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CHAPTER 1

The outlock of interest in heavy-ion collisions.

1.1. — Introductory remarks.

There are several reasons why one wants to scatter heavy ions, in spite of
their complicated structure. Before describing them let us, however, make
some introductory remarks concerning the characteristic features of heavy-ion
collisions.

The most important property is the smallness of the wave-length A in the
relative motion of two heavy ions; A is small in comparison with the charac-
teristie distance .D. The ratio Z/D is of the order 10-2. Small 7 makes it reas-
onable to talk about the Newton trajectories. Ions moving on these trajectories
are repelled from each other by strong Coulomb field, and for not too high
energies we can introduce the notion of a distance of closest approach in a
head-on collision for the backward scattering. We denote this distance by 2a,
and illustrate it in fig. 1.1.
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Fig. 1.1. — Projectile Z, approaching the target Z, with the relative velocity » moving
in a head-on collision.

From the Newton law we get

Z,7,e*

(1.1) & == _‘sz

y

where u is the reduced mass of two ions.
Taking the ratio of a to 1 = %(uv)™, we get (f = v/c)

7,2, 7,7,

o
(1-2) 21T TH T 137

This ratio # is an important, large, dimensionless parameter and it enters the
well-known formula for the Rutherford scattering cross-section in the following
way:

do 1 . .6
e T2 —2 —a 7
(1.3) (d Q)Ruth 17 (uv)~2 sin 5"
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Varying the laboratory energy of the projectile ion, one gets to the so-
called Coulomb barrier, which is the maximum safe bombarding energy before
we enter the field of nuclear force. Denoting the Coulomb barrier by H.,,
we get an expression for it by equating the centre-of-mass relative-motion
energy with the electrostatic energy at the distance of closest approach:

A —1
(1.4) Fen (1 + ;4—1) = 7,7,64By + By + A)1,

where A, Z, R are ion mass number, charge and radius, respectively, and
A~ 3fm. Taking R =1.41 A} Z ~ 0.49 A(1+4 A%(166)")"1, we get in fig. 1.2
the plot of the Coulomb barrier E,,, in MeV for different charges of projectile,
ag a function of the charge of the target.
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t

Fig. 1.2. — The maximal bombarding energy Fqy is shown as a function of the target
charge Z, for different projectiles Z, From ref. [1.1].

For energies below the Coulomb barrier ions are strongly repelled by the
Coulomb force, while for energies above the Coulomb barrier there is a strong
absorption at very small distances which also prevents us to see such final
jons which deeply penetrated one into the other. Therefore, the heavy-ion
collision is a peripheral, or surface process, and a typical distance D which
characterizes the smallest interesting distance above the Coulomb barrier is
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roughly the sum of the two radii of the ions. For an arbitrary energy, the defini-
tion of D is

2a for E< Hg ,
(1.5) D=l g+ R, for B> By .
600
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Fig. 1.3. ~ The ratio between the characteristic D and the wave-lenght in the relative
motion for argon projectiles on mercury as a function of bombarding energy in MeV.
For energics below the Coulomb barrier (Hyz= 270 MeV), D is taken to be the
distance of closest approach in a head-on collision, while, for > Eyy, D is taken to
be the sum of the nuclear radii. From ref. [1.2].

As an example we show in fig. 1.3 the large dimensgioneless parameter D71
for scattering of argon on mercury as a function of the projectile energy.

The fact that D-77! is very large (>200) implies that the semi-classical,
WKB or eikonal deseripfions have a very good chance to work well. These
simple methods, which yield the analytic or almost analytic form of expressions
for the cross-sections, constitute the basic framework for the study of dynamics
in the heavy-ion collisions.

1.2, — Ouatlook of interest in heavy-ion esilisions,

The present-day experiments with heavy-ion beams are done either below
the Coulomb barrier or just above it, around 10 MeV/nucleon, or at much
higher energies from about 200 MeV/nucleon up te 2000 MeV/nucleon. The
intermediate energy region in the gap from 10 MeV/nucleon to 150 MeV/nucleon
is such that different phenomena will manifest themselves in this energy range
and for illustration we reproduce in fig. 1.4 a drawing made by Swrarecxkz [1.3].
We note that in the gap region nuclear physics will be studied under some
special compressed conditions, and that it will get overlapped with the meson
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physics. Studying heavy-ion physics in this range of energy, one would also
aim at & common view on heavy-ion processes in the low, intermediate and
high energies. This requires to focus our attention both on the conventional
heavy-ion processes met in the low energies and on the new phenomena.
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Fig. 1.4, — From ref. [1.3].

We may distinguish three energy regions where the reasons of scientific
interest are somewhat different:

A) Phenomena below the Coulomb barrier [1.4]. — Below the Coulomb barrier
the heavy-ion interaction is essentially of the electromagnetic type and it is
known. Therefore, such processes as the Coulomb excitation [1.4] and the
so-called sub-Coulomb transfer reactions [1.14] attract most of the attention.
With a good precision one ean find spectroscopic factors, since in this energy
range the Coulomb wave functions are excellent approximations to the full
scattering wave functions.

The strong Coulomb field between the heavy ions is also advantageous for
other reasons. It can excite high-spin states, or it can make possible the fission
of nuclei (Coulomb fission). Because of the strong Coulomb field, which even
sometimes can become supercritical, it is interesting to make a precise meas-
urement of the elastie scattering, since we can look for delicate modifications
of the ordinary QED effects.
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During the time of collision of two heavy ions a superheavy molecule can
emerge. In such a molecule, the electron feels attraction coming from both ions
and, in the case of a supercritical Coulomb field, it must coexist with the sea
of positrons. Vacuum gets polarized, and one can study the X-ray spectroscopy

for the superheavy molecule, learning new aspects of QED in the very strong
Coulomb fields.

B) Phenomena above the Coulomb barrier. — In this energy region we can
study

1) the mechanism of the elastic scattering, inelastic excitation of the
regidual nueleus and transfer reactions,

2) the nuclear spectroscopy, by either combining it with the mechanism
of nuclear reactions and studying spectroscopic factors and deep inelastic
processes, or looking at the composite systems by studying the vy-spectroscopy
of the high-spin states, complete fusion and departures off the stability line.

B.1. Elastic scattering [1.5], transfer reactions [1.6] and
inelastic excitations. These topics shall be elaborated in detail in
chapters 3, 4 and 5, after presentation ef the experimental facilities in chapter 2.
Chapters 2 and 3 serve as an introduction to the subject. The main body of
the paper are chapters 4 and 5. In them we emphasize the eikonal methods
for dealing with the elastic scattering, inelastic excitations and transfer reac-
tions, since we feel that they can provide us with a uniform way of interpreting
the data at different energies, particularly at the intermediate and high energies,
i.¢. including the « gap » and the Bevalac regions in fig. 1.4.

B.2.1. Spectroscopic factors. — Increasing the energy of the projectile above
the Coulomb barrier we allow for a complicated interplay of the Coulomb and
nuclear forces, and necessarily the formalism becomes more involved than
in the sub-Coulomb region. However, the cross-section for the transfer reac-
tions increases. Kinematical selection rules favour large angular-momentum
transfer, and large cross-section enables us to reach nuclear states with high
spin, which are difficult to populate otherwise. In fact, at energies around
10 MeV/nucleon there was noted high selectivity to high-spin states [1.7].

B.2.2. Deep inelastic processes. — When two nueclei do not reach some charac-
teristic distance, then the complete fusion cannot be obtained. If a projectile
is not completely absorbed, it can lose kinetic energy, or it can lose or gain
electric charge and mass. The projectile which is slowed down in such a way
will leave the collision region not in consequence of the initial momentum but
because of the Coulomb repulsion. These« deep inelastic processes » are sometimes
called strongly damped collisions because of the strong damping of the energy
degrees of freedom. In the exit channel a large amount of energy is converted
into the excitation energy. HUIZENGA [1.9] gives the following characteristics
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of the strongly damped collisions: 1) the exit fragments have generally masses
not far from the masses of projectile and target, although, if the target mass
is large enough, the excited heavy fragment will sequentially fission; 2) the
kinetic energies of fragments correspond to Coulomb energies for charge centres
of highly deformed fragments, analogous to that for fission fragments; 3) the
angular distributions are strongly peaked, as in the direct processes. The
cross-section for these processes may be a major part of the total eross-section
at intermediate energies.

B.2.3. y-spectroscopy and the behaviour of high-spin states. — The products
of heavy-ion collisions can acquire very large angular momenta, up to 100
units of %. These objects, after evaporating a few neutrons, send out cascades
of y-rays, which can be used to learn about the properties of very-high-spin
states. The nueclear systems « rotating » with very large spins are put under
extreme conditions. The nuclear-structure studies have to be extended to
this entirely new regime, since the change of the nuclear structure may be
very drastic [1.8].

B.2.4. Complete fusion. — The high rotation energy can produce great
deformation of & nucleus and will inerease its tendency to fissioning. This
tendency depends also on the momentum of inertia of nuclens. One can ask
the question whether the high angular momentum does not preclude the ex-
istence of the fusion nuecleus. In this respeet it is important to explore the so-
called « yrast » line. When a nucleus is in the « yrast » state, all the excitation en-
ergy F is in the rotational energy. The «yrast» line B = E(J) by definition
precludes the existence of an excited state of spin J below it. The shape of
the « yrast » line depends on the properties of the exeited nucleus and its
knowledge is of great interest.

B.2.5. Departure off the stability line. — Another area of the nuclear-
structure study with heavy ions is the search for the properties of nuclides
far off the stability line. The large excess of neutrons, which can be found in
the produets of heavy-ion collisions, enable us to get extra conditions for the
nueclear-structure models of the stable nuclei. The outcoming nuclei can carry
out in a more or less stable way a great number of neutrons or protons, $o
that one can hope to study new nueclei. This has been already done at Dubna,
where many new isotopes have been observed, like 30, by bombarding heavy-
ion targets with O, Ne, Ar at (10-+-15) MeV/nucleon and observing that the
outcoming projectile was enriched in neutrons.

0) Phenomena much above the Coulomb barrier. — We shall here restrict
ourselves to only nuclear fragmentation and the so-called unusual phenomena,
which include the nuclear shock waves, and the supercritical Coulomb and
pion fields. It is also possible that the phenomena of the deep inelastic col-
lisions, mentioned in subsect. B.2.2, play a very important role in the energy
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range much above the Coulomb barrier, which approximately can be defined

a8 starting from an energy higher by about an order of magnitude than the
Coulomb barrier.

0.1. Nuclear fragmentation. The fragmentation of a nucleus in
nuclear collisions seems to be an interesting problem not only at relativistic
energies, but also around (100-200) MeV per nuecleon. Some results indi-
cate [1.10] that the fragmentation cross-section is independent of energy in
a large range from 0.1 to 2.0 GeV/nucleon, which is surprising and deserves
further studies.

C.2. Unusual processes. During the collision of a high-energetic
nucleus with a heavy target a high-density, supersonic compression wave
(shock waves) may be generated [1.11]. The high temperature reached in the
shock zone allows for the creation of nucleon isobars, and the strong pion
field (supercritical meson field) can manifest itself in the pionization and the
appearance of pion condensate, which is the macroscopic population of a low-
frequency pion field. The meson production renders the hadronic matter less
« stiff », so that great compression can be attained. The very dense, hot, highly
isobaric nuclear matter with «layers» of pions condensated, which oceur in
the shock zones, has quite different properties than the normal nuclear mat-
ter [1.12, 1.15].

The unusual situation appears also for QED if the sum of the projectile
and target charges exceeds about 172 [1.13]. Vacuum gets polarized and decays,
emitting positrons and letting the very strongly bound electron with the binding
energy in the vieinity of two rest masses to become an unbound state, of a
resonance character, co-existing with the sea of positrons. The physical vacuum,
in the sense of the lowest energy state, becomes charged and we find an ex-
ample of the spontaneously broken symmetry. The last phenomenon is also
met in the currently discussed unified theories of weak and electromagnetic
interactions. It is notable that the study of heavy-ion collisions may shed
some light on the fundamental question of the interaction of elementary par-
ticles and even on models of them [1.16]. The models of elementary particles,
considered as bags of quarks, may in turn be useful in discussing the central
high-energy collisions of heavy ions.
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CHAPTER 2

Heavy-ion accelerating machines and experimental facilities.

2.1. — Heavy-ion machines.

In these years the various scientific communities have considered with
great interest the convenience of building heavy-ion accelerating machines.
The main purpose is to get heavy-ion beams of great intensity and high energy.

It is well known that the usual electrostatic accelerators have already
provided a great deal of information on the structure of nuclei, but they are
strongly limited to energies either below or just above the Coulombian barrier.
On the other hand, high-energy accelerators like the Bevalac are limited to
very high relativistic energies, say (2500--250) MeV/nucleon so that inter-
mediate energies are actually not covered by the existing machines. This is
a great disadvantage for our knowledge of nuclear matter, because many in-
teresting phenomena are expected in that region [2.1]. This limitation will be
overcome by the future machines so that the way is open to new discoveries
in the field of nuclear physies.
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Of course the «ideal» heavy-ion accelerating machine should be able to
give ion beams of all nuclear species from H to U, of great intensities, say
> 10"t particles/s in a wide energy range from ~ 1 MeV/nucleon to
~ 10* MeV/nucleon with a very good energy resolution and possibly long duty
cycles to perform coincidence experiments. As matter of fact, in order to
avoid increasing too much the financial efforts and the technical difficulties,
each laboratory is forced to plan the construction of a specific machine, which,
will allow us to do physics in some specific energy range or with some restriction
on the kind of projectiles.

What kind of machine is then more convenient depends on the physical
interest; e.g. low-energy very intense beams are needed to look at exeitation
levels of nuclei, while one has to use relativistic-energy beams to study, say,
the nuclear fragmentation phenomena.

extracted beam ioh source

/njector /a@

e/ectrostat/c:

O > //E]’ /@ accelerator

stripper
\__,__._,—u /

Fig. 2.1. — Schematic layout of an heavy-ion circular accelerator.

The general way of obtaining ion beams is sketched in fig. 2.1 for circular
acecelerators.

As is shown, charged atoms coming from the source are injected in some
kind of preaccelerator which can be of an electrostatic type (Van der Graaff,
Tandem) or a Linac or a small cyclotron or both. Depending on the type of
injector, the ions sources have to produce either negative-ion beams (Heinicke
sources, duoplasmatron, ete.), 4.e. atoms to which an electron has been « added »
(as for a Tandem), or positively charged. ions (Penning sources), .e. atoms which
have been spoiled (stripped) of one or more orbital electrons (as for cyclotrons
or Linac injectors).

Usually ions, after having been accelerated to some energy by the injector,
are again stripped in 7' (by making them traverse a very thin foil of material),
so that their final effective charge is Z <Z. After the second stripping, they
are injected into the circular ring and accelerated, by a suitable system of
accelerating cavities or in some other way, to achieve the final energy. In
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the usual cyclotrons or synchrotrons the final energy per nucleon is given by

E 7Z\2
& — A—f = KB R? (Z) 9

where K is some numerical factor, B and R are the magnetic field and the mag-
netic radius of the machine, respectively.

One can see from the previous formula the convenience of obtaining ionized
atoms of great Z in order to arrive at high final energies. Unfortunately, there
are some limitations of the charge state Z that one can get from the sources
or in the stripping process; the difficulties are greater for heavier atoms. Of
course it would be the best to have fully ionized atoms, but this is not so easy
because the ionization efficiency in the stripping process in 7 is limited depending
on the ion energy at the output of the injector and on the considered nucleus.

The average charge state Z depends, in fact, on the nucleus energy according
to the formuls [2.2]

Z=c¢VZ ey, 01<Z <04 ,
A
where ¢ is a numerical constant depending on whether the stripper is a solid or
a gaseous target, and Z and g, are the atomic number and energy/nucleon at
the output of the injector, respectively. Omne can see that high-energy in-
jectors would be convenient to reach high ionization states Z, but they are
of course too much expensive.

Tt is not so difficult to have light nueclei fully stripped (Z = Z), but for
heavier nuclei Z is usually less than Z.

For what concerns the intensities of the output beams, these of course
depend on the features of the ion sources, the injector and final accept-
ances, the possibility of producing a good vacuum (better than 10— mm Hg)
inside the circular rings, which is relevant to a good transmission during the
acceleration cycle, stripper efficiency and so on. A great fechnical progress
is expected in the next years in the heavy-ion performances both of neg-
ative- and of pogitive-ion sources.

For the sake of clarity it is' convenient to divide the new accelerator
projects into three classes:

o) New electrostatic accelerators, which can give very intense ion beams,
of low energy/nucleon say H/A<10MeV/nucleon, but of very great energy
resolution. The intensity of the outcoming beams from these machines is
greater than 1012 particles/s and the energy resolution is of the order of 10~*.
The usual Van de Graaff or Tandem generators are working in this way.

b) Cyeclotrons or Linac accelerators are meant to be useful for getting
very intense beams (> 10'* particles/s) within an energy range of, say,
(10 +-100) MeV/nucleon.
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Tasre 2.1.

Type of machine Site MeV/nucleon Nmuelei Status

s.c. Linac Argonne, Karlsrue <10 -TU proposed

Superhilac Berkeley 8.5 =T OK

Unilac Darmstadt 30~ 8 U 1975 start

Bevalac Berkeley 2500 +250 -~ Ne 1974 start

Saturne I Saclay 2000--200 conglruction

Ganil Caen 100~ 10 -U congtruction

Alice (eyclotron+Linac) Orsay < 5 —-Kr OK

Cyclotron U-300 Dubna ~ 10 —-Zn OK

Cyeclotron TU-300-+4T-200 Dubna ~ 1T -Xe OK

Cyeclotron U 400 ~ 10 - T constructed
50 - Ne

Cyclotron U 200 Warsaw 20 - A constructed

Cyeclotron Oak Ridge 100+ 10 proposed.

s.c. Cyclotron Ttaly 55 10 -=U proposed

s.e. Cyclotron Chalk River 50+ 10 —~TU  proposed

s.c. Cyelotron Michigan 50— 10 s proposed

Tandem UsA 13 (MV)

Tandem France 13 (MV)

Tandem Netherland 13 (MV)

Tandem Denmark 13 (MV)

Tandem Germany 13 (MV)

Tandem England > 30 (MV)

Tandem Rumania 10 (MLV)

Tandem Italy (Legnaro) 16 (MV)

Tandem Ttaly (Catania) 13 (MV)

Pelletron Australia 14 (MV)

Pelletron Israel 14 (MYV)

Pelletron Brasil 12 (MV)

Accelerator facilities in Japan

(Tandem +Linac +synchrotron) Japan 10500 - U constructed

Cyclotron Virksi-s.c. Cyclotron Berlin 8 —Fe  constructed
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¢) Circular machines, like synchrotrons, which can give high-energy
beams, say (100--3000) MeV/nucleon with typical intensities <101 particles/s.

The construction of all the devices is achieved either by constructing ez novo
the machines or by conversion of machines already existing. As we said, the
main difficulty of all these projects is to balance the financial difficulties with
the goal of high-energy-high-intensity ion beams.

Among the various existing projects, one could mention as examples of
the type-b) projects the French national project GANIL, the UNILAC of
Darmstadt, the Japanese NUMITRON and in Italy the project of a super-
conducting cyclotron [2.4].

One has to consider as projects of type ¢) the Bevalac of the Berkeley La-
boratories, the AGS of Brookhaven, the French Saturne II and probably the
Serpukov protosynchrotron [2.5]. Few years ago in Frascati the proposal has
also been made of converting the 1.1 GeV electronsynchrotron into an ion

cyclotron(Milan) RN GANIL
L.cyelo 4
~
- \\ \\
AY \\
\\ \. ..
\" \\ \\\
~ ~ \ ~
s Ty s
g \ NT~ L _ _UNILAC
° N N T T - =
3 \ SO T m—e N
== X ~_  SUPERHILAC -
(4 ~ ~
E N N \\.
~ A AN ~a
= T AR ~~ NP{RESBURY

—~—-_
- i e

~

10° 1 ] 1 l 1 I i | 1
0 20 40 60 80 z 100

Fig. 2.2. — Energy/nucleons atomic number for different heavy-ion machines.

accelerator [2.6]. In fig. 2.2 we report a graph of the energies of gome projects,
while in tables 2.1 and 2.IT we tried to summarize the world situation eon-
cerning most of the projects.

It is worthwhile writing as in table 2.IIT the gross features of the beams
coming out from few ones of the considered circular accelerators, in order
to give the relevant information for planning future experiments.
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Tasre 2.I1.
Tandem Linac Cyclotron and synchrotron
EJA < 10 MeV/nucleon ~ 10 MeV/nucleon ~ (100 -=-2500) MeV/nucleon
zZ any ~ any ~ any
Intensity pA or fraction of uA (10 --100) uA (10° = 10'2)p/s
Duty cycle 1 (20 =100)% (10 = 20)9
Ap/Jp < 10-4 (0.3 1)o ( 0.1=  0.5)9
TasLe 2.I11.
Project Energy/nucleon Nuclei Intensity Beam
(approx.) (pps) energy
(MeV /nucleon) resolution
Superconducting
cyclotron (Milan) 55+ 10 He - T ~ 101 0.19,
G-ANIL 100~ 10 He - T ~ 1012 0.19,
UNILAC 30 8 He —-TU > 1012 0.259,
Saturne II 2000--200 He — Ne 100 =10t 0.39%,
U-400 (Warsaw) 20+~ 7 He - U 1012 =101 0.49,

As one can see from table 2.1, one can expect that in the next years there
will be available very intense ion beams of all possible energies between few
MeV/nucleon up to 10¢ MeV/nucleon with an energy resolution of (0.1--0.2)9,
and very good optical properties.

2.2, — Experimental facilities.

To perform an experimental program concerning the phenomena we dis-
cussed in sect. 1.2, we have to provide a suitable experimental apparatus for
measuring angular and energy distributions of the emitted. particles and their
mass numbers, at different projectile energies (we refer to BRESSANI [2.3]
for a more detailed analysis).

Let us consider first two-body elastic or inelastic reactions at energies of
the projectile nuclei around 100 MeV/nucleon:

(2.1) A+B - C+D.
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Rates for reactions (2.1) depend on many factors as beam intensity, target
thickness, angular acceptance of the experimental apparatus and, of course,
the cross-section of the considered processes at these energies. One cannot
increase too much the useful target thickness, in order to limit energy losses
and Coulombian scattering of the emitted particles in the target. Generally
an acceptable value for the target thickness is in the range (0.2--2) mg/cm?.
In these conditions at least for lighter ions the momentum resolution will
be comparable with the momentum resolution of the incoming beam reported
in table 2.IV.

vacuum
tank

to the
beam blocker

" magnet%/

0L
2
% -movable target
(]
Q
v 3 -jon beam
5§
53
[ R
o5
g £
g3

Fig. 2.3. — General layout of an experimental apparatus for heavy-ion two-body
reactions (from ref. [2.3]).

It is in fact necessary to have an experimental apparatus with good angular
and energy resolution to allow the measurement of many of the reactions we
have listed in sect. 1.2. For the two-body reaction an experimental apparatus
like the Saclay energy loss spectrometer [2.7], that has an energy resolution
of ~ 100 keV, would be fully adequate for most of the reactions we mentioned,
apart from its high cost. Of course one has also to consider less expensive ex-
perimental solutions like the so-called Palevsky speetrometer [2.8]in some mod-
ified version as the one of ref. [2.3] that is reported in fig. 2.3. As one can see
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from fig. 2.3, the magnet O is necessary to bend the primary beam, while the
two H magnets are used to analyse the emitted particles. The trajectories
of the particles in the spectrometer are measured by a system of multiwire
proportional chambers or drift chambers. The emission angle of the emitted
particles can be varied by a displacement of the target along the beam direction
of motion and by keeping the position of the spectrometer fixed.

With such a system one can show [2.3] that energy and angular resolution
can be obtained of the order of

SE|H ~ + 0.3%, 80 =~ 4- 2 mrad.,,

in an angular interval between say 4° and 20° (laboratory system) with a spectro-
meter acceptance of the order of (1--2)-10-%sr and a momentum acceptance
of ~20 MeV/ec.

A typical value of the involved momentum is
p=7GeV/c for the %O nucleus with H/4 = 100 MeV/nucleon .

As an example of the expected distribution we quote from ref. [4.2] a typical
elastic-scattering spectrum of °0O or 20 at F,, — 163 MeV that is at about
10 MeV/nucleon in the laboratory system (see fig. 4.8).

For studying many-body reactions like

ALB 5> CLDIEA ...

in this energy range one can think about experimental devices which are typicla
of high-energy particle experiments. There are mainly MWPC and seintillator
arrangements, in a closed or open configuration around the target, to get the
emission angles and energies of the emitted particles, their specific energy
loss dB/dx and times of flight. Of course for some type of reactions it is also
necessary to try to reconstruct also the masses of the emitted particles. For
light ions a complete mass separation is possible [2.4], for heavier ions it is
more difficult and single reactions should be examinated separately.
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CHAPTER 3

Standard methods of describing heavy-ion processes.

Two methods are commonly used for describing the heavy-ion elastic
scattering, inelastic excitations and transfer reactions. One is based on the
semi-classical concepts, and the other one is & quantal method. We shall il-
lustrate the semi-classical method on the example of elastic scattering, and
the quantal method on the examples of one- and two-nucleon transfer reac-
tions. In the latter the standard quantal method is known as the « distorted-
wave Born approximation » (DWBA) formalism. It is also known an inter-
esting approach which exposes the Fresnel type of diffractive scattering [3.16].
In this approach one gets closed expressions for both the elastic and the in-
elastic heavy-ion scattering, and the resulting formulae display the interference
patterns observable in the angular distributions and excitation functions.
For more details about this approach and its applicability we refer to the recent
papers [3.16] based on this formalism with further references included there.
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3.1. — The semi-classical method.

Let us consider elastic scattering, say, of the 160 ions on 58Ni. We take
as given the central potential V(r), describing the interaction of the two nuclei.
For the Newtonian motion on an orbit in the field ¥V (r) we evaluate a quantity
named the deflection function. It is

Loel

- b b V(r)]*
3.1) 9(b)—n—2fd7';2[1—;2-————177~] ,

To

where 7, is the turning point, .e. the classical distance of the closest approach,
b is the impact parameter, related to the angular momentum ! by kb = I,
B = k*(2u)~* and p is the reduced mass, 6 is the angle by which a classical
particle with energy F and angular momentum I (thus also with a fixed impact
parameter b) gets deflected in the central potential V().

To get more acquainted with the deflection function, let us consider for the
moment V(r) as given by the pure Coulomb interaction. In fig. 3.1 we plot
the deflection funetion, and note a unique correspondence between b and 6(b).

15} 15
~10 —~ 10
E g
Y e}
bl _ . ___ |
5 5 | —~—
| f
| !
|
o
0 | 1 1 1 1 1 1 1 | | | 1 | 1
15 35 55 75 95 15 25 35 g &5 g 55
0 R2 R1
c.m.
Fig. 3.1. Fig. 3.2.

Fig. 3.1. — Deflection function 6(b) arising from a Coulomb potential—from ref.[3.1].

Fig. 3.2. ~ Deflection function 6(b) for the scattering of 160 on *8Ni at H,, = 60 MeV—
from ref. [3.1]. The real potential was taken in the Woods-Saxon form V()=
= Vx[1l+ exp(r— R)/al]~* with Vi=—17MeV, R=9.65fm, a= 0.6 fm.

A different character has the deflection function for V(r) being the Woods-
Saxon potential. It is plotted in fig. 3.2 and we note that for some angles there
are three values of impact parameter. All of them must be included. In fig. 3.2
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other two points appear also around which the deflection function has para-
bolic shape. Secattering angles corresponding to these points are called rainbow
scattering.

In the pure classical theory the differential cross-section can be obtained
from the derivative of the inverse function of 6(b). We have

do bdb
(3.2) (d‘“‘g)clausical - m )

The semi-classical method uses some concepts of the classical theory, but
also incorporates some quantal features. KoELING and MALFLIET in ref. [3.17]
indicated how the semi-clagsical approach can be derived from the Feynman
path integral method. In the formalism the heavy-ion trajectories are extended
to complex ones, by using an analytic continuation of the Hamilton equations.
To get the preseription for the evaluation of dg/df2 in the semi-clagsical model
we begin from the standard quantal formula for de/dQ. We write

[\

(3.3) %‘é O],  f6)=2 3 (20 + 1)(1 — exp [2i6,]) P,(cos D).

i
2k ;

0

In order to evaluate the phase shifts d,’s we take advantage of the fact
that for heavy-ion scattering the relatively large reduced masses give rise to
large values of k = 1/2uF even at moderate energies E. The large value of
the wave nurober %k justifies the use of an approximate treatment of the
Schrédinger equation known as the WKB (Wentzel-Kramers-Brillouin) method.

The WKB approximation is discussed in many textbooks, see, e.g., ref. [3.3].
We will only state the final result and discuss its physical background. The
basic assumption is that, at large k, the main effect of the potential is to modulate
the phase of the wave function, hence the radial solutions of the wave equation
may be tried in the form

(1) = exp [ ip(r) k] .

If we assume further that the distance d over which the potential V(r) changes
significantly is large compared with the wave-length 1 = k=, i.e. kd>> 1, one
can neglect d°¢/dr2. The third assumption in the WKB method is the con-
dition that the radial wave function vanishes at the go-called turning point #,,
determined through the relation

i @+ 3y

(3.4) T Vire) + 53

This boundary condition clearly has a motivation borrowed from classical
mechanics, where a particle cannot penetrate past the point in which the kinetic
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energy equals the effective-potential (real potential plus centrifugal energy)
barrier.

The WKB method. gives the following expression for the I-th partial scat-
tering phase shift:

(8.5) OVER(E) = Fau(l 4 1) — kr, +f[k(r) — k]dr,
where ’
k(r) = B[L — (14 §)*(kr)2— V(r) BT

and the turning point #, is determined from %(r,) = 0.

The WKB formalism may be extended to complex potentials such as the
optical-model potential [3.3]. In this case 7, becomes complex and the integral
in (3.5) is in the complex plane from the complex turning point to real infinity.

A difficulty arises if there exist multiple solutions for #,. A possible choice
is to take then the solution with the largest real part and the smallest negative
imaginary part corresponding to reflection at the first barrier. The ambiguity
can be a source of error only for a very few partial waves which are tunnelling
through the firgt potential barrier. At energies near the Coulomb barrier this
occurs only for the lower partial waves, where the error is reduced by the ab-
sorptive part of the optical potential. For energies above the Coulomb barrier
these ambiguities are less important and disappear completely at high energies.

Comparing egs. (3.5) and (3.1) it is appropriate to notice the very elose
relationship between a derivative of the WKB phase shift and the clagsical
deflection function. We have

2 @;’VKB

(3.6) L =gl

with the relation kb = I 4 1 kept in mind.

An example of the partial phase shifts is given in fig. 3.3 for the elastic
scattering 80 +- 12%3n at 100 MeV [3.4]. One can sce that only partial waves
with 80<I<70 are contributing to the scattering amplitude. The relatively
small interval of large values of 7 is a typical feature for scattering of heavy ions.

The smallness of the interval of the effective Is is the result of strong ab-
sorption at the surface and of attractive force which sucks high-angular-mo-
mentum orbits into the abserbing region. The large values of I arise because
of large radii of heavy ions and large values of k; roughly the half-value of
lexp [2¢6,]] occurs at I, = kR, R being the radius of the potential.

The WKB method helps us in getting information about the phase shift,
but to evaluate the cross-section we must know the amplitude #(8), i.e. we
must perform the summation in eq. (3.3). This may be simplified a8 follows.
Because of strong absorption the sum. over partial waves is determined mainly
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by the terms with large 1. Hence we can replace P;(cos 6) by the asymptotic
expression for large 1

5 = LA = . 1 ¥/
(3.7) Py(cos 6) N[Z(ZJFZ) smg sin{{1+35)0 71
. S-madtrix
: T T T
i 607
L =55 ~—
I YN
"él
r
E L.
r|\||1)|"i,lllxlllJ
0 20 40 60 50

L

Fig. 3.3. — The amplitude of exp[2¢d,] for the elastic scattering 180 22080 ab
B=100 MeV (ref. [3.4]), corresponding to the Woods-Saxon potential V(r)=(Vg+iVy)
-[1 4 exp [(r— R)/a]]~* with parameters Vy=—40 MeV, Vy=—15MeV, a = 0.45 fm,
R = 1.31 fm (A}+ 4}). The dashed line corresponds to V=0 and shows by comparison
how the real potential sucks high I’s into the absorbing region.

omitting from considerations § = 0, =.
Substituting this in (3.3) and replacing the sum by an integral (thus as-
suming that the phase shift is a smooth function of 7), one obtains

(3.8) #(6) ~ — (2avk sin 6)~ f a1 (1 + ) (exp [ig., ] — exp [ip_T) ,

where
1 7
@, =20, i(l -+ -2-)0 :EZ .

Tinally we evaluate the integral in eq. (3.8) using the method of stationary
phase. We get that the main contribution comes from such values of 7, denoted
by I,, for which the phases ¢, have extrema. Thisis so because near the extremum
the exponents vary slowly, hence in this region the exponential factors will
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not cancel. Thus we have the condition

de, .
(3:9) (%)=

from which there follows (see eqs. (3.6) and (3.8)) the relation
(3.10) +0=10(,,

0(1,) being the classical deflection funetion.

Having stationary points we expand §; around them up to the second order
and explicitly evaluate the integral over I. From each stationary value we get
a contribution to the scattering amplitude

10) = 3 146)

with
N[, T
f(0) = — % (li -+ -) [2 sin 6 —dﬁl I=ZJ exp [ia(L,)],
(3.11) 9, (1 4 1)L (y L0120 b, 145, )
b = | 2% @ a\" T A/ | a@E | T @ -,

The differential cross-section is obtained in the semi-classical method as

(3.12) (%)ﬁemi_cmm: 1> 1:(0) 2

Therefore, the interference effects which are absent in the clagsical expression
are present in the semi-classical formula.
In fig. 3.4 there is a plot of the ratio

(d‘Q)ssmi u[asslcnl/ ( d‘Q)Ruth

as the continuous line and it is compared with a plot of the same ratio evaluated
exactly (broken line). Here « exact » means that we solve numerically the
Schrodinger equation and find out the phase shifts I. The agreement is very
good.

The semi-classical method can be extended to inelastic scattering with
excited final states of the target and to one- or more-nucleon transfer
reactions. The agreement with the experimental data is quite good, however,
in cases in which the final state differs from the initial one, more assumptions
are needed to write down an expression for the cross-section. In such a situation
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the classical trajectory corresponding to the relative motion of ions in the initial
state is different from the trajectory in the final state, and some averaging proce-
dure is needed. One must also deal with an imaginary part of the optical po-

T

1
25 45 65 85
0 (degrees)

c.m,

Fig. 3.4. — Elastic cross-section for scattering of ¥0 on 5Ni at F,, = 60 MeV. The
real-potential parameters are given in the caption of fig. 3.2. Curve 1) represents the
exact calculations, curve 2) the semi-classical one, curve 3) the result obtained by the
stationary-phase method.

tential, and evaluate reaction matrix elements from the set of 1st order differ-
ential equations, following from the time-dependent Schrodinger equation. This
set of equations is solved numerically with the appropriate initial conditions.
The whole procedure is rather involved, but the agreement with experimental
data is very good. We end here our presentation of the semi-classical method
and refer to BROGLIA ef al. [3.5] and KOELING and MALFLIET [3.17] for more
details.

3.2. — The quantal method.

The second standard method of treating heavy-ion processes is the quantal
method. For elastic scattering it is known as the optical potential method and
for inelastic seattering and transfer reactions as the distorted-wave Born
approximation (DWBA), or the more accurate formalism known as the coupled-
channel formalism.

3.2'1. Optical model. — In the elastic case one parametrizes real and imaginary
parts of potential, most often assumed in the form of Woods-Saxon potential,
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adds the Coulomb potential, solves numerically the Schrédinger equation and
looks for the best parameters fitting the differential cross-section.

As an example we consider the scattering of the %0 ions on “Ni at 60 MeV
laboratory energy. The experimental data [3.7] are well fitted by the following
total potential:

(3.13) V() = Vi(r) + V»)

with the nuclear part of the potential, V,,, a Woods-Saxon optical-model po-
tential,

V& Wy

(3.14) Vx(r) =1 + exp [(r — Rog)/toz] + 1+ exp [(r — Rop)/ttox) ’

and with a Coulomb potential V, of the form

(Z,Z,6*2R)(3 — +*|RL) , r< R4,
(3.15) Volr) =
Z, Zyefr, r> R,

which is an extension to the case of heavy-ion scattering of the potential due
to a point charge on a uniformly charged sphere. Presumably more correct
for two heavy ions would be the potential of two uniformly charged spheres.
However, because of nearly total absorption near the origin, where the dif-
ference in the various Coulomb potentials is largest, the seattering cross-sections
are fairly insensitive to the choice of the model Coulomb potential.

The parameters appearing in eq. (3.14) and (3.15) were found to be

Ve =—2bMeV,
W, =—15 MeV,
By, = R, = B, = 1.3(A} - A}) fm = 8.365 fm,

Gpp = Oy = 0.5 fm .

Figure 3.5 shows the fit; moreover, it gives a comparison of the «exact »
caleulation of the differential cross-section (made with ABACUS II) and the
WEKB method [3.6]. All results are displayed with respect to the Rutherford
cross-section. As can be seen the agreement is quite good over the entire curve.

In general the WKB approximation agrees well with the optical-model
cross-section for energies and angles of major interest, i.e. B, > 40 MeV,
and angles over which (do/dQ),... changes by three decades [3.6]. The WKB
method fails for energies which are excessively low or angles which are ex-
cessively large. Thus in the example shown in fig. 3.5 beyond 100° the WKB
curve shows diffraction peaks with maxima in (do/dQ), , ~ 5-10~* and with a
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Fig. 8.5. — The reaction $Ni(*¢0, 80)%®Ni at K, = 60 MeV—irom ref. [3.6]: experi-
mental points (e) taken from ref. [3.7] and calculations using ABACUS II (solid line)
and WKB (dotted line).

much larger maximum at 180° (do/dQ)g,,, & 5-10~% On the contrary the exact
caleulation continues to decrease, levelling off at (do/dQ)y,,, ~ 8.2-107¢ at 180°.

At high energies the WKB method, being fairly insensitive to values of %,
may, however, be numerically superior than the exact procedure the effec-
tiveness of which rapidly decreases for large k. For large &k the numerical
integration of the Schrodinger equation becomes a very difficult task because
of the fine integration meshes required.

3.9°2. The DWBA method. — Let us now pass to transfer reactions and show
some details of the evaluation of differential cross-section within the DWBA
method [3, 8]. We denote by ¢ the transferred subsystem and by ¢;, ¢, the
cores with which ¢ is making up a bound state in the initial and final state,

AN

S

- F

! »

Fig. 3.6. — The vector diagram for the transfer reaction (¢, f) + ¢y—> &1 4 (5, ).
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regpectively. These bound systems we denote as a, = (¢, ) and a, == (¢, t)
and our transfer reaction is

(3.16) (61, 8} 4 € —> €1+ (€5, 1) or ay -+ e —>0 -+ a,.

The basic three bodies ¢, ¢, and ¢ are depicted in fig. 3.6 at the verfices of
@ triangle, their relative distances are the sides of triangle, and r,, r, denote
the relative distance between the projectile and the target in the initial and
in the final state, respectively.

In the DWBA method one assumes that

a) the interaction between projectile and target, before or after the tranfer
took place, can be described in the initial and final state in terms of the optical
potentials U, and U, , respectively;

b) these optical potentials do not differ too much from the interaction
between cores V.

c16g?

¢) the matrix element for a transfer process is proportional to the residual
interaction, which is sandwiched between the states which are products of
bound-system wave functions of @, and a, and distorted waves in the initial
and final states, respectively.

Then the differential cross-section for transfer process can be schematically
written as

do

(3.17) m ad SlszK}Ci’—)(iﬂfy rf)¢2|VrIXi(+)(ki7 r1)¢1>12 9

where 8y, 8, are the so-called spectroscopic factors, uniquely defined by the
initial and final bound-state structures. They measure the strength of a given
state of ¢ in the bound systems a,, a, respectively; y,, y, are distorted waves
describing the relative motion of @, and ¢, or a, and ¢, interacting via U,
or U, , respectively; ¢;, ¢, are the bound-state wave functions of ¢ in .y Oy,
respectively; ¥ is the residual interaction, describing the interaction which is
not included in distorted waves. It depends on a representation and in the
post-representation it is

(3.18) V = Vclag— Uﬁaa = (V-clb —I_- V

r

U 14

— Ay
0102) cae ™ Vet

Here, V,, denotes an effective interaction between 4 and B and we have used
Viea ™ U,

The matrix element in eq. (3.17) containg a 6-dimensional integral, very
unpleasant to deal on a computer. To simplify the caleulation especially below
the Coulomb barrier, one usually makes some further approximations within

the DWBA scheme:
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a) Localization in the strong Coulomb field. Such a field favours large
core-core distances, and therefore ¢, can be reasonably approximated by its
asymptotic form

(3.19) P2 & N1} (iV2mBy1y) Yo, Aa(ry)
where N, is the normalization constant, B, is the binding energy of ¢ in a,,
m the reduced mass in the (i, ¢,) system, A" being the Hankel function.

b) No recoil, based on the smallness of the mass of transferred particle
with respect to the mass of the bound system of this particle with the core.
Looking at fig. 3.6, we write

mw \
XiH—)(,ki’ ri) = %§+) (ki’ r— mt 1'1) ~ X§+)(ki7 r) ’

@

m m n
(3.20) 17 (key 1) = X?) (kﬁ (1 — E{i r —m; rl)) ~ X;_) (k“ (1 _m:g) r) ~

The last step is true if the function y, depends only on the product of meo-
mentum and position variables, ag in the case of pure Coulomb wave functions.
The no-recoil approximation enables us to replace a 6-dimensional integral
by a product of two 3-dimensional integrals.

Next one of the 3-dimensional integrals is replaced by a one-dimensional
integral and a sum over angular momentum, by using a property of the Hankel
fanction which was put in instead of ¢,. The final formula for the one-nucleon
transfer differential cross-section [3.9] is

do m;mg ks 2a, + 1
.2 —_— = g - ; 5 A 2 N 2.
GI a0 T iy E (@o + 2+ 1) Skl
.1 .1
% <71'2" 107, 2‘> |Tu(0)
where
my, My, are reduced initial and final masses;
J1y 72 are total angular momenta of nucleon bound in a,, a,, respectively,
and similarly 1, I;
4, = f Ary 12§,V EIMB 1) V o (1) (1) 3

T;.(6) =J der y* ((1 _-Zb )kf, r) hiY (@ VomB,#i? ) You(r) 4 Ky 1)

1, (7) is the radial wave function of the nucleon in the (n, ¢;) bound state.
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The values of [ are bounded by the following conditions:

|t — Zzl<l<ll+ Iy,
i1 — Jo| <V<Fy + Fas
(— 1)+t = (— 1)t.

This formalism was developed by BUITLE and GOLDFARE [3.9] and was
very successful in interpreting many experiments. For illustration we show
in fig. 3.7 results obtained for the total cross-section with spectroscopic factors
in agreement with the shell model predictions.
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Fig. 8.7. — The total cross-scction of the one-nucleon transfor reactions (from
ref. [3.8]).

Another example of a very good fit of the DWBA, no-recoil, finite-
range method, is given in fig. 3.8, for one-nucleon transfer processes at dif-
ferent laboratory energies.

There are three characteristic features to note:

i) the angular distributions have a bell shape,
ii) the bell becomes narrower for higher energies,

iii) the maximum of the bell iy moving forward for higher energies.
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Fig. 3.8. — Angular distributions for the 48Ca(1¢0, 1*N) reaction to a) the 1f; ground
state and b) the 2p; excited state in 4°Sc. The solid lines represent DWBA calcula-
tions performed with the no-recoil code (from ref. [3.10]). a) Ex=0MeV, L=4;
b) Hx=3.08 MeV, L=2.

The bell shape angular distributions are connected with the phenomenon
of grazing collision. It arises because of the strong, repelling Coulomb force,
on one side, and the strong nuclear absorption, on the other side. The most
favourable scattering angle for nucleon transfer iy called the grazing angle,
and in terms of elassical trajectories it corresponds to well-matched initial and
final trajectories.

Tt should be pointed out that in order to get a good agreement of the DWBA.
fits with the experimental data it is often necessary to include extra normal-
ization factors ranging up to 3.5.

3.3. — Difficulties of the standard methods.

In spite of good fits obtained by the semi-classical and DWBA methods
there is a number of problems connected with these methods. We shall make
a few remarks about the semi-clagsical method (for a more complete account
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ot the semi-classical method see ref. [3.5, 3.17]) and concentrate our attention
on the difficulties of the DWBA scheme.

For transfer reactions the semi-classical method finds difficulty in coping
with different initial and final trajectories and some ad hoc averaging procedure
is invoked to cure this disease. Troubles also arise in defining the phase in the
semi-classical method. The WKB and stationary-phase methods come with
some help in defining the semi-classical phase, but with different initial and
final trajectories it is only a heuristic argument and, in fact, for the transfer
reaction a definite phase must be assumed and cannot be derived. There are
also some recipes about how to evaluate the cross-section for the transfer
processes and the geometrical mean value seems to be accepted, though, in-
cluding the arbitrariness in phase, they do not follow from any physical as-
sumption. On the computational side, the difficulties are in coping with very
many partial waves and in solving very many coupled sets of differential equa-
tions. It becomes an enormous task to carry out such caleulations even on
big computers, thus limitations or further approximations must be contem-
plated.

Troubles of the DWBA method are quite numerous. They can be overcome
in the sub-Coulomb region, but they manifest themselves above the Coulomb
barrier, for the intermediate and high energies. To start with let us remind
that the DWBA amplitude is a first term of a divergent series, as shown by
GREIDER and Dobp [3.11], within the 3-body formulation of rearrangement
Processes. For some processes like knock-out reactions it is possible to re-
formulate the infinite series in such a way that its term will be the ¢-matrix
instead of the residual interaction V,, and in this case one speaks about the
DWIW amplitude. Such an amplitude is a first term of an infinite series which
is generated by a kernel free from disconnected diagrams, thus it has a chance
to be a convergent series, though the estimate of the importance of the 2nd-
order and higher-order terms contributions is a separate, unanswered question.

In practice within the DWBA method one makes several additional ap-
proximations and above the Coulomb barrier, where both the nuclear and
Coulomb forces interfere, one allows oneself for some change of parameters
g0 that a good fit to the experimental data iy achieved. Large ambiguities
arise from not univocally defined parameters of the optical potential. Elastic
scattering of ions in both initial and final states is needed as a separate set
of data, but it does not fix up univocally the optical-potential parameters.
Even if these parameters are determined from a partial-wave analysis of the
elagtic scattering, they are changed in the DWBA numerical programs to get
better fits to the transfer processes. For sub-Coulomb energies there is much
less uncertainty than above the Coulomb barrier, because of the dominance
of the known Coulombic wave functions.

Another source of discrepancies within the DWBA scheme is in the spectro-
scopic factors. They should be given by the nuclear-structure theories and
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may be looked at as predictions of the DWBA method, if a good fit to the cross-
gection is found. In practice, there are sometimes found such predictions of
the DWBA scheme that the spectroscopic factors for different states do not
agree with the nuclear-structure predictions, even by a factor 2 and then one
cures the situation by speaking about the ratio of spectroscopic factors. The
inconsistency in spectroscopic factors can be noted also if one compares the
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Fig. 3.9. — Differential cross-sections for the reaction B (14N, *0)Be at (curves a)) 41,
(curves b)) 77 and (curves ¢)) 113 MeV compared with no-recoil DWBA calculations,
which predict increasing diffraction structure at the highest energy, in confrast
to the featureless experimental data—from ref.[3.12], Q= —3.96 MeV, [=2,
— — — experimental, DWBA.

same factors found in different reactions. These discrepancies have a tend-
ency to increase with increasing energy. Only for sub-Coulombic processes
there is a small discrepancy in determining spectroscopic factors by the DWBA
scheme.
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An important problem of the DWBA method is the question of recoil,
especially for energies high enough above the Coulomb barrier. Below the
Coulomb barrier the effect of recoil is small and may be safely neglected. How-
ever, lef, us look at the one-nucleon transfer reaction 1*B(14N, ¥0)*Be and watch
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Fig. 3.10. — Theory (ref.[3.13]) and experiment (vef.[3.14]) for the !2C(14N, 13Q)eN
reaction. B="78MeV; ¢ DWBA with recoil, 3" 1= 0.1; —— — DWBA without recoil,
I=0only; ———1=0; ——— =1,

the variation of the angular distribution with increasing energy. In fig. 3.9
the solid line gives the prediction of no-recoil DWBA amplitude, while the
broken line goes through the experimental points to guide the eye. For the
laboratory energy 113 MeV the DWBA no-recoil amplitude gives quite a wrong
prediction.
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DE VRIES [3,13] among others analysed the influence of recoil and in
fig. 3.10 we show his study of recoil in the reaction 20(*N, *C)**N at 78 MeV
laboratory energy. The featureless shape of experimental angular distribution,
contrary to the oscillatory character of the no-recoil DWBA amplitude, can
be understood if two contributions, arising in the case of included recoil, are
added together. The oscillatory dips are filled up by maxima of the other con-
tribution. It is nice for the DWBA method that the inclusion of recoil puts
it back into agreement with the data, but it forces us to use rather involved
numerical programs, which can cope with 6-dimensional integrals.

The emphasis on recoil effects has also been made by Dopp and
GREIDER [3.15] in their analysis of recoil damping in heavy-ion transfer reac-
tions. They found within the DWBA method that keeping the effect of finite
mass of transferred particle resulted in the appearance of a recoil phase factor
which gives strong damping of the diffraction oscillations. Due to this damping
a featureless angular distribution appears which drops down as an inverse power
of momentum transfer. Such behaviour is indeed suggested by the experimental
data shown in fig. 3.11 lying very well on the line ¢g~*. As stated by DopD
and GREIDER, in view of the simplification of their model and limitations of

—
o
=3

A
a
1

differential cross-section {mbjsr)

S
4
l
— e +
[ ) +
Q |
~

10 10 10
g fm )

Fig. 3.11. — Differential eross-sections for the three-nucleon transfer reaction 12C+4-12C —
—9Be-150, The data fall uniformly on an exponentially decreasing curve predicted
by DWBA caleulations including recoil (from ref. (3.12]). H.,=114MeV, o FEx=
= 15.08 MeV, + Fx=12.87 MeV.

DWRBA, their result should not be taken as the whole explanation, but it sug-
gests that at energies well above the Coulomb barrier recoil effects must be
included.
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Other plagues of DWBA method are the post-prior discrepancy and
numerical problems in dealing with many partial waves with which highly
oscillating functions are associated. The post-prior asymmetry is generated
by approximations within the DWBA, in particular the neglect of recoil ef-
fects, but also by the inadequacy of treating in a consistent symmetrical way
the initial and final channel when approximating the residual potential. We
refer here, for example, to the approximation made in the previous section
where the core-core interaction V..., Was approximated by the optical potential
corresponding to the final channel. The 6-dimensional integral codes, which
enable us to take care of recoil, remove the post-prior diserepancy, providing
we do not make an approximation about the residual interaction. The plague
of very many partial waves in the relative motion of heavy ions becomes very
severe at high energies. The impact parameter picture suggests itself as a more
proper language than the partial-wave analysis.
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CHAPTER 4

Methods based on the eikonal technique. Elastic scattering.

The eikonal technique, most popularly known in its special form as the
Glauber model [4.1], has been commonly applied in the high-energy region
for scattering of either elementary particles or a nucleus on another nucleus.
Particular attention of this technique to heavy-ion processes has been brought
in 1971 by DAR and Kirzon [4.2]. We shall come later to some details of this
application, but now, staying within a more general view on the eikonal tech-
nique, not only restricted to the Glauber model, we mention geveral reasons
which motivate the application of the eikonal approximation in studying
the heavy-ion processes. They are the following:

a) The impact parameter representation, which is the language of the
eikonal scheme instead of the partial-wave notion, is especially appropriate
if one deals with very many partial waves arising either from the strong Coulomb
field or inereasing energy, or both.

b) The eikonal method is closely connected with the WEKB method which
in turn relates to the semi-classical method describing gross features of heavy-
ion processes.

¢) Below the Coulomb barrier, where the Coulomb interaction plays a
dominant role, one can formulate the eikonal approximation in such a way
that it gives the exact result for an arbitrary seattering angle and at all energies.
Therefore, the association one usually has with the eikonal technique as ap-
propriate for small scattering angle is removed in the case of dominating
Coulomb field. At the Coulomb barrier and above, one must include also the
strong nuclear force and for heavy ions one can again extend the eikonal tech-
nique to an arbitrary scattering angle. The large parameter is the ratio DA-*
mentioned in the introduction. We shall come back to this extension later
in thig chapter.

d) The eikonal technique, although an approximation, provides us often
with an analytic, or almost analytic result, which can be studied from many
points of view, contrary to outputs of numerical programs like that of the
DWBA method, or semi-classical numerical codes.

¢) It is much easier than in the standard methods to ineorporate the
3-body and in general many-body aspects of scattering of composite systems
if the propagation is simplified as in the eikonal method.

/) Some, even crude, trials of applying eikonal-type methods proved to be
surprisingly successful. One may hope that more delicate use of the eikonal
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technique will not destroy the agreement and will shed some light on the
dynamics of heavy-ion processes at different energies.

We shall now review several ways of applying the eikonal method to heavy-
ion processes and for clarity we divide our review into two big parts: one dealing
with the elastic seattering (this chapter), another one with inelastic processes
(chapter 5), and within these parts we congider separately different approaches.

4.1. — Glauber approximation.

The eikonal approximation may be derived straightforwardly, from the
Schrédinger equation:

(4.1) (V24 k%) = 20V (r) y,

4 being the reduced mass.
Thus, if one looks for a solution of the wave equation in the form

(4.2) y = @(r) exp [ik-r],

where ¢ is a slowly varying function over the range scaled with the wave-
length 7 = k~* (hence V¢ = 0), one obtains from (4.1)

0
(4.3) Feilyy,  geoo) =1,

where the z-axis is chosen along the incidence direction k.
The solution of eq. (4.3) is

2

(4.4) p = expike] exp {—5 f 7(®, d,:],

—e0

v being the relative velocity of colliding particles.

Putting this approximate wave funection in the definition of the scattering
amplitude, one has

(4.5) flq) = —%fdzb exp [iq, -b]]de exp [iq,2] V(b, &) exp [———ng df,‘} ,

4., ¢, being the transverse and longitudinal momentum transfers, respectively.
The fact that for small-angle scattering at large momentum % one has

(4.6) ,.=4q, ,=0
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allows us to perform the integration over the longitudinal co-ordinate z. Thus
one arrives at the eikonal approximation in the form given by GLAUBER [4.1]:

@) f@) = 5 [ explig-bITW)
where
«9) I/@) =1~ exp liz®)]

is called the profile function and the function x(b) is given by the integral either
along the direction of the incident beam or along the direction corresponding
to the mean value of the initial and final momenta over the projectile-target
interaction V{(r):

4+

(4.9) %(b) = —% f de V (Vb -+ 22) .

—co

The function x(b), called the eikonal (or Glauber) phase, is related to the
phase shifts §, in the partial-wave espansion (3.3). In fact, for large &k many
partial waves are contributing to the scattering and one may put in (3.3)

(4.10) ﬁ§(2l+1)—wkfdbb _%fdzza,

where the relation kb= 1-- § was used.
Further for 1> 1 and small scattering angles (6« 1), one may putb

(4.11) Py(cos 8) = Jo((1 + $)0) = Jo(gD)

where ¢ = 2k sin (/2) is the c.m. momentum transfer.
Thus the partial-wave expansion (3.3), at large & and small 6, may be written
exactly in the form of eq. (4.7) with

(4.12) (b)) = 26,(k, | = kb) .

The equivalence of the Legendre sum (eq. (3.3)) and the Fourier-Bessel
integral (eq. (4.7)) representations (in fact, there is a remarkable cancellation
of the remainder funetions from the two approximations (4.10) and (4.11))
allows us to write the eikonal approximation also in the form of the partial-
wave expansion with the phase shifts equal to half of the Glauber phase (4.9).

The main advantage of the Glauber approximation (4.7)-(4.9) congists in
its simplicity. Of extreme importance is that the interaction appears linearly
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in the eikonal phase. In the case of scattering from a composite target, this
leads to additivity of phase shifts from individual constituents which is & basic
assumption of the Glauber model of multiple scattering (see 4.3).

The framework of the Glauber approximation allows for a direct construc-
tion of the interaction from the phase shifts. In fact, the Glauber phase shift
(eqgs. (4.12) and (4.9)) may be written for spherical potential in the form

wpy L fdrrV(r)
(4.13) 0%b) = o) g
b

which is the integral equation for V{r) of the Abel type. Its solution is

(4.14) VT(T) _ f_z

14 [dbbsvp)
rdr) Apr—pr

4.2. — Corrections to the Glauber approximation from WKB.

It is instructive to study the relation between the Glauber approximation
and the WKB method [4.3, 4.4].
Equation (3.5) for the WKB phase shift may be written as follows:

[eed

, dr Vo P [dr
. WKB — 2] — 2 2] - L (p2— ph2)E
(4.15) SVEB (&, b) kfy[r(l E) bJ kfr(ﬁﬂ b2yt
79 b
where kb =1} 1.
Let us assume that the potential may be continued to the complex plane:

(4.16) r—>o=r-+ilmg.

In order to proceed, it is convenient to introduce the following change of variable
(Sabatier transformation [4.5]):

_ V(e)\
(4.17) o) = 9(1 — T) y

the inverse transformation being denoted by p = pf?).
With this notation eq. (4.15) may be transformed to the form [4.4]

1 [ artu

WEKEB o
(4.18) OVEE(E, b) = o) Vi
b

= ——%J‘dz U + 2%,

0
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where U(f), called the quasi-potential, is defined as follows:
(4.19) U(f) =vk1In @ .

Thus the WKB phase shift assumes the simple appearance of the Glauber
phase ghift (4.13), the essential difference being the replacement of the exact
potential by a gquasi-potential.

The relation between the potential and the quasi-potential may be wriften
in the following compact forms:

U(t)z—Eln[l—M],

E
or
(4.20) Vi) =F {1 — eXP [— %t)]] ,
where

_ ue) _F
Q(t)—texp[2E], E-2M.

The Glauber approximation ranay be considered as the high-energy limit
of the WKB method. If V/H < 1, the guasi-potential is simply the potential
and the WKB and Glauber phase shifts coincide.

Expanding eq. (4.18) in a Taylor series about 1/k* = 0, one obtains with
the aid of eq. (4.20) [4.3]

6WKB(76, b) — &% ‘I‘ 5'(1) _I_ 6(2) + vy

where
8% = ——%fdz V (Vb2 + 2%,
0
17, a
() — e 2 272
(4.21) d pre f de 5 [ V()1
0
2 [ fay
(3 I — . 473 .
g 31;3755‘_[(12 (drz) (74 V3(r)]
0

Tt should be observed that the corrections to the simple Glauber resuls,
because of the derivatives of the potential, are most important at the nuclear
surface.
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Fig. 4.1. — Elastic scattering 10-%Ni at various c.m. energies as indicated. - -

- WKB,
Glauber, —-—-— Glauber plus one-order correction, —-..—-.— Glauber plus
two-order correction (from. ref.[4.7]). In all cases the same optical-model parameters
as for fig. 3.5 are used, although the « point-sphere» Coulomb potential in eq. (3.15)
is replaced by the «sphere-sphere» Coulomb potential. a) 150 MeV, b) 225 MeV,
¢) 500 MeV, d) 1 GeV,

The relation of the Glauber approximation to the WKB method. is illustrated
in fig. 4.1 on the exarple of the elastic seattering ¥0-%Ni for a series of c.m.
energies [4.3].
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Here the Glauber and WKB phase shifts are used in the partial-wave ex-
pansion (3.3). The full WKB result may be considered as a point of reference
gince, as explained in fig. 3.5, it should coincide with the exact optical-model
calculation. In general, the Glauber approximation reproduces the qualitative -
shape of the curve quite well although it is shifted toward smaller angles and
smaller cross-sections. With increasing energy the agreement between the
Glauber and WKB results becomes more and more satisfactory. The WKB
corrections greatly improve the positions of the maxima and minima in the
curve, but the magnitude of the cross-section, although in excellent agreement
at small angles, can be in serious error at large angles.

If the phase shifts are known eq. (4.18) may be viewed as an Abel integral
equation and solved for the quasi-potential U(¢)-—compare eq. (4.14). Then
the potential V(r). can be constructed proceeding as follows [4.4]: Given U(?),
one can determine from (4.20) V(o) and g for any value of the complex variable
t =t + 4t,. The true potential V(r) is to be computed along the path in the
complex ¢-plane given by Re ¢ = r, Im o = 0. This condifion provides, together
with eq. (4.20), unequivocal relations f; = #,(tg), r = 7{lg), and allows us to
compute V(r).

The potential constructed in such a way is an approximate solution to the
inverse-seattering problem within the framework of the WEKB approximation.
Tt consequently has a wider range of validity than the Glauber approximation
(eq. (4.14)) to which it reduces in the high-energy limit. The relation between
the WKB and Glauber potentials has been studied by KUJAWSKI [4.4]. He
assumed a specific and realistic form of the phase shifts and treated the re-
sulting cross-sections, given by eq. (3.3), as « data ». The equivalent optical
potential was constructed following the procedure described above—the WKB
and Glauber potentials for «-%2Ca at 42 and 166 MeV are shown in fig. 4.2.

Fig. 4.2. — The real and imaginary parts of the ecaloulated WKB [4.4] (dash-dotted
line for o-22Ca at 42 MeV, dashed line for «-42Ca at 166 MeV) and Glauber
(solid line) optical potentials. The nuclear phage-shift function was assumed in the form

80y =—((Ug+ iUI)/v)Ofdz[l + exp [(r— R)/al]-'. a) real part, b) imaginary part.
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The validity of these potentials was then investigated by exactly solving the
Schrodinger equation and comparing the resulting angular distributions with
the corresponding « data »—see fig. 4.3. We see that the potentials obtained
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Fig. 4.3. — The elastic differential cross-seetion for the scattering of a) 42 MeV
and b) 166 MeV «-particles by #2Ca (vef. [4.4]). Solid line: solution for the WKB

potential; dashed line: solution for the Glauber potential. The « data » points are
denoted by crosses.

in the WKB approximation yield results in good agreement with the « data »
up to 40°=-50°. The range of validity of the Glauber approximation is more
limited. At larger angles both the approximations become unreliable.

4.3. — Glauber model of multiple scattering.

Let us consider the collision of two nuclei with A and B nucleons, respec-
tively—see fig. 4.4,
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a subunit of A

a subunit of B

Fig. 4.4. — The geometry of collision A --B.

We assume that the total interaction between the incident and target nuclei
is & sum of individual nucleon-nucleon (one from A, the other from B) interac-
tions. Let us caleulate now the phase shift for scattering of the two nuclei
in the framework of the Glauber approximation—eq. (4.9). The fact that the
interaction appears linearly in the Glauber phase leads to simple additivity
of the individual nucleon-nucleon phase shifts:

(4.22) 2 =3

Inlb— s+ )
=1 k=1
The additivity of phase shifts leads in turn fo the following composition
law for the profile function (4.8):

A B

(4.23) Iy =1—[] Tlexplizub— s+ )=

=1 k=1
B

[T~ yulb— s + 51,

1 =1

—

=1

T

where we have introduced the profiles for nucleon-nucleon collisions through
a definition analogous to eq. (4.8). The elementary profiles y,(b— s} -+ s7)
may be expressed, by inverting the Fourier-Bessel transformation, through
the nucleon-nucleon elastic-scattering amplitudes f,,(q), which are to be taken
from the experiment with free particles.

In writing the above expressions we keep the projectile and target nucleons
in the space positions given by the vectors st s, respectively, in the plane of
impact parameters, i.e. the plane perpendicular to the incident beam—see fig. 4.4.
Tence we treat the nucleons as if they were frozen in a certain geometrical con-
figuration. This assumption is justified if the time of collision is very short so
that the projectile is gone before any rearrangement it induces in the target
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can take place. Obviously one should then average over all possible internal
configurations by sandwiching the operator of transition between the initial
and final nuclear states.

Thus the final expression for the amplitude of transition in the Glauber
model may be written as follows:

(424) o) = 5 [ explig-BKGufol 1 — [T [T00 — st — st + Bl

§=1 k=1

iy, gy foy f» Deing the initial and final wave functions of the two nuclei. Equa-
tion (4.24) describes elastic as well as inelastic scattering. The inelagticity is
meant here in nuclear sense, i.e. the nuclei may become excited or even broken
up, but their constituents do not change in any essential way.

To summarize let us stress the main points underlying the Glauber
model [4.1]:

a) high-energy small-angle scattering (eikonal approximation),
b) additivity of phase shifts,

¢) expression of individual phase ghifts (profiles) by means of elementary
phenomenological elastic amplitudes,

d) averaging of the operator of scattering over the nuclear states.

If we multiply out the AB factors in the expression. (4.23) we obtain the
fum of terms with different powers of elementary profiles. This sum is finite
(extending up to the AB-th order) and has alternating signs. The individual
terms of this series are referred to as the contributions from single, double,
triple, ete. scattering.

The different orders of scattering interfere with each other in a destructive
way. The most important results of this interference are the diffractive struc-
ture (maxima and minima) of elastic angular distributions and the defect
effect in the total cross-section.

Let us discuss in more detail the elastic scattering of heavy ions. We choose
the matter densities of nuclei A, B in the form of independent-particle model
(IPM):

(4.25) fialt = [fu] = Qmﬂ , il = [falr = n 0a(rE).

It was shown by Czyz and MAXIMON [4.6] that for large A and B the ex-
pectation value of the profile operator (4.23) may be written then in the form

(4.26) iyt T(b: sty S i > =1 —(1— ),
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where

asd = [@%, 25, 02 (5) 70— 5, + ) 755

(.27) oP(s,) = [dze,(s,, ),

o'(5,) = @2 0a(85, ) -

Thus for heavy-ion elastic scattering the Glauber model gives in the frame-
work of IPM (eq. (4.25)) the following expression:

(4.28) F(g) = % f dzb exp [iq-b]-
) .
' {1 - (1 - <7AB>) AB] = ;—f—[ fdzb exp [iq-b] {1 —exp[— 4B <yAB>]]“ ’

where in the second equation an exponentiation, justified for large 4 and B,
has been carried out.

Since the amplitude assumes the simple appearance of the Glauber approx-
imation for scattering in a potential field, the limit of large A and B is usually
called the optical limit. The optical limit of the Glauber model provides a
bridge between the phenomenoclogical approach of the optical model and the
microscopic description of multiple scatbtering. In fact, the optical phase shift
and the equivalent optical potential can be expressed in terms of the micro-
scopic quantities: nuclear densities and profiles of the elementary interaction.
Trom eqs. (4.8), (4.9) and (4.28) one has

ix(b) =— AB{yp>,
(4.29)
V(b, z) = i’l)Ade.g SAJ‘d"‘ s QA(TA) 'V(b — 8, "I' SB) QB(VB) -

These expressions may be simplified by noting that the elementary profile
(being of size of the nucleon) is a very sharply peaked function compared to
nuclear density. Thus to & good approximation one may put

(4.30) y(b—s) = ‘ﬁ-m%l’i“—) (b —s),

where the coefficient has been established from the optical theorem, ¥~ being
the total nucleon-nucleon cross-section and o the ratio of the real to imaginary
part for the forward elementary amplitude.
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From eqs. (4.29) and (4.30) one obtains

.N’.N’ . . .
ig(b) = — ‘L_(lz_ﬂ‘—) ABJ dzsy 09 (b — s5) 0 (s5) ,
(4.31) NN(]
V() = —in T ABf L*ry 0u(r — r5) 0n(rs) -

Thus the equivalent optical potential is proportional to the convolution
of densities of the colliding nuclei.

The Glauber model has been extensively applied to the heavy-ion elastic
scattering by DAR and KIRZON [4.2]. They write the scattering amplitude in
the form of the partial-wave expansion. The phase shifts contain the Coulomb
part, corresponding to the interaction between two point charges, and the
nuclear part which is put equal to half (see eq. (4.12)) of the Glauber phase
x(b), as given in eq. (4.31). The explicit expression for the scattering araplitude
7(6) used by DAR and KIRZON is

N8

HO) = 1e(0) + 5=

1 . N >
5k 5 (2L + 1) exp [2307] (exp [2i8;] — 1) Py(cos 0) ,

1l

0

where
fo(6) = — n{exp[— 2in log (sin (0/2)) + 2 6,,1}/(2% sin (0/2))
o, =argI'l+ 1+ ip),
208 = iy, = — bo,, (1 — ia) AB f 0, 0, AT,
T+ k=0, k=Q@RMIE )}, p=M, M (M, + M),
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Fig. 4.5. — Elastic scattering od 60 on 205P}h (ref. [4.2]) at 158 MeV ; the equivalent en
ergy per nucleon is 4 MeV, o:\:;v, = 2400 mb, of}f N — 2340 mb.
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The only parameters needed in the calculations are thus "N, o and the para-
meters of the nuclear density distribution. The variation with energy of
the elementary, free nucleon-nucleon total cross-section o, is accounted for
in the following way. o,, depends on the relative velocity ¥, of the colliding
ions, which nonrelativistically can be found from the centre-of-mass relative
energy. The last energy can be estimated by subtracting from the total centre-

1.2‘—7 o
(o]
- (o]
\ 4
Lo Y%
0.8
L y
5 L
b -
0.4 0\0
: \O\o\o
1 L 3 l 1 L 1 ] I 1 1 1 1 ! 1
06 0 18 22

14
6 (degrees)
c.m.

Fig. 4.6. — Elastic scattering of **0 on **Ni (ref. [4 2]) at 158 MeV; the equivalent en-
ergy per nucleon is 7.2 MeV, aé\xg‘p 1300 mb, oV = 1500 mb.

of-mass energy the Coulomb energy, corresponding to the grazing ecollisions,
when the distance between the centres of ions is equal to the sum of their radii.
Thus o,,, has to be taken at this nucleon energy E,,,, which is evaluated from

— 1
Enuc; - gm’ﬂR ’
1.0
0.8 \
0.6 Q
o
5 |
b
0.4 o
r o
0.2 \o
- \7\0
\o\
0 1 i 1 ")

1
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8 m(degrees)

Pig. 4.7. — Elastic scattering of 16O on *7Al (ref. [4.2]) at 158 MeV; the equivalent en-
ergy per nueleon is 8.4 MeV, aexp == 1200 mb, aﬂ;\ = 1290 mb.
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where ,
. 7. Z, e r+1)%

w e R, + By h 2u(B, + Ry)? '

The nucleon-nucleon total cross o,,, is taken as (1/2)(c,, + o,,).

107 g
Eh.\O
107 3
E o
T F19A
s L ) % o
Q G,
E 10 1 E— 0/ \%
= d
© L c/ \Sc/j\
10 0 b V o
E 0’3‘:8 (o]
E Reo
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15 20 25 30 35 40 &5
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Fig 4.8. - Elastic scattering of 0 on 12C (ref. [4.2]) at 168 MeV; the equivalent en-
ergy per nucleon is 9.8 MeV, of”;f = 1050 mb, af}f”v’= 760 mb.
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Fig. 4.9. - Elastic scattering of «-particles of 208PDb (vef. [4.2]) at 104 MeV; the equi-
valent energy per nucleon is 18 MeV, cr;\x;)N, = 530mb, ojy’ = 500 mb (dashed line)

and 300 mb (full line).
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A systematic search with a best-fit program has been done to find the « best
values » for these parameters, both for a Saxon-Woods dengity and for a Gaussian
density. The comparison between the theoretical curves and the experimental
data, for a wide range of masses and energies, is presented in fig. 4.5-4.10.

It appears that the angular distributions in fig. 4.5-4.10 are well fitted
with ¢V, which is in significant agreerent with the experimental nucleon
total cross-section. The parameter « is, in general, higher than its experimental
value. It may, however, be pointed out that the corrections of higher powers
of the nuclear density, which should be added to the phase shift x(b) in eq. (4.31),
can be regarded as an effective correction to ¥ and «.

As for the nuclear parameters, in the case of Saxon-Woods densities the
fitted values of 7, (R = r,A¥) fall in the range (1.0 ~1.2) fm (the lower limit
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Pig. 4.10. — Elastioc scattering of a-particles on 2°Pb (ref. [4.2]) at 166 MeV; the equi-
valent energy per nucleon is 34 MeV, of‘:::;,N = 300 mb, ag:N — 250 mb (dashed line) and

224 mb (full line).
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is in agreement with electron scattering data), and the fitted values for the
diffuseness o take the values (0.5-0.65) fm.

Despite of various kinds of ambiguities in fixing the parameters, the com-
parison shown in fig. 4.5-4.10 demonstrates that the elastic scattering of heavy
ions can be well reproduced (the greater energy the better) by means of the
nuclear density and the free nucleon-nucleon total cross-section.

4.4 — Exact solution and eikonal correction.

The eikonal technique, which is simpler than the WKB method, may be
extended both to larger angles and lower energies if it is combined with some
known analytic solution, so that the eikonal method is used only for evaluating
corrections arising from a small difference between the actual potential and the
solvable one. This method was developed by BARTNIK, IWINSKI and one of
the present authors[4.7] to deal with the sereened Coulomb potential. We
Present this method in the case of the Coulomb potential, where it was tested,
and indicate its extension to the case of a sum of nuclear and Coulomb potential.
The last topie is ecurrently investigated numerically.

For a Coulomb pointlike potential Volr)y=1Z,Z e*lr, we have

[ (-5 7+ 7o B)p=o,
(4.32) _ N
l P, = V% I'(1 + in) exp [——517] exp [ik-r] F\(—in; 1; ik(r —2))

with
k= (©QuB}, n=2Z 7, eu(hk)-,

u being the reduced mass of two ions.

For V£ V,, eg. for a sereened Coulomb field, we write the Schrodinger
equation in the form

2
(4.33) [—%W + Vo+ (V—Vg) — E] p =0
and look for its solution in the form
(4.34) w=7fexplik-r].
Thus f must satisfy the equation
(4.35) V2 20k-V — 2uVo—2u(V—V)]f=0

and appropriate boundary conditions,
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The essential point in the method of Bartnik et al. [4.7] is to replace eq. (4.35)
by this 1st-order differential equation which by definition will reproduce the
known result given by eq. (4.32) at all scattering angles and at all energies.
It can be formally achieved by introducting a function f, defined by

(4.36) p,=f,exp [ik-r]

and another function A which must satisfy the equation

(4.37) (2ik-V —2uV,+ 4)f.=0.

The same A is then used in an equation which replaces eq. (4.35). It is

(4.38) [2ik-V — 2uV, + A —2u(V—V,)1f=0,

and in contrast to eq. (4.33) it is very easy to solve. The solution of eq. (4.38) is
(4.39) f="t,

where f, satisfies the equation

(4.40) ik-Vfy=pmV—V)f,

thus it is simply given as

(4.41) f,~ exp [—~ i % f (V—Vo) dz]

with the z-axis along the direction k. It was found in ref. [4.7] that the solution
of the whole problem written as v = f,f, exp [¢k-r] satisfies the exact 2nd-order
differential equation (4.35) with an accuracy better than 39,, practically in
the whole configuration space.

To apply the above method for evaluating differential cross-section for
the elastic scattering of heavy ions, one must extend this method to include
both the nuclear and Coulomb potentials. For two heavy ions the exact potential
is taken. as the square well in the inner region and the pointlike Coulomb potential
in the outer region. We have

-~V for r<<a,
(4'4-2) Vexa.ct =

Ve for r>a,

where a is a characteristic distance.
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The ordinary 2nd-order Schrodinger equation is solved by taking the ana-
lytic solutions, in each partial wave, corresponding separately to the square
well and V,. Then, a sum over the partial-wave solutions, weighted with
adjustable constants, is replaced by the impact parameter integral, which in
turn is evaluated by the stationary-phase method. Standard continuity con-
dition of the logarithmic derivative is required at r — @, and in this way we
find an approximate wave function which we denote as 9, in analogy to
the pure Coulomb case discussed above. Having explicitly this y,,,, we define
foxact PY

(4'43) Q/)exa,ct = fexa,ct eXp [ik ' 3!']
and find the wave function for the actual potential
(4.44) V=Vy+7,

in the following form:

2

(4.45) p = femwep | iher—i% [ (7ot Vo Vi ac]

w

The scattering amplitude is then calculated from the f-matrix element found
by a numerical integration of ¢ with ¥ and a plane wave:

(4.46) <K'[e]ky = <K' [V + Volyp) = (Qn)‘sde [Vx(r) 4+ Vo(r)] fexaes:

*eXp I:’l:(k -— k,) M r—@% f( VN "‘]’“ Vc - Vexca.t) dcjl =

= (2.’7'5)_2de bdb Jo(b [k — K IJ)[VN( Vb2 *‘[“ 22) + Vc('\/bg + 2;2:)] fexa,cb'

&

- exp [i(k:" —k)z - i‘;—:J‘(VN + Vo Veract) dC] ,

~—C0

where (k— k'), and k — k, denote the components of momentum transfer
perpendicular and parallel to the chosen eikonal direction, respectively.

The impact parameter integral in eq. (4.46) should be evaluated by the
method of stationary phase, while the remaining integrals, over J and %, should
be done numerically. This should be more efficient than the numerical solution
of the Schrédinger equation for each partial wave. The advantage of our method
should manifest itself especially at the medium and high energies, where the
number of partial waves is very large indeed.
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CHAPTER b

Eikonal technique for inelastic scattering and transfer reactions.

5.1. — Coulomb excitation.

The simplest inelastic process is the Coulomb excitation. Only the energy
iy transferred to the target in this process, and the interaction potential re-
spongible for excitation is the well-known Coulomb potential. There exist
programs which allow for the numerical evaluation of Coulomb-excitation
cross-section within the classical, or semi-classical or quantal scheme based
on the DWBA method. Although the agreement of results evaluated from
these programs and the experimental data is satisfactory, the numerical routines
are very lengthy and preclude any insight into the formulae. GOLDFARB and
one of the present authors [5.1] applied the eikonal technique to get an analytic
expression for Coulomb excitation and in this way to gain some understanding
of its dynamics. In particular, they looked at the role played by the nuclear
moments in the expression for the transition matrix element.

Three points must be noted before discussing the final result:

a) most of the data for the Coulomb-excitation process is concentrated
at large scattering angles, because in the forward direction the Rutherford
seattering dominates the yield;

b) the Coulomb-excitation process is an inelastic one, and it may be
associated with some features of an off-energy-shell t-matrix element with a
shift of energy ecorresponding to the excitation energy;
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¢) for energies below the Coulomb barrier the DWBA scheme is quite
adequate, and both the Coulomb distorted eigenfunctions and the interaction
Hamiltonian causing the transition are well known.

Because of the first point one must deal with such an eikonal scheme which
would give goed results for large scattering angles. Luckily enough in the case
of & pointlike Coulomb potential, approximated as a limiting case of the
Yukawa potential,

2
(5.1) V(r) = lim exp [— fr] —Z"—ft—e- ,

Bg—0

one can show that, by choosing our eikonal direction along the mean value of
the initial and final relative momentum » = {(k, -+ k,) and defining the eikonal
propagator with a pole depending in a special way on the scattering angle,
namely

~ -1
(5.2) Gy = m~(2mE)? [p" — (2mE)* cos g ———ie] ,

it holds that the eikonal z-matrix # defined as
(5.3) I =— @n)2mlk|V,— VGV, + V.GV, GV — . |k>,

considered on the energy shell, coincides with the exact on-shell scattering
t-matrix. It is most important that the sgreement holds for an arbitrary scat-
tering angle and an arbitrary energy.

Coming to the 2nd point we note that there exists an exact expression
for the half-off-shell Coulomb #-matrix. Considering the case |k,|< |k, .e.
the one interesting for the Coulomb excitation, we write the result of Ford [5.2]

(5.4) t?:;gtsmu = 2(27'”71)%7%7]1 Iki —k; |_2{(ki2 - k?) 1"51“‘ kf I—Z}ini ‘

>4y [Z—t + i In (7 e‘l)] )

where 7, is the Sommerfeld. parameter with & = |k,|.

The exact half-off-shell Coulomb ¢-matrix may be reproduced in the eikonal
scheme if we choose a new eikonal direction and also consider heavy ions, so
that #,, ,>1. For large values of the Sommerfeld parameter one can an-
alytically evaluate a first derivative with respect to the charge of the target, of
the half-off-shell eikonal {-matrix. By denoting by o the ratio of the magnitude
of the parallel component of momentum transfer to the perpendicular com-
ponent,

(5.5) o=k, — k| |k, — kK [,
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where | is along the eikonal direction, one can find

o
53" tgigg;ﬁen = z'ﬂci"]i Zt_l(nni)% |ki— k; I”Z"“’?i(@‘% + iQ%) :
t

-exp [— 29, tg™t ¢ + 2ém; In (2n, 7] .

The direction |, ¢.e. the magnitude of g, is fixed by the requirement

half-shell

) 0
(5.6) — . @ Lexact
t

thalf-shell
a eikonal
%

’ 0

It gives o as the solution of the following transcendental equation:
(6.7) (A + e*) ¢t exp [— 47, tg™ @] = 277? In? [”]i(kiz“ ki)lkx_ k.

Finally, we come to the 3rd point and consider the Coulomb excitation pro-
cess within the DWBA scheme. Let us denote the relative position variable
between a pointlike projectile and the centre of target by r and a variable
denoting position of distributed charge in an extended target by r,. Then
the interaction Hamiltonian describing the relative motion of the projectile
in the field of charged target nucleus is

(5.8) H=Zer,—r|t=2Z,er*+ Ze|r,— r|"t—r].

This splitting of the Hamiltonian into the first part which generates the dis-
torted-wave eigenfunctions and into the residual part, depending explicitly
on 7 , is characteristic of the DWBA procedure.

The Coulomb-exeitation transition amplitude is given by the matrix element
evaluated between the target nuclear states of a Coulomb distorted amplitude.
More explicitly, we have

(5.9) Tgoulomb excitation <(pf(rp) |t]?WBA(rD) I(Pi(rp)> ,

fi
where |p,(r,)>, lp(r,)> are the target states, and
(3.10) 27 (r ) = — (27)*m{y,(k,, )2, 62|, — r[t— Z,e2r 1y (k, 1))

with y,(k,, r) and y.(k,, r) denoting the Coulomb distorted waves.
‘We write

(5.11) v, = Zelr,—rl?, V=2er1,

and evaluate $37=A(r,) in the eikonal framework splitting it into four parts:

(6.12) DVBA(p ) = 10 (r ) — 1D 4+ 1O(r,) — 12,
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where

t(r,) = — (2m) mlk,|V, (1— GOV + GPVEPV — )|k,

1 =— Qr)emck|VA—GPV L GOVEV — L)k,

to(r,) = — (20)*ml | V(— GO+ GV VEO— )V, A—GPVGPVEYV— )k,
10 = @m)2mdk,|V(— G - GOVEY— ) VA GOV GOVEOV — L)k

with G, G corresponding to the initial and final energy, respectively. &
and 2 are essentially the half-off-shell #-matrices which were considered in
the 2nd point. t™W(r)) and #3(r)) are similar quantities, but, because of the
appearance of V, , they require evaluation of slightly modified impact para-
meter integrals rather than these which are needed for #V and #?. For example,
we have

(5.13) .8.% t(l)(rp) — '"27]ikizt—1 exp [_ ?;’i"" 6] .
t
'f‘ib bJo(0A) K [(b? + 52— 2bs cos ) 6] b2

0
with
T‘lzrp'kk“l, a:kfn_kin = p(1 + 92)—%Iki_kil, SE(rp)_[_’

@ the angle between v  and (k,— k) and 4 = |k,—Fk],.

It can be shown that for large values of the Sommerfeld parameter the final
result for the integral in eq. (5.13) is similar to the corresponding one for ¢
and can be obtained from the latter one by the substitution

(5.14) by — k|2 — by — K P[1— o¥(1 4 o)ty - (b, — k), .

However, for large > 1, ¢ is very small and with a good approximation
may be neglected in eq. (5.14). The main dependence on r, then remains in
eq. (5.13) in the factor exp[— ér,d]. This factor is expanded in the power
series
(5.15) exp[—ir 0] = z (—dry 8)*(L1)~1,

L

and a gpecific transition with multipolarity L is weighted by 6°. The powers
of r,§ can be better understood if we write

4 \} . . [k r,
(5.16) 70 =7 (ley— ki) = (g ﬂ) rpo(1 + 02 ke — k| Z Yin (E) Y. (7) .

D
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Then, returning to eq. (5.9), we see that in the matrix element for Coulomb
excitation there will be factors of the type

r,
(5.17) <trs) o2 Yo (12) ) ~ VBUED)

D
determined. by the reduced transition probabilities of multipolarity L for the
target nucleus. Numerical evaluations of the Coulomb execitation matrix
elements for either o or 10 scattered on %8Pb are currently investigated by
GoLDFARB and one of the present authors [5.1]. This method may be also

extended to two-step processes and applied to the evaluation or reorientation
effects.

5 9. — Transfer reactions in the DWBA scheme with the eikonal distorted waves.

Here we are considering heavy-ion transfer reactions well above the Coulomb
barrier. The conventional DWBA calculations are very laborious because of
very many partial waves and a simplification of the 6-dimengsional DWBA
integral by neglecting the recoil is forbidden, because recoil plays and essential
role at higher energies, as was noted in chapter 3.

To simplify the DWBA codes at energies well above the Coulomb barrier
DA SmvEIRA, GAnIN and Nco [5.3] proposed to evaluate distorted waves in
the eikonal approximation. In addition, they neglected recoil and agsumed.
a localization approximation. These additional assumptions, especially the
first one, should not be made at higher energies, but DA SILVEIRA ¢t al. wanted
to have simpler expressions to handle and on such expressions they tested
their DWBA high-energy scheme. The formula for the nucleon transfer dif-
ferential cross-section is the one proposed by BUTILE and GOLDFARB [5.4]
and given explicitly in chapter 3. Furthermore, DA SILVEIRA et al. assumed
that for high incident energy the ¢)-value of the reaction i small compared
to the energy, so they put k ~ k,~ k, and they disregarded differences be-
tween optical potentials in the initial and final channels, putting

(8.18) Viar) ~ Viglr) = Vo (1)
Then, the product of the initial and final distorted waves is calculated in
the eikonal scheme:

(5.19) APk, 1) 3Ry, 7) A exD [iq-b — i) f 7. d.z’] ,

where |q| = 2% sin(/2) and b is connected with r by r= bt kkz.
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The simplification achieved on the r.h.s. of eq. (5.19) enables us to write
an expression on 7',(0) defined in chapter 3 in the form of a one-dimensional
impact parameter integral:

]

(5.20) Ta(0) ~ Yy, (7-2?, 0) db bJa(gh) Ko(V2mByHi—2b) n(b)
1]
with
n(h) = exp [—- i(m)——lfﬁm(m dz] y 1-} Jdeven,
30 420
5 o
H Th —
S 201 Y 410
Q ‘,"‘\
5 '
kel L
\‘\.\
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Fig. 5.1. — Neutron pick-up reaction at 78 () and 113 MeV (o). The curves are the result
of theoretical calculations wusing two shapes: square (dashed curve) and Saxon-
Woods (full curve), ref. [5.3]. Experimental data are from ref. [5.5]. (1N on Ag)
4N —1n + 15N,

“N+(p+n) —'Sc YN=(p+n)—2¢
10} YN on ag 120
. o
o
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-g I
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Fig. 5.2. - Two-nucleon (proton and neutron) transfer reaction: pick-up (Lh.s.) and
stripping (r.h.s.). The curves are the result of theoretical caleulations using a Saxon-
‘Woods potential, ref. [5.3], experimental data are from ref. [5.5]. Hy,= 78 MeV.
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and J,, K, are cylindrical and second-order Bessel functions. Taking advantage
of the localization approximation, one ean use an asymptotic behaviour of
K, and put in (5.20)

(5.21) Ky(V2mB,hi—b) ~ [exp [—V2mB7ib]| bt .

In fig. 5.1 and 5.2 we show the results of Da Silveira et ol. [5.3] for the
trangfer reactions induced by the 14N projectiles on the Ag target. The dis-
torting optical potential was found by fitting the elastic-scattering data; various
forms of the nuclear part of the potential were tried. As is seen, apart from
the region of small angles, the agreement between theory and experiment is
quite good.

5.3. — Heavy-ion transfer reactions in an eikonal scheme, without DWBA.

The formalism presented in this section is an extension to the transfer
reactions of the scheme described in 4.4. It is currently investigated numeri-
cally, thus we shall give only the main formulae and state our motivations.

Our aims are

a) to include a 3-body deseription in transfer processes (¢, t) 4+ ¢, =6, -+
-+ (¢,, t), where the three « bodies » are ¢, ¢, and ¢ (see fig. 3.6)

) to include recoil and most of the 3-body kinematics, except for the
internal motion in the target;

¢) to avoid a partial-wave expansion in the relative motion of ions by
introducing the impact parameter representation;

d) to benefit from the simplicity of the eikonal formalism, but in such a
form that it works for an arbitrary scattering angle and energy, 4.e. to use the
eikonal formalism only for the evaluation of a correction to the exact, analytic
golution.

These aims are realized by starting from the definition of the 3-body transi-
tion operators. It is useful, and a common practice among people doing 3-body
calculations, to denote the three particles and the three possible 2-body bound
states by the same indices «, B, y. Thus the particle «, like ¢,, is approaching
the bound state (8,y)=ua, like (¢;,?), and in the final-state particle 3 emerges,
like ¢,, and the bound state (e, y) = B, like (¢, ?).

Then, if 2-body interactions between the three pairs are denoted as V,,
Vs, V., corresponding to the pairs (8,y), («,y) and («, B), respectively, and

. 3
(5.22) Vig=V—"V,5, V=>7,,
o=1
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the 3-body transition operator describing the process

a+ (B, y) =B+ (@)
is
(5.23) Toy = <a|Valvs"> = <41V, 16>

where ¢, are the channel wave functions in the initial, final state made out
of a plane wave associated with «, B, respectively, and the bound-state wave
functions (f#,y) and («,y) correspondingly, and Yup ore the wave functions
corresponding to the interaction in the initial, final state, respectively.

To evaluate the 3-body scattering wave function ” for example in the
channel corresponding to ¢, + (¢, ), we suggest the following procedure.
Introduce the notation r and R for the relative positions between the ¢, ¢,
cores, and between the transferred particle ¢ and the centre-of-mass system
of the (¢, ¢;) subsystem, respectively. The three potentials between #, ¢
and. ¢, are written in the notation as

| My
Ve (_ ”7‘1 + ’mn " _R) ’
2
(5 4) Vtcg ( mi_ _f" R) ?

Vclcﬂ(r) _ 'VCoulomb + VOoqumb.

€102 0163

Next consider two auxiliary, separate, 2-body-like problems

(5.254) [~ 3 45+ V, (— R) + V,, (R)] x(R) = ey(R),
(5.25b) — v A7 A VEm ()] () = (B — &) 4(r),

where v = mymy(m; + my)~t, u = m,(m; + mg)(my + My 4 m,)"2.

To each of the above equations we apply separately the method given in
sect. 4.4, and denote the analogs of the function A, appearing in eq. (4.38),
a8 a and b, for eqs. (5.25a) and (5.25b), respectively. Then we solve analytically
a linearized 3-body Schrdodinger equation, in which both operators A% and A2
are replaced by the respective 1st-order differential operators, and the functions
a and b. In this 3-body, linearized equation we put the full potentials, as they
are written in eq. (5.24). The functions o and b can be eliminated in the found
solution in a similar way as it in sect. 4.4. Finally, the initial condition, corre-
sponding to the channel ¢, +- (e,, #) is built in by using the Lippmann-Schwinger
equation in this channel. However, instead of solving the Lippmann-Schwinger
equation, we put on the rh.s. of it the scattering wave function obtained



HEAVY-ION COLLISIONS AT INTERMEDIATE ENERGIES ETC. 61

from the linearized 3-body Schédinger equation, as described above. Through
the quasi-2-body free Green’s function in the Lippmann-Schwinger equation
we take into account the initial condition in the ¢; + (c,, t) channel.

To evaluate the matrix elements in eq. (5.23) we use the stationary-phase
method in the impact parameter integrals, and evaluate numerically only the
integrals corresponding to the direction orthogonal to the impact parameter
plane. An application of this method to treat simultaneously the elastic-scat-
tering and transfer reactions with the use of the same potentials written in
eq. (5.24) is currently investigated for one- and two-nucleon heavy-ion transfer
reactions and the corresponding elastic channels.

5.4. — Faddeev-Lovelace equations in the eikonal approximation.

Finally, we come to an eikonal scheme in which one does not write the
solution for transition operators, but integral equations for these quantities.
Such a scheme can incorporate 3-body dynamical effects in all possible con-
figurations, without some approximations which were needed in sect. 5.3.
However, this is done at the expense of solving integral equations. The eikonal
technique serves two purposes. First, to simplify the Green’s function, second,
to by-pass partial-wave expansion.

To make this program more definite we briefly mention the work of Janev
and Salin [5.6], where a nonstationary scattering theory was used together with
the straight-line eikonal approximation. The channel wave functions are
taken - as

B, = ¢, (x) exp [— 1B, 1 — ipv-r— i(2m,) " p>v2{]
(5.26) N )
Dy = pg(s) exp [— gt + iqu-r— i(2m,) ™ q2v2t]

with x=ry, S=ry, rg=r;—r;, p=mm/{M1+m,), ¢= Mo Mg (M3 ~-M5), ¥
the relative velocity of the incoming particle and the target in the initial channel,
P(%), pg(s) the eigenfunctions for the bound states of particles (1 4 3) and
(2 + 3), respectively, and E, , the corresponding eigenenergies. In the straight-
line eikonal approximation we have

r=r()=>5b-+ vt,

where ¢ denotes time.

JANEW and SATIN defined appropriate 3-body transition operators and wrote
the Faddeev-Lovelace integral equations for these operators. The structure
of these equations is similar to the standard 3-body equations, however an
important simplification, caused by the eikonal approximation, is the reduc-
tion of dimensions of integration from 6 to 3 + 1. A by-product of the work
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of Janev and Salin is an explicit dependence on one potential of a transition
operator evaluated in the approximation when only two of the potentials
are kept and one is set equal to zero. The whole influence of the 3rd potential
reduces merely to a phase factor

exp [-— : fw Vs(t)dt] .

This is an important result in connection with our discussion in the previous
section, where one of the interactions was only partially included in the wave
function over which the processes (5.24) were averaged.

& %k 3k
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