this lattice. Let p,
be the number of connected trees. We shall evaluate the generating function

g0 = é{? Pt . (€.1)

Let us count first the number gq,, of rooted trees containing a given node of the
lattice and which are connected to the other n vertices only through one given
bond (selected among the ¢ bonds originating from this node). The corresponding
generating function

ft)= 2aqut" C2)
n
obeys the relation

=1+ (C.3)

(the 1 corresponds to the case n = 0). This equation completely defines the function

).
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There are two possible procedures for constructing a graph.

(a) Choose a node among the N nodes of the Bethe lattice, then dress the ¢
bonds starting from this node with a rooted tree. This method will count n times
each graph with n vertices.

{(b) Choose a link among the %q% bonds of the Bethe lattice, then dress the two
extremities of this link with rooted trees. This method will count »n; times each
graph with ny bonds.

Since ny, = n — 1, the exact result is obtained by subtracting the two preceding
biased results and then

8(0) = tf D) — 39(f(t) — 1%, (C4)
or, using eq. (C.3) in order to eliminate ¢,
gD =30 - 1)g — (¢ -2 ) . (C.5)

A useful parametric representation of these equations is given by
t=u(l —u)i?,

1

f) T (C.6)

t =&
g( ) _ u)2

Appendix D
Corrections

We derive here the first two corrections for any gauge group. As a complete and
rigorous proof is rather lengthy and tedious, we only explain its mechanism; the
interested reader may, indeed, easily restore the omitted points.

A first remark is that the contribution of dominant graphs has been computed
in appendix B up to corrections in 1/D. These corrections will not be evaluated here,
because we are only interested in the first two corrections in D~1/# and D™Y2. We
use here the parameters

x, = 2Dg}, (D.1)

which are kept constant as we expand in D™1/4,

D. 1. First correction

Surfaces homeomorphic to the sphere have an even number of plaquettes and
thus do not contribute here. The only possibility is a singular closed curve limiting
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three open surfaces made of plaquettes. The suppression of one of these surfaces
will again give a closed surface homeomorphic to the sphere of lowest order; that is,
a dominant diagram. Therefore the only possibility is that the singular closed curve
is an elementary square; the open surfaces are thus either a single plaquette or a
dominant diagram with one omitted plaquette (rooted tree of cubes in the language
of appendix C). Neglecting the excluded volume effects (which are of order 1/D)
we are finally led to a generating functional of the form

1 .3, 1
ip? [; @) —1)° +5—!(f(t) - 1)2] ) (D.2)
Now we turn to the group factors. By integration over the links belonging to

two plaquettes, each open surface must have the same representation assigned to
its plaquettes and yields a factor

drB?Xr(U p) .
The integration over the singular line is now achieved, using
S5 X xYDU= N, , (D.3)

where N, is the number of trivial representations in the decomposition of the

product » X s X ¢. Gathering the pieces, we finally obtain the correction to the free
energy.

D5/4 '
m g Nrstdrdsdt(xrxsxt)1/4 [f(xr)f(xs)f(xt) '_f(.xr) "f(xr)

—flx)+2}. (D.4)

This correction vanishes for the Z, gauge group (N1 = 0). Indeed, closed dia-
grams have an even number of plaquettes and the series become in this case an
expansion in D12,

D.2. Second corrections

There are three contributions.

(a) Non-connected diagrams. To this order, only diagrams made of two-dominant
contribute. Their rcn is computed according to the method described at the end of
appendix A. We finally get

D)~ DI 03)

Note the minus sign which appears in non-connected contributions.

(b) Connected diagrams homeomorphic to the sphere. Let us first remark that
replacing a plaquette by the “skin” of a rooted cube-tree does not change the order
of a diagram in our expansion. All diagrams thus can be obtained by dressing the
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Fig. 3. Some diagrams contributing to the second corrections.

plaquettes of some fundamental ones {the cube for the dominant diagrams). Up to
the considered order, these fundamental diagrams are drawn in fig. 3. Apart from
a particular one (fig. 3a), they are composed of a “ring” of k cubes (k=3,4, ...;

k =5 in fig. 3b). Their evaluation is a straightforward (although lengthy) exercise.
Finally, the result is

" ,
T[T 5D ey i —xf) | ©6)

12 12

The logarithm proceeds from the summations over all possible fundamental
diagrams. Its effect is to add a singularity when x,f*(x,) is equal to unity, that is
exactly at point C of fig. 1. This correction erases the arc CD of the curve.

(c) Diagrams with singular lines. The singular line may be either a single square
(limiting four surfaces) or two elementary squares (limiting three surfaces, and
which may eventually share a corner or a link). Again the computation is straight-
forward, and we get

&BDZ; (0,26 2% 2o YV Ny ol [f0,) £ ) ) £00) — (Fx,) fe) + sym)
+ 20r(35r) +ﬁ[xs) + f(xr) +f(xu)) - 3]

+ 5D 20 ddidy @y oeN g (6 2,500) 47 Ge,) flxs) = 1)
rstuv
f(x t) -1

X (o) ) = 1) g 205

D.7)
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D.3. Discussion

A possible use of the previous formulae is the computation of the corrections to
the critical temperature. As D goes to infinity. F behaves as A(x. — x)® plus regular
terms. We assume that, as in the spin systems, 4 and x, have a D~'/% expansion
while the power a is constant. More precisely,

A=AD*2+ A D* + A,D+ ..., (D.8)
Xe =Xo +x1D—1/4 +X2D_1/2 + ... (D9)

Consequently, the singular part of F reads

3AOX1 .
Fying=D*?(xo — x)? [Ao + (A1 - Jp-114

3(Ayxy tAgx,y) | 3dox] ) 1 :l
+{A,+ + DV |, D.10
( 2 2(x° —x) 8(x0-—x)2 ( )
Comparison with the expansion of F allows the extraction of the series (D.8) and
(D.9). Our hypothesis is supported by two facts. First, the absence of logarithmic
singularities in the corrections at the critical point. Secondly, the most singular
parts in the corrections are related and this provides a consistency check, which

works. In the Z, case, we find

256 45696y/10
= - D12+ 0D Y. D.11
*e = 3125 T 3515625 D) (D.11)

We recall that x = 2DB$ and, therefore, this corresponds to four singularities in
the § plane. They are at equal distance from the origin at infinite D, but the correc-
tions remove this degeneracy. Of course, only the singularity on the real positive §
axis is physical. This pattern is characteristic of pure gauge theory on hypercubical
lattices at large dimension. It is seen, even for D = 4, in a numerical analysis of
available high-temperature expansions.

Appendix E
Inequalities on the free energy

The starting point is the Peierls’ inequality based on the convexity of the expo-
nential function

fau eX>(fdu) exp%‘%), (E.1)

where du is any positive measure. If, for instance, we choose, for the measure, the
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sum over all configurations with a weight exp(—8,2)(H being any statistical
hamiltonian) and, for X, (By — B) P, we obtain on the left-hand side the partition
function Z(0) at temperature § while the integration of the measure gives it at
temperature 8. Taking now the logarithm, we obtain

OF
o8 B=Bo
with F(8) = (1/N) In Z(8). This proves the convexity of F(8) as a function of the

inverse temperature, a well-known result of thermodynamics.
Turning now to the lattice gauge theory (3.3), we choose for the measure

F(B) = F(Bo) + (B — Bo) (E2)

du=11 DR, xR |
iy

and for X
X=4 - XK 2 Ry).
ip

We again get, on the left-hand side, the partition function, which does not depend
on K. Therefore, one can maximize on K and obtain the mean-field result [2]:

Fp) = MI?X {D [u(k) — X(Kj——;é)} +18D(D 1) x((%{)‘l) ] , (E.3)

where the function u(X) is defined as
u(K) = In( [ DR exp Xx(KR)) . (E.4)

The parameter K is a matrix in the representation whose character is x, and deriva-
tives are of course to be understood in the matrix sense. We empbhasize that, although
the mean-field approximation is highly suspicious in the lattice gauge theories (it
breaks local gauge invariance), the inequality is rigorous.
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