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CHAPTER 1 - THE OUTLOOK OF INTEREST IN HEAVY ION COLLISIONS, ~

1.1, - Introductory remarks, -

There are several reasons why one wants to scatter heavy ions, inspite of their com
plicated structure. Before describing them let us, however, make some introductory remarks
concerning the characteristic features of heavy-~ion collisions,

The most important property is the smalness of the wavelength 4 in the relative mo-
tion of two heavy ions; A is small in comparison with the characteristic distance D, The ratio
% /D is of the order 10“'2. Small 4 makes it reasonable-to talk about the Newton trajectories.
Ions moving on these trajectories are repelled from each other by strong Coulomb field, and
for not too high energies we can introduce the notion of a distance of closest approach in a head-
-on collision for the backward scattering, We denote this distance by 2a, and illustrate it in
Fig, 1.1,
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moving in a head-on collision,

From the Newton law we get:
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where g is the reduced mass of two ions,
Taking the ratio of ato A = ’ﬁ(“u,v)"'l, we gets
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This ratio 7 is an important, large, dimensionless parameter, and it enters the well-known
formula for the Rutherford scattering cross section in the following way:
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Varying the laboratory energy of projectile ion one gets to the so~called Coulomb
barrier,which is the maximum safe bombarding energy before we enter the field of nuclear
force, Denoting the Coulomb barrier by Eqxp, we get an expression for it by equating the
cenire of mass relative motion energy with the electrostatic energy at the distance of closest
approach :

; A1 1 2 -1
ECB(I +~A‘2") = leze (]7\"1+ R2+A) s (1-4)

where A, Z, R are ion's mass numbe%y charge and radius, respectively, and A % 3 fm,
Taking R = 1.41 AY3, 7 ~ 0,49 A(1+a%3(166)"1)"1, we get in Fig, 1.2 the plot of the Cou~-
lomb barrier Ecp, in MeV for different charges of projectile, as a function of the charge of
target.



For energies below the Coulomb barrier ions are strongly repelled by the Coulomb
force, while for energies above the Coulomb barrier there is a strong absorption at very
small digtances which also prevents us to see such final ions which;deeply penetrated ome into
the other, Therefore, the heavy ion collision is a peripheral, or surface process, and a typi-
cal distance D which characterizes the smallest interesting distance above the Coulomb bar-
rier is roughly the sum of two radii of the ions, For an arbitrary energy the definition of D

iz
{'2:1 , for E <Eqp

' R

D = (:‘[, 5}

TR

1 for E > Eog -

2 >

As an example we show in Fig, 1,3 the large dimensioneless parameter D- & -1 for scatler
ing of argon on mercury as a function of the projectile energy,
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FIG, 1.3, ~ The ratio between the characteri
stic length D and the wavelength in the relati
ve motion for argon projectiles on mercury
as a function of bombarding energy in MeV,
For energies below the Coulomb barrier
(ECB = 270 MeV), D is taken to be the dis-
tance of closest approach in a head on colli-
sion, while for E > Exg,D is taken to be the
sum of the nuclear radii, From ref, (1.2).
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FIG, 1,2, - Maximal bombarding energy E~p is shown as a function of the target charge Zy
for different projectile charges Zy,. From ref, (1,1),

The fact that D- 96-1 is very large (= 200) implies that the semiclassical, WKB or
eikonal descriptions have a very good chance to work well, These simaple methods, which
yield the analytic or almost analytic form of expressions for the cross-sections, constitute
the basic framework for the study of dynamics in the heavy-ion collisions,

1, 2, = Outlook of interest in heavy-ion collisions, -

The present day experiments with heavy-ion beams are done either below the Coulomb
barrier or just above it,around 10 MeV /nucleon, or at much higher energies from about 200
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MeV/nucleon up to 2000 MeV /nucleon, The intermediate energy region in the gap from 10
MeV /nucleon to 150 MeV /nucleon could be available at the Frascatl Laboratories, Different
phenomena will be manifested in this ene:;§y range and for illustration we reproduce in Fig,
1.4 a drawing made by W, J, Swiatecki 1.3J We note that in the gap region nuclear physics
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FIG, 1.4 - From ref, (1,3).

will be studied under some special compressed conditions, and that it will get overlapped with
the meson physics, Studying heavy-ion physics in this range of energy one would also aim at
a common view on heavy ion processes in the law, intermediate and high energies, This re-
quires to focus our attention both on the conventional heavy-ion processes met in the low ener
gies, and on the new phenomena,

We may distinguish three energy regions where the reasons of scientific interest are
somewhat different:

A) Phenomena below the Coulomb barrier(]" 4) .

Here the interaction is essentially of the electromagnetic type and it is known, We are
expecting in this energy region phenomena of Coulomb excitation and, in particular, for very
heavy nuclei, Coulomb excitation of states with high . spins = or the possibility of fission of the
interacting nuclei (Coulomb fission),

B) Phenomena above the Coulomb barrier,

In this energy region we can study the mechanism of the elastic scattering or transfer
reactions between nuclei, the inelastic excitation of residual nuclei or the formation of com~
pound nucleus, Let us examine briefly these points :

B, 1, - Elastic sca’ctering;‘(l' 5) and transfer reactio»ns(l' B).

This topic shall be elaborated in detail in Chapters 3, 4 and 5, after presentation of
the experimental facilities in Chap..2, Chap, 3 serves as an introduction to the subject and in
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Chapters 4 and 5 we emphasize the eikonal methods for dealing with the elastic scattering and
transfer reactions, since we feel that they can provide a uniform way of interpreting the data
at different energies, particularly at the intermediate and high energies,

B, 2, - Nuclear spectroscopy.

Most commonly, the nuclear structure studies with heavy-ion beams are done at low,
sub-Coulomb energies. There, the Coulomb wave functions are excellent approximations, and
spectroscopic factors can be obtained with good precision, Increasing the energy of projectile
we allow for a more complicated interplay of the nuclear and Coulomb force, and necessarily
the formalism becomes more involved, However, also the cross section for the transfer
reactions increases. Kinematical selection rules favour large angular momentum transfer,
and large cross section enable us to reach nuclear states with high spin which are difficult to
populate otherwise. In fact, at energies around 10 MeV /nucleon there was noted high selecti-
vity to high spin states{l. 7

B. 3, - Departure off stability line.

Another area of the nuclear structure study with heavy ions is the seavrch for proper
ties of nuclides far off the stability line. The large excess of neutrons, which can be found in
the products of heavy-ion collisions, enable us to get extra conditions for the nuclear structure
models of the stable nuclei,

B. 4, ~ ¥ spectroscopy and the behaviour of high spin states,

We note that the products of heavy-ion collisions can acquire very large angular mo-
menta up to 100 units of h, These objects after evaporating a few neutrons, send out cascades
of ¥ rays, which can be used to learn about the properties of very high spin states, The nu-
clear systems "rotating" with very large spin are put under extreme conditions, The nuclear
structure studies have 1o be extended to this entirely new regime, since the change of nuclear
structure may be very drastic L

C) Phenomena much above the Coulomb barrier,

In this energy region it is possible to predict many phenomena as complete fusion
between the interacting nuclei or the exchange of many nucleons andfor of great amount of ener
gy (deep inelastic processes), I exchange of nucleons will take place new nuclear species will
be created : the outcoming nuclei can carry out in a more or less stable way a great number of
neutrons or protons so that on can hone to study new nuclei far from the stability valley, This
method has been already used at Dubna- where many new isotopes have been observed (e,
g. 16024), by bombarding heavy ion targets with light projectiles (O, Ne, A, etc.) at 10-15
MeV /nucleon and observing that the outcoming projectile was enriched in neutrons,

Of course it would be interesting to extend such measurements to much higher ener-
gies, On the other hand, a high excitation energy of the final fragmenta can determine quite
interesting thermodynamical conditions of nuclear matter whose behaviour will depend on "ma
croscopic" properties as viscosity, compressibility, etc, Let us consider briefly the various
phenomena :

C. 1, - Complete fusion,

In connection with this topic there are many open questions: can the high angular mo-
mentum of the fusion nucleus preclude its existence? The high rotation energy, in-fact, can
produce a great deformation of the nucleus which will increase its tendency to fissioning, This
tendency depends also on the momentum of inertia of the nucleus which is different for a fluid
or rigid body. In this respect it is important to better explore the so-called "Yrast" line,
When a nucleus is an "Yrast" state all the excitation energy E is in the form of rotation ener
gy : below the line E = E(J) we cannot find excited states of spin J, The shape of this curve
depends on the properties of the excited nucleus and its knowledge is of great interest,



C. 2, ~ Deep inelastic processes,

When two nuclei do not reach some characteristic distance then the complete fusion
cannot be obtained, If a projectile is not completely absorbed, it can loose kinetic energy, or
it can loose or gain electric charge and mass, The projectile which is slown down in such a
way will leave the collision region not as consequence of the initial momentum but because of
the Coulomb repulsion, These "deep inelastic processes® are sometimes called strongly dam
ped collisions because of the strong damping of the energy degrees of freedom. In the exit
channel a large amount of energy is converted into the excitation energy. Hulzenga( 9) gives
the following characteristics of the strongly damped collisions : 19~ the exit fragments have
generally masses not far from the masses of projectile and target, alihough if the ’carget mass
is large enough the excited heavy fragment will sequentially fission; 20 - the kinetic energies
of fragments correspond to Coulomb enersgies for charge centers of highly deformed fragments,
analogous to that for fission fragments; 3° ~ the angular distributions are strongly peaked, as
in the direct processes, The cross-section for these processes may be a major part of the total
cross-section al intermecdiate encrzics.,

C. 3. -~ Nuclear fragmentation.

The fragmentation of a nucleus in nuclear collisions seems to be an interesting prob
lem not only at relativistic energies, but also around 100-200 MeV per nucleon, Some results
indicate(1- 10) nat the fragmentation cross~section is independent of energy in a large range
from 0,1 to 2.0 GeV/nucleon,which is surprising and deserves further studies, In spite of its
limited intensity the Frascati machine could contribute quite immediately to the analysis of
such processes through the study of the energy and angular distributions of the fragments,

C. 4, - Unusual processes,

During the interpretation of a high ener de’clc nuc leus with a heavy target violent com
pression waves (shock waves) may be genera‘ced(j The high temaperature reached in the

- shock zone allows the creation of nucleon isobars and the pionization, The meson production
renders the hadronic matter less "stiff" so that great compression can be attained. The dense,
hot and highly isobaric matier which occurs in the shock waves may have quite different pro-
perties than the normal nuclear ma‘n’cer(l- 12},

The unusual situation appears also For quantum electrodynamics if the sum of the
projectile and target charges exceeds 137

An electron, carried by heavy ion, behaves quite differently in an overcritical Cou-
lomb field than it does in the ordinary bound state, During the time of collision of too heavy
ions a superheavy molecule emerges, In such molecule, electron feels attraction coming from
both ions which are very close, and in its unbound state it must coexist with the sea of posi-
trons., Vacuum gets polarized and the emission of positrons can be viewed as the decay of
vacuum in overcritical fields., Omne can study the X-ray spectroscopy for superheavy molecu-
les and learn new aspects of quantum electrodynamics in very strong fields, We meet here
an example of spontaneously broken symmetry, and get link with the currently discussed uni-
fied theories of weak and electromagnetic interactions. It is notable that the study of heavy
ion collision may shed some light on such fundamental questions, as the interaction of elemen
tary particles, and even models of elementary particles, which are recently viewed also as
complicated objects, namely as bags of quarks,
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CHAPTER 2 - HEAVY ION ACCELERATING MACHINES AND EXPERIMENTAL FACILITIES, -

2.1, - Heavy ions machines, -

In these years the various scientific communities have considered with a great infer
est the convenience of building heavy ion accelerating machines, The main purpose is o get
heavy ion beams of great intensity and high energy.

It Is well known that the usual electrostatic accelerators have already provided a
great deal of informations on the structure of nuclei but they are strongly limited to energiles
either below or just above the Coulombian barrier, On the other hand high energy accelera-
tors like the Bevalac are limited to very high relativistic energies, say (300-2500) MeV fnucl
so that intermediate energies are actually not covered by the existing machines.This is a great
disadvantage far our knowledge of nuclear matter, because many interesting phenomena are ex
pected in that region(2- 1)', This limitation will be overcome by the future machines so that the
way is open to new discoveries in the field of nuclear physics.

Of course the "ideal™ heavy ion accelerating machine should be able to give ion beams
of all nuclear species from H to U, of great intensities, say > 1011 particles fsecond in a wide
energy range from ~ 1 MeV/nucl to ~ 104 MeV /nucl with a very good energy resolution and
possibly long duty-cycles. to perform coincidence experiments. Ag matter of fact, in order
to avoid increasing too much the financial efforts and the technical difficulties each laboratoxy
is forced to plan the construction of a specific machine, which will allow to do physics in some
specific energy range or with some restriction on the kind of projectiles,

What kind of machine is then more convenient depends on the physical interest; e, g.
low energy very intense beams are needed to look to excitation levels of nuclei, while one has
to use relativistic energy beams to study, say, the nuclear fragmentation phenomena,

The general way of obtaining ion beams is sketched in Fig, 2.1 for circular accelera
tors,

Ion source
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-

FIG, 2.1 - Schematic layout of an heavy ion circular accelerator,

As it iz shown, charged atoms coming from the source are injected in some kind of
pre~accelerator which can be of an electrostatic type (Van der Graaff, Tandem) or a linac or
a small cyclotron or both, Depending on the type of injector, the ion sources have to produce
either negative ion beams,(Heinicke sources, duoplasmatibn, etc.) i.e. atoms to which an
electron has been "added" (as for a tandem) or positively charged ions (Pennig sources), i.e.
atoms which have beenspoiled (stripped) of one or more orbital electrons (as for cyclotrons or
linac injectors),

Usually ions, after having been accelerated to some energy by the injector, are again
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stripped in T (by making their traverse a very thin foll of material), so that their final effec-
tive charge is Z &~ Z, After the second stripping they are injected in to the circular ring and
accelerated, by a suitable system of accelerating cavities or in some other way, to achieve
the final energy. In the usual cyclotrons or synchrotrons the final energy per nucleon is given
by

By

g, = — = KB2R

z(zz:_z
£ A A

Y,

are
where K is some numerical factor, B and RA\the magnetic field and the magnetic radius of
the machine, respectively,

One can see from the previous formula the convenience of obtaining ilonized atoms
of great Z in order to arrive to high final energies, Unfortunately,there are some limitations
of the charge state 7 that one can get from the sources or in the stripping process ; the diffi-
culties are greater for heavier atoms, Of course it would be the best to have fully ienized
atoms, but this is not so easy because the ionization efficiency in the stripping process in T
is limited depending on the jon energy at the output of the injector and on the considered
nucleus,

The average charge state Z depends,in fact, on the nucleus energy according to the
formula(2- :

chvz.s.., o,1<—§—<0.4,

where ¢ is a numerical constant depending if the stripper is a solid or a gaseous target, and

Z and ej,; are the atomic number and energy/nucl at the output of the injector, respectively,
One can see that high energy injectors would be convenient to reach high ionization states

Z, but they are of course too much expensive, Just to give an idea of the expecled charge sta
te Z, we report in Table 2,1 the ionization states that one can get by stripping in T, assum-=
ing as' injector a 16 MV tandem as it was considered in ref, (2, 3}, for the Frascati synchrotron,

TABLE 2,1

I A £inj Z Z
H 1 32 1 1
C 12 8.3 6 6
N 14 9.15 7 7
O 16 7 8 8
F 19 5.9 9 9
S 32 4.5 16 14
Cl 35 4,1 17 15
Ni 58 2,716 28 22
Zn 64 2.5 30 22
Br 79 2,22 35 25
I 127 1,88 52 32

One can see that is not so difficult to have light nuclei fully stripped (Z = Z), but for

heavier nuclei Z is usually less than Z,

For what is concerning the intensities of the output beams, these are of course, de-
pending on the features of the ion sources, the injector and final accelerator acceptances, the
possibility of producing a good vacuum (better than 10~ mm Hg) inside the circular rings, which
is relevant to a good transmission during the acceleration cycle, siripper efficiency and
g0 on, A great technical progress is expected in the next years in the heavy ion performances
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bothof negative and positive ion sources,

For sake of clearness it is convenient to divide the new accelerators projects in to
three classes; :

a) New electrostatic accelerators, which can give very intense ion beams, of low energy/nu-
cleor say E/A < 10 MeV /nucl, but of very great energy resolution. The intensity of the
“outcoming beams from these machines are greater than 1012 particles/sec and the enérgy
resolution is of the order of 10"4, ‘The usual Van de Graaff or Tandem generators are work
ing in this way,

b) Cyclotrons or Linac accelerators are meant to be useful for getting very intense beams
(=101l particles/sec) within an energy range between, say, 10-100 MeV /nucl,

¢) Circular machines, like synchrotrons, which can give high energy beams, say 100-3000
" MeV/nucl with typical intensities <1019 particles /sec.

The construction of all the devices is achieved either by constructing "ex novo® the
machines or by conversion of !machines already existing,. As we said the main difficulty of
all then projects is to balance the financial difficulties with the goal of high energy ~ high
indensity ion beams,

Among the various existing projects, one could mention as examples of the type b)
projects the French national project GANIL, the UNILAC of Darmstadt, the Japanes NUMITRON,
dnd’in Italy the project of a superconducting cyclotronf2. 4),

One has to consider as projects of type ¢) the Bevalac of the Berkeley Laboraﬂ:ories,.5
the AGS of Brookhaven, the French Saturne II, and probably the Serpukov pro'cosynchrotron(-z- -),

Few years ago in Frascati the proposal has been made of converting the 1.1 GeV
electronsynchrotron into - an ion accelerator{Z.6) Two possibilities were originally conside-
red: either to use linac or Tandem as injector. While the second one cannot be considered

(no Tandem is available for the moment), the first version is still possible even in an
A, enlarged version with respect to the
N old one, In Fig, 2.2 we report a graph
. of the energies of some projects in~
wiad V ecoarnone cluding the Frascati one, while in Ta-
3 \ bles 2,2 and 2, 3 we tried to summarize
. \ the world situation concerning all the
11 projects,
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TABLE 2,2
Type of machine Site MeV /nucleon | Nuclei Status
Linac supercond, Argonne, Karlsr, — 10 —w U proposed
Hylac Los Alamos s U proposed
Superhylac Berkeley —= U OK
Unilac Darmstadt 30-8 — U 1975
Bevalac Berkeley 2500-250 —= A 1974
Saturne 11 Saclay 200-2000 —3z Ne proposed
Ganil Saclay <100 - T construct,
Alice {Cycl.) Orsay 5 —» K OK
Cyclotron Dubna 7 — Xe OK
Cyclotron Oak Ridge 10 proposed
Cyclotron Ttaly
Tandem USA {(6-10) MV
Tandem France
Tandem Netherland
Tandem Germany
Tandem England 50 MV construct,
Tandem Rumania 7.5 MV OK
Tandem Italy 16 MV 1976
Pelletron Israel 14 MV OK
Pelletron Australia 14 Mv oK
Pelletron Brasil 22 MeV(p) OK
_TABLE 2,3
Tandem Linac Cyeclotron and Synchrotren

E/A £ 10 MeV /nucl

~ 10 MeV /nucl

~ (100-1000) MeV /nucl

Z any ~ any o~ any
Inten.| pA or fraction of pA | (10-100) A 10%-10'2 p/sec
Es; 1 pA of U
duty
cyc, 1 {(25-100) % (10~20) %
Ap/p| <107 (0. 3-1) % (0.1-0.5) %

It is worthwhile to write as in Table 2, 4 the gross features of the beams coming out
from the few ones of the considered circular accelerators, in order to give the relevant in-
formations for planing of future experiments,

As one can see from Table 2,4 one can expect that in the next years then will be avai
able very intemse ion beams of all possible energies between few MeV/nucl up to  GeV/nucl,
with an energy resclution of (0, 1-0, 2) % and very good optical properties,



TABLE 2,4

. Energy/nucleon Intensity Beam
> ' "
Project {approx.) part/sec energy
. 9 7 ;
. Frascati 130 ~—= 20 He —= Au 5x10°~5x10 ~0,2%
Synchrotron
Superconducting 50 — 15 He ~—= Ur ~10tt ~0,1%
miaghet
GANIL 100 — 10 He —s Ur | ~10%2 0.1 %
UNILAC 20 —> 7 He —> Ur 21012 0.25%
1
Saturne II 200 — 200 He -~ Ne 109100 0.3 %

2, 2, - Bxperimental facilities,.~

To perform an experimental program concerning the phenomena we discussed in sec
tion 1, 2, we have to provide a suitable experimental apparatus for measuring angular and ener
gy distributions of the emitted particles and their mass numbers, at different projectile ener«
gles,

Let us consider first two body elastic or inelastic reactions af energies of the projec
tile nuclei around 100 MeV/nucl like in the Frascati or Milano projects

A+B —>C+D, (2,1)

Rates for reactions (2. 1) depend . on .. many factors as beam intensity, target thick~-
ness, angular acceptance of the experimental apparatus and, of course, the cross section of
the considered processes at these energies, One cannot increase too much the useful target
thickness,in order to limit energy losses and Coulombian scattering of the emitted particles in
the target. Generally an accetable value for the target thickness is in the range between (0, 2~
-2) mg/ cmz, In these conditions at least for lighter ions the momentum resolution will be com
parable with the momentum resolution of the incoming beam reported in Table 2. 4.

good

It is in fact necessary to have experimental apparatus offangular and energy resolu-
tion to allow the measurement of many of the reactions we have listed in section 1, 2, For two

body reaction an experimental apparatus like the Saclay energy loss spectrometer{2.7), that
has an energy resolution of ~» 100 keV, would be fully adeguate to most of the reactions we
mentioned, .apart from its high cost, Of course one has also to consider less expensive ex~
perimental solution like the so called Palevsky spec:trome‘ter(z- 8) in some modified version
as the one of ref, (2,3.) that is reported in Fig, 2.3, As one can see from Fig, 2,3 the magnet
C is necessary to bend the primary beam; while the two H magnelsare used to analyse the
emitted particles. The trajectories of the particles in the spectrometer are measured by a
system. of multiwire proportional chambers or drift chambers, The emission angle of the
emitted particles can be varied by a displacement of the target along the beam direction of mo
tion and keeping fixed the position of the spectrometer,

With such a system one can shovv(z- 3)
tained of the order of

that energy and angular resolution can be ob~

SE/E =~ T 0.3%, gg < t2mrad,
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in an (laboratory system) angular interval between say 4° and 20°, with a spectrometer ac-
ceptance of the order of (1-2)x 10~3 sterad and a momentum acceptance 6f ~ 20 MeV/c,

Typical values of the involved momenta :
p = 7TGeV/e for 016 pucleus with B/A = 100 MeV /nucl,

As an example of the expected distribution we quote from ref, (4, 2) a typical elastic scattering
spectrum of 0l6 or ¢12 at E1gp = 168 MeV that is at about 10 MeV /nucl in the laboratory
system . (see Fig, 4,8 - pag. 41).

For studying many body reactions like
A+B >C+D+E+.,,,

in this energy range one can think about experimertal devices whichars.typicalofhigh energy
particle experiments, There are mainly ~ MWPC and scintillators arrangements, in a clo-
sed or open configuration around the target, to get the emission angles and energies of the
emitted particles, their specific energy loss dE/dx, and times of flight.. Of course for same
type of reactions it is also necessary to try to reconstruct also the masses of the emitted par,
ticles, For light ions a complete mass separation is possible 2.4 s for heavier ions it is mo
re difficult and single reactions should be examinated separately.
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CHAPTER 3 - STANDARD METHODS OF DESCRIBING HEAVY ION PROCESSES, -

Two methods are commonly used for describing the heavy ion elastic scattering and
transfer reactions, One is based on the semiclassical concepts, and the other one is a quantal
method, We shall illustrate the semiclassical method on the example of elastic scattering, and
the quantal method on the examples of one-and two-nucleon transfer reactions. In such cases
the standard quantal method is known as the "Distorted Waves Born Approximation" (DWBA)
formalism,

3.1, - The semi-~classical method, -

Let us consider elastic scattering, say, of the 160 ions on E"8Ni. We take as given
the central potential V{r), describing the interaction of the two nuclei, For the Newtonian mo
tion on an orbit in the field V(r) we evaluaie. a quantity named the deflection function, It is:

0 i~ 2 —=1/2
9(b)=:r»-2/ ar 2 [ n%-yﬁ@l}- , (3.1)
r r
T'o

where . v o is the turning point, i,e. the classical distance of closest approach, b is the impact
parameter, related to the angular momentum 1 by kb=1, E = k2(2 u)“’l and w is the reduced
mass, 0 is the angle by which a classical particle with energy E and angular momentum 1
(thus also with a fixed impact parameter b) gets deflected in the central potential V(r),

Teo get more acquainted with the deflection function let us consider for the moment
V(r) as given by the pure Coulomb interaction, In Fig., 3.1 we plot the deflection function,and
note a unique correspondence between b and 0(b). A different character has the deflection
function for V{r} being the Woods~Saxon potential, It is plotted in Fig. 3.2 and we note that

b ¥ 13 Y T T T T T 15 V?GO+58Ni |
f?; " S E = 60MeV

b (tm)

10 }- ‘ . .

_ , ’

i5 35 - 55 5 05 FIG. 3.2 - Deflection function 0{b) for the scat

Ocu tering of 150 on 8Ni at 60 MeV - from ref,
(3.1), The real potential was taken in the

FIG. 3.1.- Deflection function 0(b) arising  00dS-Saxon form:

from a Coulomb potential - from ref, (3.1).  V(r) = Vg |1 +exp(%3);l " with V= -7 MeV,
R=9,65fm, a=0,6f{m.
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for some angles there are three values of impact parameter, All of them must be included,
In Fig, 3,2 appear also another two points around which the deflection function has the parabg
lic shape. Scattering angles corresponding to these points are called rainbow scattering,

In the pure classical theory the differential cross section can be obtained from the
derivative of the imverse function of 9(b), We have:

do - b db ‘
(dQ )classical T sine do - (3.2)

The semiclassical method uses some concepts of the classical theory, but also in-
corporates some quantal features. To get the prescription for the evaluation of do/dQ in
the semiclassical model we begin from the standard quantal formula for do/d2 ., We write:

2
do/dQ = ﬂﬂ@)f“

(3.3)

; 1eo)
f(9)=5'1'<'

(21+1)(1 -ezl"l) P.(cos 0) .
1=0 !

In order to evaluate the phase-shifts d4's we take advantage of the fact that for heavy
ion scattering the relatively large reduced masses give rise to large values of k = Va2 wE even
at moderate energies E, The large value of the wave number k justifies the use of an appro-
ximate treatment of the Schr8dinger equation known as the WKB (Wentzel-Kramers~Brillouin)
method,

The WKB approximation is discussed in many-textbooks, see e, g. ref.(3.3). We
will only state the final result and dizuss its physical background., The basic assumption is
that, at large k the main effect of the potential is to modulate the phase of the wave function,
hence the radial solutions of the wave equation may be tried in the form:

‘Ml(r) = eXp (".'.'iy}(r)k) .

If we assume further that the distance d over which the potential V(r) changes significantly

is large compared with the wave-length 4 = k"l, i.e. kd »» 1, one may neglect d2¢/dr2.

The third assumption in the WKB method is the condition that the radial wave function vanishes
at the so~called turning point r,, determined through the relation:

2 a+%ﬁ
5‘; = V(:r'o)+ —5 . (3.4)
2“1"0

This boundary condition clearly has a motivation borrowed from classical mechanics
where a particle cannot penetrate past the point in which the kinetic energy equals the effective
potential (real potential plus centrifugal energy) barrier,

The WKB method gives the following expression for the 1-th partial scattering phase

shift :
o5}
WKB 1 1 4 - )
o =gt [ ke e (3.5)
To
where :

k) = k1 -0+ D20 v e
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and the turning point ry is determined from k(ro) = 0,

The, WKB formalism may be extended to complex potentials such as the optical-mo
del po‘l:ential(";- 3), In this case r, becomes complex and the integral in (3, 5) is in the complex
plane from the complex turning point to real infinity, ’

A difficulty arises if there exist multiple solutions for ry. A possible choice is to
take then the solution with the largest real part and the smallest negative imaginary part cor
responding to reflection at the first barrier., The ambiguity can be a source of error only for
a very few partial waves which are tunneling through the first potential barrier. At energies
near the Coulomb barrier this occurs only for the lower partial waves where the error is re-
duced by the absorptive part of the optical potential. For energies above the Coulomb barrier

these ambiguities are less important and disappear completely at high energies.

Comparing Eqs. (3.5) and (3, 1) it is appropriate to notice the very close relationship
between a derivative of the WKB phase shift and the classical deflection function, We have g-
WKB ‘

with the relation kb = 1+1/2 kept in mind,

An example of the lfartial phase-shifts is given in Fig, 3, 3 for elastic scattering
180 + 12051 4t 100 MeV{(3-4), One can see that only partial waves with 50 1 70 are con-
tributing to the scattering amplitude, The relatively small interval of large values of 1 is a
typical feature for scattering of heavy ions, '

B + %, S.Matrix £ :100 Mey

3

FIG, 3.3.~ The amplitude of ¢2101 for
elastic scattering 180 +120gn at 100
MeV (Ref. (3, 4)), corresponding to the
Woods-Saxon potential

. ) [ r-R.7T-1 .

B 4 v =gy renEE] 7, win
! i parameters Vp=-40 MeV, V} =.15MeV,
i 1 a=0,45fm, R =1,31 fm(All 3+A§/?§,

: J Dashed line corresponds to Vi = 0 and

s 4 shows by comparison how the real po-
s 4 tential sucks high 1's into the absorbing
PS PRI ST, B AU NN N region,

[ 20 40 ! $o L B] 100

(&

The smallness of the interval of the effective 1's is the result of strong absorption at
the surface and of attractive force which sucks high angular momentum orbits into the absorb-
ing region, The large values of 1 arise because of large radii of heavy ions and large values
of k; roughly the half value of |e2191) occurs at 1 =kR, R being the radius of the potential,

The WKB method helps us in getting information about the phase-~shift, but to evalua-
te the cross-section we must know the amplitude £{8), i,e. we must perform the summation
ih Eq. (3, 3). This may be simplified as follows, Because of strong absorption the sum over
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partial waves is determined mainly by the terms with large 1., Hence we can replace Pl(cos Q)
by the asymptotic expression for large 1:

sl Ty g o1 | 1 +zz:| 3.7
Pl(cos Q) ~ [2 1+ 2) sin GJ om»(l'l‘ 2) 0 7]’ (3.7)
omitting from considerations 0 = 0, @ ,

Substituting this in (3, 3) and replacing the sum by an integral (thus assuming that the
phase-shift is a smooth function of 1) one obtains:

[0:0]
-1/2 12 19, io.
o) & -k sin0) / dl(“';")/ (¢ T-e ), (3. 8)
"o

where :

1y, +
- +1 42
‘Pi_ = 261-(14—2)9_

k|

Finally we evaluate the integral in Eq. (3, 8) using the method of stationary phase, We
get that the main contribution comes from such values of 1, denocted by Li’ for which the pha-~
ses @+ have extrema, This is so because near extremum the exponents vary slovly, hence
in this region the exponential factors will not cancel, Thus we have the condition:

P = '
( dl )1,_11 0 » ‘k3o9)

from which follows (see Eqgs. (3. 6) and (3. 8)) the relation;

To =00, (3.10)
G(li) being the classical deflection function,

, Having stationary points we expand ¢1 around them up to the second order, and ex~
plicitly evaluate the integral over 1, From each stationary value we get a contribution to the
scattering amplitude

f(9) = 2 L.(8) ,
] i

with — 9 -_.1/2
-1 1.1/2 a% o, ‘

£(0)= -k (li+ -5) 2 sin @] ——= expia (li) .

+ dl 1=1.
i

6 a%s. Ja%.| 45, |a
oy L T L1} 1 1
o) =| 20 -20+3) F -T2 =2/ [ - =Ly 1) (3.11)

The differential cross section is obtained in the semiclassical method as:

do

2
(30 )semi-classical = l 2 fi(’g)l : (3.12)
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Therefore the interference effects which are absent in the classical expression are induced
in the semi-classical formula,

In Fig, 3,4 there is a plot of the ratio

do do
(T8 )semic1! (ST 'R

as the continuous line, and it is compared with a plot of the same ratio evaluated exactly (bro
ken line), Here "exact™ means that we solve numeric ally the Schridinger equation and found
out the phase shifts 61, The agreew
o ‘ ment is very good,

K

B

The semi-classical method can
be extended over to inelastic scatter-
ing with excited final states of the tar

L get and to one-or-more-nucleon trans
fer reactions, The agreement with
the experimental data is quite good,
however, in cases when the final state
differs from the initial one, more as=
sumptions are needed to write down
an expression for the cross section,
In such situation the classical trajec-
tory corresponding to the relative mo
tion of ions in the initial state is def-
ferent from the trajectory in the final
state, and some averaging procedure
is needed, One must also deal with an
¢ (3] imaginary part of the optical potential,
cM and evaluate reaction matrix elements
1 bt ! I from a coupled set of 1-st order diffe
25 45 65 85 rential equations, following from the
- - 11 3. . -
E_I_Cii___.s___{l_ 3 éE)lastic cross-section for scattering ?ﬁ: ggf e(;f:&;gﬁ;i?ngvzgur?:;zz;
of 160 on °SNi at 60 MeV. The real potential pa rically with the appropriate initial C;ﬂ
ditions, The whole procedure is rat-
her involved, but the agreement with
the experimental data is very good,
We end here our presentation of the
semiclassical method and refer to

>4

0+%%Ni

ELAB=GOMeV

rameters are given in caption of Fig, 3, 2. Cur
ve 1 rapresents the exact calculations; curve2
the semi-classical one; curve 3 the resuylt obtai
ned by stationary phase method,

Broglia et a1.(33) for more details,

3. 2, - The quantal method, -

The second standard method of treating heavy ion processes is the quantal method.
For elastic scattering it is known as the optical potential method and for inelastic scattering
and transfer reactions as the distorted waves Born approximation (DWBA),

3. 2.1, - Optical model,

In the elastic case one parametrizes real and imaginary parts of potential, most often
assumed in-the form of Woods-Saxon potential, adds the Coulomb potential, solves numerically
the Schr8dinger equation, and looks for the best parameters fitting differential cross section,

As an example we consider scattering of the 165 ions on S0Ni at 60 MeV laboratory
energy. The experimentsl data(8.7) are well fitted by the following total potential:
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Vir) = VN(]?)+VC(I') R (3,13)

with the nuclear pait of the potential, Vi, a Woods-Saxon optical-model potential

Vg iVV‘I
V., (r) = + ; —, (3.14)
N 1t+exp((r-Rop)/a ) T+exp((r-R;)/a )
and with a Coulomb potential VC of the form
Val(r) = (2, Z,e?/2R )3 -r2/R2) r <R
C 1“2 c C c
(3. 15)
2
=Z1Zye [r r> Ry,

which is extension to the case of heavy ion ‘scattering of the potential due to a point charge on
a uniformly charged sphere, Presumably a more correct for two heavy ions would be the po-
tential of two uniformly charged spheres, However, because of nearly total absorption near
the origin, where the difference in the various Coulomb potentials is largest, the scattering
cross-sections are fairly insensitive to the choice of the model Coulomb potential,

The values of the parameters used for the fit were :

VR = = 25 MeV ,
WI = 15 MeV,
13, 13, ,
Reo = ROI = ROR =1, 3(A1 +A2 }fm = 8,365 fm ,

aOR a aOI =0,5fm ,

Fig. 3.5 shows the fit; moreover it gives a comparison of the "exact" calculation of
the differential cross-section (made with ABACUS II) and the WKB method(3. 6) A1l results

T { L] ) ¥ T
1.0 w-————-——.-—a...,«’\
Qlg
5
o 5
o
COiE:
3
QOOIf Yo 4
- \...".,:'n". ,-:
] E':c.m.(DEG') \ i ]
00008 ! ! ! ! ' N
2C 40 &0 80 100 120

FIG. 3.5, - The reaction 50Ni(160, 160)80Ni at 1ab energy of 60 MeV -
from ref. (3, 8). Experimental points (large dots) taken from ref, (3. 7),
and calculations using ABACUS II (solid line) and WKB (dotted line).
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are displayed in ratio to the Rutherford cross-section. As can be seen the agreement is quite
good over the entire ciirve,

In general the WKB approximation agrees well with the optical model cross-sectionfor
energies and angles of major interest, i, e, Eem ™ 40 MeV and angles over which do/dQRuth
changes by three decades'®: 6), The WKB method fails for energies which are excessively low
or angles which are excessively large. Thus in the example shown in Fig. 3.5 beyond 100°
the WKB curve shows diffraction peaks with maxima in d 0/dQp i ¥ 5% 1074 and with a much
larger maximum at 180° (dg¢/ dQpuin ¥ 5x 10-3), On the contrary the exact calculation continu
es to decrease, levelling off at do/d0R,4, ~ 8.2x10~6 at 1800,

At high energies the WKB method, being fairly insensitive to values of k, may, hove-
wer, be numerically superior than the exact procedure the effectiveness of which rapidly de-
creases for large k. For large k the numerical integration of the Schr8dinger equation beco~-
mes, because of the fine integration meshes required, a very difficult task,

3,2,2, - The DWBA method,

Let us now pass to transfer reactions and show some details of the evaluation of diffe~
rential cross section within the DWBA method(3- 8) . We denote by t the transferred subsystem
and by cy, ¢y the cores with which t is making up a bound state in the initial and final state,
respectively, These bound systems we denote as ay = (cl,t) and ay = (cz, t) and our transfer
reaction is:

(eq,t) ey > ¢y tleg,t)
or (3.18)

a1 + c2 —p c1 + 32 R

The bagic three bodies C3s Cy and t are depicted in Fig. 3, 6 at vertices of a triangle,

FIG, 3,6 ~ The vector diagram for
the transfer reaction
(Cl: t)+ 02 —> 01 + (02: t).

their relative distances.are the sides of triangle, and }i, ¥, denote the relative distance bet-
ween the projectile and target in the initial and final state, respectively,

In the DWBA method one assumes :

a) The interaction between projectile and target, before or after the transfer took place, can be
described in the initial and final state in terms of optical potential Ua102 and Ucl ag Te-
spectively ;

b) These optical potentials do not differ too much from the interaction between cores Vc1c2 H

¢) The matrix element for a transfer process is proportional fo the residual interaction, which
is: sandwiched between the states which are products of bound system wave functions of ay
and a5, and distorted waves in the initial and final states, respectively,
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Then the differential cross section for transfer process can be schematically written
as:

> i 2
L m) > | (3.17)

do ) 2 = I ()
a0~ 55, <xf (epo med Bof Vo 75

where Sy, 82 are the so called spectroscopic factors, uniquely defined by the initial and final
bound state siructures., They measure the strength of a given state of t in the bound systems
aj, ag respectively; Z;, Z; are distorted waves describing the relative motion of a; and cg
or ay and cy interacting via Uayo, OF Uagey respectively; 15 §, are the bound state
wave functions of t in aj, as respe%tively; Vi is the residual interaction, describing

interaction which is not included in distorted waves, It depends on a representation, and in
the post-representation it is:

V. =V -U =(V, ,+V )~ U ~ V . (3.18)
r (::Fa2 €y 89 C’l t Cl €y ¢y a2 c1 t

Here, Vap denotes an effective interaction between A and B and we have used V ~ U .
€1 %z €1 Ay
The matrix element in . Eq, (3, 17) contains 6-dimensional integral, very unpleasant to
deal on a computer, To simply calculation especially below the Coulomb barrier one usually

makes some further approximations within the DWBA scheme:

a) Localization in the strong Coulomb field, Such field favours large core-core distances, and
therefore g can be reasonably approximated by its asymptotic form

(1) o \
f, > N, by ° V2mB, r,) ¥, 4y (g) (3.19)

where N, is the normalization constant, B, is the binding energy of 1 in ay, m the reduced
mass in the (t;cy) system, hll being the Hankel function,

b) no~recoil, based on the smallness of the mass of transferred particle with respect to the
mass of the bound system of this pariicle with the core, Looking at ¥Fig, 3,6 we write :

Oy ry= 200@7 - 58 2y D@7
xi (ki,ri) = Xi (ki,r - o ri)mxi (ki,r) s
(-) T T e () e
Z (kf’ rf) “"xf (kfa(l-_ma;;r"'"maz r]_) ~ xf (kfs(l - maz)r) (3‘0 20)
O P N
AN (G - g ) ke 7).
2

The last step is true if the function Xg depends only on the product of momentum and the posi
tion variable, as it is in the case of pure Coulomb wave functions, The no-recoil approxima-
tion enables us to replace a 6-dimensional integral by a product of two 3-dimensional integrals,

Next, one of the 3-dimensional integrals is replaced by a one-dimensional integral
and a sum over angular momentum, using a property of the Hankel function which was p‘(lt 1575
instead of ¢2. The final formula for the one-nucleon transfer differential cross-section'>*
is:
do  _ mgme Kk 2ag+1 818 IA Ile
B AW TS T BT T Sikly Siol
dQ (2ah2)2 Ky (2cF1)(2)5+1) Titg Piata 1 Yy 2

A
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. 2 (3.21)
. C1ioli L | !
fl<3:121°'3'22> .00
where ¢

my, m, are reduced initial and final masses;

i1s Jg are total angular momenta of nucleon bound in ays 8gs respectively;
similarly 14, 12;

iy

- 2. it o w2 p ) s
A].] - d/.drlr][ ‘311 (1 \/Zm I}z'h 11) Vncl(rl) Mll(rl) 3

% -
- 3., (=) m e o (1), Y (+) .5 =
TM(O) /d T Zf {1 - m—-—-—-a? )hf, r) .h12 (i 2mB,h™r) Y_u(r) Zi (ic; ¥} ;
My 1(r) is the radial wave function of nucleon in the (n, Cl) bound state,

The values of 1 are bounded by the following conditions :
- 1< .
|1, 12|5, 11, +1, ,
T
PREAE 1343, .
1.+1 1
(-1 1 72 = (1),

This formalism was developed by Buttle and Goldfarb(3' 9) and was very successful in
interpreting many experiments, For illustration we show in Fig, 3.7 results obtained for the
total cross section, with spectroscopic factors in agreement with the shell-model predictions,

OF T T T T T I T I T 30
"N ﬁﬂ
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[ & A
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v I ]
L t ]
-2 ) f 2
10 E / i [ -E 10
E / ' i
o f ] FIG, 3,7, - The total cross-section
o /1 i W of the one~nucleon transfer reactions
} ' { ] (from ref, (3, 8)).
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Another example of a very good fit of the DWBA, no-recoil, finite-range method is
given in Fig, 3,8, for one-nucleon transfer processes at different laboratory energies,
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FIG, 3.8, - Angular distributions for the 4804(160, 15) reaction to the
1fn /5 ground state and 2pg/y excited state in 49Sc, The solid lines re-
present DWBA calculations performed with the no~recoil code (from
ref, (3.10)).

There are three characteristic feafures to note:

i) the angular distributions have a bell shape ;
ii) the bell becomes narrower for higher energies ;
"iii) the maximum of the bell is moving forward for higher energies,

The bell-shape angular distributions are connected with the phenomenon of grazing col
lision, It . arises because of the strong, repelling Coulomb force on one side, and the strong
nuclear absorption on the other side, The most favourable scattering angle for nucleon trans.

fer is called the grazing angle, and in terms of classical trajectories it corresponds to well
matched inifial and final trajectories,

It should be pointed out that in order to get a good agreement of the DWBA fits with the
experimental data it is often necessary to include extra normalization factors ranging up to 3, 5,

3, 3, - Difficulties of the standard methods, -

In spite of good fits obtained by the semiclassical and DWBA methods there are number
of problems connected with these methods, We shall make only a few remarks about the semi-
classical method, and concentrate our attention on the difficulties of the DWBA scheme,
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For transfer reactions the semiclassical method finds difficulty in coping with diffe-
rent initial and final trajectories and some ad hoc averaging procedure is invoked to cure this
disease. Troubles also arise in defining the phase in the semiclassical method, The WKB
and stationary phase methods come with some help in defining the semiclassical phase, but
with different initial and final trajectories it is only a heuristic argument, andin fact for the
transfer reaction a definite phase must be assumed and can not be derived, There are also
some recipies how to evaluate the cross section for the transfer processes, and geometrical
mean value seems to be accepted, though, including the arbitrariness in.phase, they do not
follow from any physical assumptions, On computational side the difficulties are in coping
with very muany partial waves and solving of very many coupled sets of differential equations,
It becomes-a enormous task to carry out such calculations even on big computers, thus limi-
tations or further approximations must be contemplated,

Troubles of the DWBA method are quite numerous, To start.with let us remind that the
DWTA amplitude is a firdtitermof a:divergent series, as shown'by Greider and Dodd 3.
within the 3+body formulation of rearrangement processeg, For some processes like knock-
-out reactions: it is possible to reformulate the infinite sevies in such a way that its term will
be the t-matrix instead of the residual interaction V., o0d in this case one speaks about the
DWBA amplitude, Such an amplitude is a first'term of an infinite series which is generated
by a kernel. free of disconnected diagrams, thus‘it'has a chance to be a convergent series,
though the estimate of the importance of the 2-nd order and higher order terms contributions
is a separate, unanswered question,

In practice within the DWBA method one makes several additional approximations and
above the Coulomb barrier, where both the nuclear and Coulomb forces interfere one allows
oneself for some change of parameters so that a good fit to the experimental data is achieved,
Large ambiguities arise from not-univocally defined parameters of the optical potential, Ela-
gtic scattering of ions inlbéth initial and final states is needed as a separate set of data, but
it does not fix 'upunivoeddiy-the optical potential parameters, Hven if these parameters are
determined from a putitdl-wave analysis of the elastic scattering they are changed in the DWBA
numerical programs-to:iget better fits to the transfer processes, For sub-Coulomb energies
there is much'less unceitainty than above the Coulomb barrier, because of the dominance of
the known Cuitlombic wave functions,

Axother source of discrepancies within the DWBA. scheme is in the spectroscopic fac-
tors. They should be given by the nuclear structure theories, and may be looked at as pre~
dictions of the DWBA. method, if a good fit to the cross section is found, In practice, there
are sometimes found such predictions of the DWBA scheme, that the spectroscopic factors
for different states do not agree with the nuclear structure predictions, even by factor 2 and
then one cures the situation by speaking about the ratic of spectroscopic factors, The incon-
sistency in spectroscopic factors can be noted zlsc if one compares the same factors found
in different reactions, These discrepancies have fendency to increase with the increasing ener
gy. Only for sub-Coulombic processes there is a small discrepancy in determining spectro-
scopic factors by the DWBA scheme,

An important probler of the DWBA method is the question of recoil, especialy for
energies high enough above the Coulomb barrier, Bellow the Coulomb barrier the effect of
recoil is small, and may be safely neglected, However, let us look at one-nucleon transfer
reaction 11B( N, 50)1U’Be and watch the variation of the angular distribution with increas-
ing energy. In Fig. 3,9 the solid line gives the prediction of no~receoil DWBA amplitude, while
the broken line goes through the experimental points to guide the eye. For the laboratory ener
gy 113 MeV the DWBA no-recoil amplitude gives quite a wrong prediction,

De V’sﬁ‘:i’eS(g’ 13) arnong others, analyzed the influence of recoil and in Fig, 3,10 we show
his study of recoil in the reaction 12C(l4n, 13¢)13W at 78 MeV laboratory energy. The featur
less shape of experimental angular distribution, contrary to the oscillatory character. of the
no-recoil DWBA amplitude, can be understood if two contributions, arising in the case of in-
cluded recoil, are added together, The oscillatory dips are filled up by maxima of the other
contribution, It is nice for the DWBA method that the inclusion of recoil puts it back into agree
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ment with the data, but it forces us to use rather involved numerical programs, which can
cope with 6~dimensional integrals,

The emphasis of recoil effects has also been made by Dodd and Greider(g' 15) in their
analysis of recoil damping in heavy ion transfer reactions. They found within the DWBA. meth
od that keeping the effect of finite mass of transferred particle. resulted in the appearence of
a recoil phase factor which gives strong damping of the diffraction  oscillations., Due to this
damping a featurless angular distribution appears which drops down as an inverse power of
momentum transfer, Such behaviour is indeed suggested by the experimental data shown in
Fig, 3,11, lying very well on the line q“'4. As stated by Dodd and Greider, in view of the
simplification of their model and limitations of DWBA their result should not be taken as the

whole explanation, but it suggests that at energies well above the Coulomb barrier recoil
effects must be included.

DIFFERENTIAL CROSS SECTIONS

~ Vs
ks 4 LINEAR MOMENTUM TRANSFER
£ FOR Rc (B¢ ,%ge)'50*
- Ec= 114 MeV
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FIG, 3,11, - Differential cross-sections for the three-nucleon transfer
reaction 12C + 120 s 9Be + 150‘, The data falls uniformly on exponen
tially decreasing curve predicted by DWBA calculations including recoil
(from ref, (3. 12)).

Another plagues of DWBA method are the post-prior discrepancy, and numerical prob
lems of dealing with many partial waves with which are associated highly oscillating functions,
The post-prior asymmetry is generated by approximations within the DWBA, in particular the
neglect of recoil effects, but also by the inadequacy of treating in a consistent symmetrical way
the initial and final channel when approximating the residual potential, We refer here, for
example, to the approximation made in the previous section where the core-core interaction
Veqs cg Was approximated by the optical potential corresponding to the final channel, The
6-&:‘Lmensiona1 integral codes, which enable us to take care of recoil, remove the post-prior
discrepancy, providing we do not make an approximation about the residual interaction, The
plague of very many partial waves in the relative motion of heavy ions becomes very severe
at high energies. The impact parameter picture suggests itself as a more proper language
tharn the partial wave analysis,
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CHAPTER 4 - METHODS BASED ON THE EIKONAL TECHNIQUE, ELASTIC SCATTERING, -

) The elkonal technique, most popularly known in its special form as the Glauber mo-
dell4. 1 ) has been commonly applied in the high energy region for scattering of either elemen
’;ary.par"clde or'nucleus on another nucleus, Particular attention of this technique to heavy
ion processes has been hrought in 1971 by Dar and Kirzon4. 2)_ We shall come later to some
details of this application, but now, staying with a more general view on the eikonal technique,
not only restricted to the Glauber model, we mention several reasons which motivate the ap-~
plication of the eikonal approximation in studying the heavy~-ion processes, They are:

a) The impact parameter representation which is the language of the eikonal scheme instead of
the partial wave notion, is especially appropriate if one deals with very many partial waves
arising either from the strong Coulomb field or increasing energy, or both,

b) The eikonal method is closely connected with the WKB method which in turn relates to the
semiclassical method describing gross features of heavy ion processes,

¢) Below the Coulomb barrier, where the Coulomb interaction plays a dominant role one can
formulate the eikonal approximation in such a way that it gives the exact result for an ar-
bitrary scattering angle and at all energies, Therefore, the association one usually has
with the eikonal technique as appropriate for small scattering angle is removed in the case
of dominating Coulomb field., At the Coulomb barrier and above, one must include also the
strong nuclear force, and for heavy ions one can again extend the elkonal technique to an
arbitrary scattering angle, The large parameter is the ratic D A~1 mentioned in the Intro-
duction. We shall come back to this extension later in this section.

d) The eikonal technique, although an approximation, provides us often with an analytic, or al
most analytic result, which can be studied from many points of view, contrary to outputs of
numerical programs like that of the DWBA method, or semiclassical numerical codes,

e) It is much easier than in the standard methods to incorporate the 3~body and, in general

many-body aspects of scattering of composite systems if the propagation is simplified as it
is in the eikonal method,

f) Some, even crude, trials of aplying eikonal-type methods proved to be surprisingly succesg
ful, One may hope that more delicate use of the eikonal technique will not destroy the agree
ment, and will shed some light on the dynamics of heavy ion processes at different energies,

We shall now review several ways of applying the eikonal method to heavy ion proce s-
ses and for clarity we divide our review into two big parts: one dealing with the elastic scat-
tering (this Chapter), another one with inelastic processes (Chapter 5), and within these paris
we consider separately different approaches,

4,1, - Glauber approximation, -

The eikonal approximation may be derived straightforwardly from the Schrddinger
equation

(7241 = 2uv()y (4.1)

# being the reduced mass,

‘Thus if one looks for a solution of the wave equation in the form:
Ko
Y= g@ e, (4. 2)
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where § is a slowly varying function compared with the wave length A = k™! (hence vig= o),
one obtains from (4.1) :

0p  _ . B =
- Likvy, o) =1, (4.9)
where the z-axis is chosen along the incident direction kb
The solution of equation (4, 3) is ¢
4
ik i

v Tep-3 [ vE DD, (4.4)

-00
v being the relative velocity of colliding particles,
Putting this approximate wave function in the Lippman-Schwinger equation one has for

the scattering amplitude :

i /z
L > . - Vd;

. iqy,+
1@ = - == /dzbelq"‘- b/dz e W7 y(p,z)e ¥ - , (4. 5)

d,, 9, being the transverse and longitudinal momentum transfers, respectively,

The fact that for small-angle scattering at large momentum k one has :

~

9, T q, qy ¥ 0, (4.6)

allows to perform the integration over the longitudinal coordinate z. Thus one arrives to the
eikonal approximation in the form given by Glauber(4. 1

g
t@) = 2= [a% P 1), (4.7)
where :
iX(b
F(b)=1—e](), (4. 8)

is called the profile function, and the function X(b) is given by the integral along the direction
of incident beam over the projectile~target interaction V(r) :

+
i ® \""2 2
2(b) = -3 / dz vV (\p“+z7) . (4. 9)
\)

The function X(b), called the eikonal (or Glauber) phase, is related to the phase-~shifts

01 in the partial-wave expansion (3, 3), In fact for large k many partial waves are contribut-
ing to the scattering and one may put in (3, 3) :

; ; 2
—— S(21+1) = ikfdb b = K fd b, (4. 10)
2k 1 29t

where the relation kb =1 +-é— was used,
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Further for 1 >> 1 and small scattering angles (8 <<1) one may put
- 1 -
P (cos 8) = J (1 + 5)0) = J (ab), (4,11)

0
where q = 2k sin 2 is the c.m, momentum transfer,
Thus the partial-wave expansion (3, 3), at large k and small 8, may be written exactly
in the form of Eq.(4.7) with :

2(b) = 2 6,(k,1 = kb) . (4.12)

. The equivalence of the Legendre sum (Eq. (3. 3)) and the Fourier-Bessel integral (Eq.
(4.7)) representations (in fact there is a remarkable cancellation of the remainder functions
from the two approximations (4, 10) and (4, 11)) allows to write the eikonal approximation also
in the form of the partial-wave expansion with the phase-shifts equal to half the Glauber phase
(4.9).

The main advantage of the Glauber approximation (4.7 - 4. 9) consists in its simplicity.
Of extreme importance is that the interaction appears linearly in the eikonal phase, In the ca-
se of scattering from a composite target this leads to additivity of phase-shifts from individual
constituents which is a basic assumption of the Glauber model of multiple fcattering (see 4. 3).

The framework of the Glauber approximation allows for a direct construction of the in-
teraction from the phase-shifts, In fact the Glauber phase-shift (Eqgs, (4. 12) and (4. 9)) may be
written for spherical potential in the form :

o0

Glpy - .1 [ Vi)

PRI e -
"

which is the integral equation for V(r) of the Abel type. Iis solution is :

[e's]
vi) 214 [ aboFm (. 14)
v T r dr \/"'5'”'5 ° -

" be-1

4.2, - Corrections to the Glauber approximation from WKB, ~

811: is instructive to study the relation between the Glauber approximation and the WKB
method'4: 3-4. 4

Bq. (3. 5) for the WKB phase-shift may be written as follows:
o) 1 @
WKB dr [ Vi, 2| 2 " d
é (k,b) =k / L [rz (1 - Z-(-Q) -b -k / -}I; (rz-bz). , (4,15)

r b
(o]

ol

where kb = :1+-;—,

Let us assume that the potential may be continued to the complex plane :
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r—s 0= r+ ilmeo . (4. 186)

In order to proceed it is convenient to introduce the following change of variable (Sabatier
transformationt4- 37).

Ho) = e(l-%—‘ﬁ)”z , (4.17)

the inverse transformation being denoted @ = o(t),

With this notation Eq, (4, 15) may be transformed to the form(4° 4) :
w @ —.
d VKB, p) = - L / Aty . L[ g ule?ea?) (4.18)
v \] 2 .2 v
b t“=b 0

where U(t), called the quasi-potential, is defined as follows :

Ut) = vk 1n~Q—,E-QL- . (4,19)

Thus the WKB phase-shift assumes the simple appearance of the Glauber phase-shift
(4, 13), the essential difference being the replacement of the exact potential by a quasi-poten-
tial,

The relation between the potential and quasi-potential may be written in the following
compact forms

Ult) = - Eln !{1 - 5%92] .

or
V(Q)=E[1 -exp(-y'ég) ’ (4. 20)
where kz:
Q(t) = texpl U;g ) E = 2

The Glauber approximation may be considered as the high-energy limit of the WKB
method, I V/E << 1, the quasi-potential is simply the potential, and the WKB and Glauber
phase-shifts coincide,

(4E2§5)anding Fq, (4,18) in a Taylor series about 1 /k2=0, one obtains with the aid of Eq.
(4.20)\*% =7 ;

dWEBG by = 6CL, 51, 50,

where ¢
@

oG - -;1,-/ dz v (b + 2%) ,

(=]

(4, 21)

w
T R
vzk 0 dr
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(e8]
@ 2 f d 2[4 3
v L el [tvie)] . (4.21)

It should be observed that the corrections to the simple Glauber resuli,because of the
derivatives of the potential,are most important at the nuclear surface.

The relation of the Glauber approxnnatlon to the WKB method is 111us1:rate5d in Fig. 4,1
on the example of elastic scattering . 160.60Ni for a series of c,.m, energles

T T T T T T ¥ v

150 MeV

225 MeV
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x
58 sl
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FIG, 4,1.- Blastic scattering 150 - 60ng
at various c,m, energies as indicated,
Dotted line ; WKB ; solid line : Glauber ;
dot-dash line ;: Glauber plus one order
correction; two-dots=dash line : Glau-
ber plus two orders correction (from
ref, (4, 7). In all cases the same optical
model parameters as for Fig,3.5 are used, although the "point-sphere® Coulomb potential
in Eq. (3, 15) is replaced by the "sphere-sphere® Coulomb potential,

8. (DEG.)
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Here the Glauber and WKB phase-~shifts are used in the partial-wave expansion (3. 3),
The full WKB result may be considered as a point of reference since, as explained in Fig, 3.5,
it should coincide with the exact optical-model calculation, In general the Glauber approxima-
tion reproduces the qualitative shape of the curve quite well although it is sfifted toward smal
ler angles and smaller cross-sections, With increasing energy the agreement between the
Glauber and WKB results becomes more and more satisfactory. The WKB corrections greatly
improve the positions of the maxima and minima in the curve, but the magnitude of the cross
section, although in excellent agreement at small angles, can be in serious error at large
angles,

If the phase-shifts are known Eq, (4, 18) may be viewed as an Abel integral equation
and solved for the quasi-potential U{t) - compare Eq. (4, 14). Then the potential V(r) can be
constructed proceeding as follows (4. 4): Yiven U(t) one can determine from (4. 20) V(Q) and
¢ for any value of the complex variable t = tg +it;. The true potential V(r) is to be compu-~
ted along the path in the complex t plane given by Reg =1r, Img = 0. This condition pro-
vides, together with Eq. (4, 20), unequivocal relations TI = ’cI(t ), v = r(tR), and allows to
compute V(r),

The potential constructed in such a way is an approximate solution to the inverse scatt
ering problem within the framework of the WKB approximation, It consequently has a wider
range of validity than the Glauber approximation (Eq. (4. 14)) to which it reduces in the high-
energy limit, The relation between the WKB and Glauber potentials has been studied by Ku-
Jawskir*+*/ He assumed a specific and realistic form of the phase-shifts and treated the re-
sulting cross-sections, given by Eq. (3. 3), as "data®., The equivalent optical potential was
constructed following the procedure described above - the WKB and Glauber potentials for

2Ca at 42 and 166 MeV are shown in Fig. 4.2, The validity of these poterntials was'then
1nvest1gated by exactly solving the Schrddinger equation and comparing the resulting angular
distributions with the corresponding "data® - see Fig, 4.3, We see that the potentials obtained
in the WKB approximation yield results in good agreement with the "data" up to 40°-50°, The
range of validity of the Glauber approximation is more limited, At larger angles both the ap-
proximations become unreliable,

-aor . PPN REAL PART
_30;1:‘::::§
- N
é'zo' ‘\‘ N
\ A\
~{0p s\\
I, FIG, 4,2, - The real a Pd imaginary parts
° e — : of the caleulated WKB'4: 4) (dagh-dot line
W for a-%2C at 42 MeV, dashed line for
AN MASINARY PART a-%2C at 166 MeV), and Glauber (solid

line) optical potentials, The nuclear pha
se-shift function was assumed in the form:

U 1U -1
6(b)=--——R I/ dzi‘1+ezp(-—-—-£l .

Y(MQV’




10! ¢

: a~ ¥cq
Eqgp* 42 MeV
100
E
L
107
T F
~ -
g L
g
3
° '0—2 -
1073~
o
6

8, (deg)

FIG, 4,3, ~ The elastic differential
cross-sections for the scattering of
42 MeV and 166 MeV a particles by
4204(12), Solid line: solution for the
WKB potential; dotted line: solution
for the Glauber potential, The "data"

points are denoted by crosses.,

100t~

0!

T

1072

LB AR ALAS |

10-3

'lll'l]

do/dQ (b/sr)

1074

LML A RLS1

10°3

T

Erop-=166 MeV

108!
s} )

4, 3, - Glauber model of multiple scattering, -

30
8; m, {deq)

317,

Lt us consider collision of two nuclei with A and B nucleons, respectively - see Fig.

4,4,

*1 a subunit .
of A a subunit
of B
...\\ /
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< F:
- 3 S
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° ?"j | Q z
\é/&m:
4 \__../

>

FIG, 4,4, - The geometry of collision A + 1,
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We assume that the total interaction between the incident and target nuclei is a sum of
individual nucleon-nucleon (one from A, the other from B} interactions. Let us calculate now
the phase-shift for scattering of the two nuclei in the framework of Glauber approximation -
Eq. (4. 9). The fact that the interaction appears linearly in the Glauber phase leads to simple
additivity of the individual nucleon-nucleon phase~shifts :

A B .
to) = 3 3 A (B-3AD . (4. 22)
=1 k=1 ] '

The additivity of phase~shifts leads in turn to the following composition law for the
profile function (4, 8) :

A B 4y .k(l—;-:?%l]f ) A B +A LB
rwy=1- M I ¢ 4 = 1. O 1T 1-—7 (B - -85 +‘3 ) (4, 23)
=1 k=1 j=1 k=1

where we have introduced the profiles for nucleon—nucleon collisions through the definition
analogous to Eq, (4, 8), The elementary profiles L (b s A+skB) may be expressed, by in-
verting the Fourier-Bessel transformation, througl]q the nucleon-nucleon elastic scattering
amplitudes fjk(q), which are to be taken from the experiment with free particles,

In writing the above expressions we keep the projectile and target nucleons in the space
positions given by the vectors siv, g, respectively, in the plane of impact parameters, i.e.
the plane perpendicular to the incident beam - see Fig, 4,4, Hence we treat the nucleons as
they were frozen in a certain geometrical configuration, This assumption is justified if the
time of collision is very short so the projectile is gone before any rearrangement it induces
in the target can take place. Obviously one should then average over all possible internal con-
figurations by sandwiching the operator of transition between the initial and final nuclear states,

Thus the final expression for the amplitude of transition in the Glauber model may be
written as follows :

B

(D= /dbe Py Bll 3?11 knl[m»r (b - s )“1 ; (4. 24)

ips i B being the initial and final wave functions of the two nuclei, Eq, (4, 24) describes
elastlc as Weﬁ as inelastic scattering, The inelasticity is rneant here in nuclear sense, 1. e.
the nuclei may become exciled or even broken up, but their constituents do not change in any
essential way,

(4.1)

To summarize let us stress the main points underlying the Glauber model :

a) High energy small angle scattering (eikonal approximation);

b) Additivity of phase~-shifts ;

¢) Expression of individual phase-shifts (profiles) by means of elementary phenomenological
elastic amplitudes ;

d) Averaging of the operator of scattering over the nuclear states,

If we multiply out the AB factors in the expression (4, 23) we obtain the sum of terms
with different powers of elementary profiles, This sum is finite (extending up to the AB-th
order) and has alternative signs, The individual terms of this series are referred to as the
contributions from single, double, triple, etc. scatftering,

The different orders of scatlering interfere with each other in a destructive way, The
most important results of this interference are the diffractive structure {maxima and minima)
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of elastic angular distributions, and the defect effect in the total cross-section,

Let us discuss in more detail the elastic scattering of heavy ions, We choose the mat-
ter deusities of nuclei A, B in the form of independent particle model {(IPM):

(4. 25)

B

It was shown by Czyz and Max:imon(‘l" 6) that for large A and B the expectation value of
the profile operator (4, 23) may be written then in the form:

. . 2] '»A' ""'B 7. - AB
intg| TsE, L5, Higig> = 1-0-r, D, (4. 26)
where - 5 (2) (2)
< yAB> = /d N d Sp ¢, (SA) 7 (b~ SA"" SB) 5 (SB) s
RE S o, o) (4.27)

e s ) = faz o 3,0

Thus for heavy ion elastic scattering the Glauber model gives in the framework of
IPM (Eq. (4. 25)) the following expression:

>

-3 T
S 2 STl G SR v [ty STB[ AR Can) |
P(q) = 5% Jab eV 1m0 r DV | ¥ 5 [athe 1o , (4.28)

where in the second equation an exponentiation, justified for large A and B, has been carried
out,

Since the amplitude assumes the simple appearance of the Glauber approximation for
scattering in a potential field, the limit of large A and B is usually called the optical limit,
The optical limit of the Glauber model provides a bridge between the phenomenological approach
of the optical model and the microscopic description of multiple scattering, In fact, the optical
phase~shift and the equivalent optical potential can be expressed in terms of the microscopic
quantities : nuclear densities and profiles of the elementary interaction, From Egs, (4, 8), (4. 9)
and (4. 28) one has :

ir(b) = - ABL7,5D
(4.29)
3 2 '3 > - —~ .
= wi ] s d r b~ +s_)Q_|(r
V(b, z) 1vAB/d A‘/ ry @, (r Jr(5-5, +T ) el )

These expressions may be simplified by noting that the elementary profile (being of size
of the nucleon) is a very sharply peaked function compared to nuclear density, Thus to a good
approximation one may put:
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1. ia) | (2)

=B
5 (b -8) , (4. 30)

7(1'09—“5) =

where the coefficient has been established from the optical theorem, o N being the total
micleon-nucleon cross-section and q - the ratio of the real to imaginary part for the forward
elementary amplitude,

From Eqgs, (4. 29) and (4, 30) one obtains :

o N(1 _iq) (2) - (2)

. " 2 -5
iX(b) = - —'—“—-'27———-*'—AB/d 5 QA (b - aB) QB (SB) R

V(I) i v (2 la) ‘s'B‘/d I Q (x I ) Q (I ) °

Thus the equivalent optical potential is proportional to the convolution of densities of
two colliding nuclei.

The Glauber model has been extensively applied to the heavy ion elastic scattering by
Dar and Kirzon 4. 2). They write #he scattering amplitude in the form of the partial. wave
expansion., The phase-shifts contain the Coulomb part, corresponding to the interaction bet-
ween two point. charges, and the nuclear part which is put egual to half {(see Eq, (4,12)) the
Glauber phase %(b), as given in Eq.{4.31). The only parameters needed in the calculations
are thus ¢ » ¢ and the parameters of the nuclear density distribution. A systematic search
with a best-fit program has been done to find the "best-values® for these parazmeters, both for
a Saxon-Woods density and for a Gaussian density. The comparison between the theoretical
curves and the experimental data, for a wide range of masses and energies, is presented in
Figs, 4.5 -4,10,
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It appears that the angular distributions in Figs, 4.5 ~4, 10 are well fitted with GNN,
which is in significant agreement with the experimental nucleon total cross-section, The para
meter o is, In general, higher than iis experimental value, It may, however, be pointed out
that the corrections of higher powers of the nuclear density, which should be added to the phase
shift 2(b) in Eq, (4. 31), can be regarded as an effective correction to o™N and « .

As for the nuclear parameters, in the case of Saxon-Woods densities the fitted values
of Ty (R = roAl 3) fall into the range 1,0-1,2 fm {the lower limit is in agreement with elec
tron scattering data), and the fitted values for the diffuseness a take the values 0.5 -0, 65 fm,

Despite of various kinds of ambiguities in fixing the parameters, the comparison shown
in Figs, 4.5-4,10 demonstrates that the elastic scattering of heavy jons can be well reprodu~
ced (the greater energy the better) be means of the nuclear density and the free nucleon-nucleon
total cross-section,

4,4, - Exact solution and an eikonal correction, -

The eikonal technique, which is simpler than the WKB method, may be extended both
to larger angles and lower energies if it is combined with some known analytic solution, so
that the eikonal method is used only for evaluating corrections arrising from a small differen
ce between the actual potential and the solvable one. Such method was developed by Bartnik,
Iwinski and one of the present authors{4. 7) to deal with the screened Coulomb potentizl, We
present this method on the case of the Coulomb potential, where it was tested, and indicate its
extension to the case of a sum of nuclear and Coulomb potential. The last topic is currently
investigated numerically,

Ve Z.(e2
For a Coulomb point-like potential "V (r) = ——%—'—— we have

2
g1l 2 ] -
(" ‘2"“ v + VC - E) Q'JC 0 2
_ N2 (4.32)
i} V& T2l dker o
Yo =% r{i+in)e e 1F1(~117;1;:Lk(r-z) s
with :
' 1/2 2 -1
k= (2uE) ', =2 Ze phk)

y - being the reduced mass of two ions,

For V ¢ Vs e.g. for a screened Coulomb field we write the Schrbdinger equation in the forms:
5 g2 :
- Vv, +w-v)-8lv =0, (4. 33)

and look for its solution in the form.:

Y = fexpl(ik-1) . (4, 34)

So, f must satisfy the equation:

o
72 + 2ik-v - 26V, = 24(V -V, )]:‘ =0, (4. 35)
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and appropriate boundary conditions,

The essential point in the method of Bartnik et al, (4.7) ig to replace Eq. (4. 35) by such
1-st order differential equation which by definition will reproduce the known result given by
Eq. (4. 32) at all scattering angles and at all energies, It can be formally achieved by introduc
ing a fimction f, defined by :

1

L4

f exp(k-7) , ; (4. 36)
C C

and another function A which must satisfy the equation :
o i d
(2ikV -2pV, + A}, =0 . (4. 37)
The same A is then uged in an equation which replaces Eq. (4, 35). T is:
-
ﬂ_Zik-\?-Z[A,VC+A--2-M.(V«-Vcﬂf =0, (4. 38)

and in contrast to Eq. (4, 35) it is very easy to solve, The solution of Eq. (4. 38) is :

£ = f0 (4. 39)
where fl satisfies the equation:
eV £,0= BV =Vt (4. 40)
thus it is simply given as :
£~ exp[-i [-v)az] | (4. 41)
1 k c

with the z-axis along the directjlog I; It was found in Ref. (4.7 ) that the solution of the whole
problem written as ¥ = f.f; exp(ik- T) satisfies the exact 2-nd order differential equation
(4. 35) with an accuracy better than 3%, practically in the whole configuration space,

To apply the above method for evaluating differential cross-section for the elastic
scattering of heavy ions one must extend this method to include both the nuclear and Coulomb
potential, For two heavy ions the exact potential is taken as the square well in the inner re-
gion and the point-like Coulomb potential in the outer region. We have :

J - Vo for r<a
(4, 42)

AV for rza,

where a is a characteristic distance,

The Schrddinger equation is solved by taking the analytic solutions corresponding to the
square well and to Vi, and by adjusting numerically constants, requiring the standard continui
ty condition at r=a, This should be done without using the partial wave expansion, Having ex-
plicity such YWgxact We define fexact by :

P e:xp(il; ;) , (4, 43)

= f
exact exact
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and find the wave function for the actual potential

vV o= VN + vC R (4. 44)
in the folllowing form :
z
-5 >

- e - -
Y = quact expl:lk r-io (VN+ Vc vexact) dC] . (4. 45)
-0

The scattering amplitude is then calculated from the t~matrix element found by a numerical
integration of ¥ with V and a plane wave :

LxHtlkD> = <’\E'$VN+VClw> = (2n)"3/d3r[VN(r)+vc(r_ﬂ foxact *
- ‘Z
b expLi(i:--l_z')?- i —l‘l{i / (VN+VC - vexact) d§] =
-0

(4, 46)
_ _2\/ > /2’72 2,27 7
= (20)"" /dzbdb I (b]K -k lu'vN(\ b4z )+.VC(\}b +z )J f oot ™

Z

_ - ‘
x  exp|ilky-k})z- 11{‘1{/ (VNﬁ!-Vc _Vexact) dC] s
-0

e —>
where (k - k'), , and k, - k', denote the components of momentum transfer, perpendicular
and parallel to the chosen eikonal direction, respectively,

There are three numerical integrations needed in Eq, (4. 46) and the hope is that they
will be less time consuming and more stable than an explicit numerical solving of the Schri-
dinger equation for each partial wave. The advantage of our method should manifest itself
especially at medium and high energy where the number of partial waves is very large indeed,
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CHAPTER 5 - EIKONAL TECHNIQUE FOR INELASTIC PROCESSES, ~

5,1, - Coulomb excitation, -

The simplest inelastic process is the Coulomb excitation, Only the energy is transfer
red to the target in this process, and the interaction potential responsible for excitation is the
well known Coulomb potential, There exist programs which allow for the numerical evaluation
of Coulomb excitation cross section within either classical, or semiclassical or quantal sche~
me based on the DWBA method. Although the agreement of results evaluated from these pro-
grams and the experimental data is satisfactory, the numerical routines are vary lengthy and
preclude any inside into the formulae. Goldfarb and one of the present authors(5. 1) applied the
eikonal technique to get analytic expression for Coulomb excitation, and in this way to gain
some understanding of its dynamics, In particular they looked at the role played by the nuclear
moments in the expression for the transition matrix element,

Three points must be noted before discussing the final result:

a) Most of the data for Coulomb excitation process is concentrated at large scatiering angles,
because in the forward direction the Rutherford scattering dominates the yield;

b) Coulomb excitation process is an inelastic one, and it may be associated with some featu~
res of an off-energy shell t-matrix element, with a shift of energy corresponding to the ex
citation energy;

c) For energies below the Coulomb barrier the DWBA. scheme is quite adequate, and both the
Coulomb distorted eigenfunctions and the interaction Hamiltonian causing transition are
well known,

Because of the first point one must deal with such an eikonal scheme which would give good
result for large scattering angles, Luckily enough in the case of a point-like Coulomb poten-
tial, approxirnated as a limiting case of the Yukawa potential :

Z
Volr) = lim exp(- B:r')“'-Pr—'f‘-
B0

s (5.1)

one can show that choosmig our elkonal direction along the me an value of the initial and final
relative momentum % = */2 (k l-kf), and defining the eikonal propagator with a pole depend-
ing in a special way on the scatl:erlng angle, namely :

~ - 1/2 1/2 -1
G, = m 1(ZmE) / [p“ - (2mE) ! cos-g - is] » (5.2)
it holds that the eikonal t-matrix t defined as :

-~

—(Zn) m~\1< lV V G V +V VCGch""

'"fi> (5. 3)

considered on the energy shell, coincides with the exact on-shell scattering t-matrix, It is
most important that the agreement holds for an arbitrary scattering angle and an arbitrary
energy.

Coming to the 2-nd point we note that there exists an exact expression for the half-
-off-shell Coulomb t-matrix, Considering the case [ kf\\ | &, \ i, e, the one interesting for
Coulomb exc 1;taztmn, we write the result of I‘ord‘5° 2 :
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half-shell _ 1/2
1;exac’c =-2(2m ’71) kini

- =
| x

-2 2 2 -~ l --21 1"71
o kfi %L(ki - k)

E -k
k=%

(5.4)

- -1
X expL’—li-v-+iniln(nie )] s

where N is the Sommerfeld parameter with k = t lgi ] .

The exact half-off-shell Coulomb t-matrix may be reproduced in the eikonal scheme
if we choose a new eikonal direction and also consider heavy ions, so that MNis Me >> 1, For
large values of the Sommerfeld parameter one can analytically evaluate a first derivative with
respect to the charge of target, of the half-off-shell eikonal t-matrix, Denoting by ¢ the ra-
tio of the magnitude of the parallel component of momentum transfer to the perpendicular
component : '

~ir -5 | -1
e = kan - kinl ke, - kiLl : (5.5)

where 1 is along the eikonal direction, one can find ;

5  half-shell . -1 1/2 |—> = |-2-2in, -1]2 1/2
= .. . - 4 i b
dz; ‘eikonal 232y () Tk - K H i) x
[ -1 . w1
X exp -Znitan o + 217)i 1n(2"7ie )
The direction I , i, e, the magnitude of @, is fixed by the requirement :
9 ha]_f..shel]. 3 half-shell
5o b ek (5.6)
0z, eikonal d z, exact
It gives ¢ as the solution of the following transcendental equation &
2, -1 1, .22 2 2. = | -27
(1+e%)o exp(-4nitan Q) = 2711 In ni(ki -kf) ki-kfl J . (5.7)

Finally, we come to the 3-rd point and consider the Coul omb excitation process within
DWBA scheme., Let us .genote the relative position variable between a point-like projectile and
the centre%of target by r and a variable denoting position of distributed charge in an extended
target by r_. Then, the interaction Hamiltonian describing the relative motion of the projectile
in the field of charged target nucleus is :

2 [ ~-«l—1 _ 2 -1 z[l-» - -1 -1:1
+ Irp-r = Zer +Ze rp-—rl - . (5. 8)

This splitting of the Hamiltonian into the first part which generateg the distorted wave eigen-
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functions and into the residual part, depending explicitly on rp is characteristic of the DWBA
procedure,

The Coulomb excitation transition amplitude is given by the matrix element evaluated
between the target's nuclear states of a Coulomb distorted amplitude, More explicitly, we
have :

T

Coulomb excitation / Loy ( l DWBA. .> )‘ )\> (5. 9)

i,
i

—ch = .
where | 95’i(rp)> e f(rp)} are the target states, and :

DWBA - 2
= - r' ; k Py r
tfi (rp) (27) m (\ZC[ . )

- 21> = -1 2 -1 >
7
Z,e |rp-r' - Zte r xc(ki’ r) 7 (5.10)

> s > -»
with % (kg r} and xc(k?i" r) denoting the Coulomb distorted waves,
We write ¢

v = Z ezin_r , v =z el (5.11)

DWBA,>

and evaluate 'Lf (r } in the eikonal framework splitting it into four parts :

DWBA (2)

> (]) >y (1) (2),» -
tfi (rp) = % (rp). 7+t (,.r'p) t R (5.12)
where :
t(”(FP) - -(2m)°m (Eflv;; 1-EMv e a®valiy LR >
1 - L 2m) m\kf!V(l <x(')v+G(L)vé( Y - ..)|1?i>

-y
k;)

2=\ _ 2 L ) L )L, ) S ¢ ) NESR () Wi )
£7E) = - (2m) m<kf|"\/(--GO + G VG - ...,)vrpkl-cr0 VH+G VG TV -LL)

(2)

2 = Lem)?m (& IV( C‘ )+("(f) () -V _agi)v+a(1)v2:(1) ”)II{T) )

with E;‘rg) (]) corresponding to the initial and final energy, respectively, t(l) and t(2) are

essentially the half-off-shell {=matrices which were considered in the 2-nd point, t(l)(r )
and (2 }(F } are similar guantities, but because of the appearence of V7. they reguire e a-
luatlon of ‘slightly modified impact parazmzeiaar integrals than these which are needed for t
and ti2 . For example, we bhave :

a

52 ‘1)(;9 } = ._zquZJeXpQ -ir, 6) / dbbJ (bA)K l__(b +s .-2bscosg)é]

(5.13)
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with r) = rp-kk , 0= kf -klu e(1+ 0@ ) ﬂk - K, , 8 = (rp)—‘-"- @- the angle between
rpy and (Kp-Kp)y and =) KG-Kly

It can be shown, that for large values of the Sommerfeld par ameter the final result
for the integral in Eq. (5, 13) is similar to the corresponding one for % 1) and can be obtained
from the latter one by the substitution :

lkﬂk lk-kl [..9(1+@) (f ).LJ' (5.14)

However, for large 7 >>1, @ is very sma]l and with a good approximation may be
neglected in Eq, (5. 14), The main dependence on T.., then remains in Eq, (5, 13) in the factor
exp(~ir, ¢ ). This factor is expanded in the power series :

exp(-ir, 0) = 3 (-ir, &)@, (5. 15)
L

and a specific transition with multipolarity L, is weighted by oL, The powers of 1, § can
be better understood if we write :

—3p
-r-s

I
-2 ‘
By wz) . (510

ryd =y, (ke ) = (%W)l/zrpg(l"' 92)"1/2u

H f

Then, returning to Eq, (5. 9) we see that in the matrix element for Coulomb excitation there
will be factors of the type :

o) [ LM(—E) 93 ) ~ VB(EL) | (5.17)

determined by the reduced transition probabilities of multipolarity L for the target nucleus,
Numerical evaluations of the Coulomb excitation matrix elements for either a or O scat-
tered on 208pp are currently investigated by Goldfarb and one of the present authors(5. 1),
This method may be also extended to two-step processes and applied to the evaluation or re-
orientation effects,

5.2, - Transfer reactions in the DWBA scheme with the eikonal distorted waves, -

Here, we are considering heavy-ion transfer reactions well above the Coulomb barrier,
The conventional DWBA calculations are very laborious because of very many partial waves
and a simplification of the 6-dimensional DWBA integral by neglecting the recoil is forbidden,
because recoil plays and essential role at higher energies, as it was noted in Chapter 3.

To s1mphf§r the DWBA codes at energies well above the Coulomb barrier Da Silveira,
Galin and Ngo( proposed to evaluate distorted waves in the eikonal approximation, In ad-
dition they neglected recoil and assumed a localization approximation, These additional as-
sumptions, especialy the first one should not be made at higher energies, but Da Silveira et
al. wanted to have simpler expressions to handle, and on such expression they tested their
DWBA-high-energy scheme, The formula for the nucleon transfer differential cross section
is the one proposed by Buttle and Goldfarb 4), and given explicitly in Chapter 3, Further-
more, Da Silveira et al, assumed that for high incident energy the Q-value of the reaction is
small compared to energy, so they put ki ® ke = k, and they disregarded differences between
optical potentials in the initial and final ¢hannels, putting :
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i i
vopt(ri) Az Vop "

Y = 7 r). 5.18
() = 7 ,0) (5.18)
Then, the product of the initial and final distorted waves is calculated in the eikonal

scheme :
0

#* .
)z = =7 2 ~ SR L -1 s r)dz! 5 19
27 ) 2 (ke T) ™ exp |igrh - i(bv) vopt( ydz' |, (5.19)

A e - -
where | gl= 2k sing- and b is comnected with 7 by % = b+kk™lz,

The simplification achieved on the r.h, s, of Eq. (5, 19) enables to write an expression
on Ty 2 (@) defined in Chapter 3 in the form of a one-dimensional impact parameter integral:

@O0

7 _ -2
T, =y, (50 f dbb T, (qb) K \)2m32ﬁ b)n(b) , (5.20)
0
with @ —_
n(b) = exp }i—i(ﬁv)wl / ‘;opt(r) dz“ s 1+ 3 even,
=0

and J 2+ K are cylindrical and second order Bessel functions, Taking advantage of the loca-
lization approximation, one can use an asymptotic behaviour of Ko and put in (5, 20) :

KO(\;}ZmB;Fb) =4 Ea:&p( V’ ZmB::TT::—éﬂbﬂ b—l/z. (5.21)

In Figs, 5.1 and 5, 2 we show the resulis of Da Silveira et al. (5.3) for the transfer
reactions induced by the 4N projectiles on the Ag target, The distorting optical potential
was found by fitting the elastic scattering data; various forms of the nuclear part of the po-
tential were tried., As it seen, apari from the region of small angles, the agreement between
theory and experiment is quite good,
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A ARTA \\ 1o FIG, 5.1, - Neutron pick-up reaction at 78 and
kY calculations using two well shapes; square

’ h\ {dashed curve) and Saxon~Woods (full curve) -~
~ Ref, (5, 3), Experimental data are from Ref,
% 60 (5.5).
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FIG. 5.2, ~ Two-nucleon (proton and neutron) transfer reaction : pick-up (left)
and stripping (right)., Curves are the result of theoretical calculations using a
Saxon-Woods potential - Ref, (5, 3), Experimental data are from Ref, (5, 5).

5,3. ~ Heavy ion transfer reactions in an eikonal scheme, without DWBA., -

The formalism presented in this paragraph is an extension to the transfer reactions of
the scheme described in 4, 4, It is currently investigated numerically, so we shall give only
the main formulae and state our motivations.

Our aims are:

a) Include a 3-body description in transfer processes (¢q,t) + Co—>cq + (cz, t) where the three
"bodies" are cy, c,, 2and t (see.Fig. 3.6 - pag. 23);

b) Include recoil and most of the 3-body kinematies, except for the internal motion in the target;

£) Avoid a partial wave expansion in the relative motion of ions by introducing the impact para
meter representation;

d) Benefit from the simplicity of the eikonal formalism, but in such a form that it works for
an arbitrary scattering angle and energy, i.e. use eikonal only for the evaluation of a cor-
rection to the exact, analytic solution,

These aims are realized by starting from the definition of the 3-body transition opera-
tors. It is useful, and a common practice among people doing 3-body calculations, to denote
the three particles and the three possible 2-body bound states by the same index «, §, 7, So,
the particle a, like ¢y, 1s approaching the bound state (f,7) = like (c 12 t) and in the final
state emerges particle B, like ey, and the bound state (a,?) = B, like (cq, ).

Then, if 2-body interactions between the three pairs are denoted as Vg » VB R V}, , cor
responding to the pairs (8,7), (a,7) and (a, 8 ), respectively, and :

—

3
v(l:,B =V _Va.’ﬁ : Vs Z.—.: v(], ? (5.22)

a =1

the 3-hody transition operator describing the process:
e+ (B,7) — B+ (a,7),
is :

Tgg = <¢3W5| w:&+)> =*‘<”’§3~)W¢I ¢a> . (5.23)
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where ¢a are the channel wave functions in the initial, final state made out of a plane wave
associated ‘with @, B, respectively and the bound state wave function (8,7 ) and (a,?) corre-
spondingly, and Yo,p BTe the wave functions corresponding to the interaction in the initial,
final state, respectively,

To evaluate Yo, 8 one either simplifies the procedure and treats the elastic scatter-
ing processes :.

o +(B’}’) - a +(16{:7)9
(5. 24)

B'i"(a,}') - ﬂ +((Z,)’),

in a quasi-2-body spirit, and applies the scheme given in the subsection 4, 4, or treats elastic
processes (5, 24) consistently in the 3-body framewbrk, and evaluates the 3-body eikonal Green
function first neglecting the relative motion in the ( Bs7) or (a,7) system, and then averaging
over the wave function of these states, In the 2-nd approach we work with potentials V, and
V), for the first process, and Vy and Vy for the second process, instead of an effective po~
tential between « and (f,7), and g and (a,7), as it is in the 1-st case,

Having wa, y in the impact parameter representation we evaluate integrals in Eq,
(5. 23) numerically, Of course the potentials Va, g,y mustbe determined first, either from
the existing fits, or from new fits using the scheme given in the subsection 4, 4 for pairs (8,7 );
(a,7) and (a, §) respectively, The matrix element in Eq, (5, 23) contains either 3-dimensional,
or 4-dimensional integrals, depending on the way we treat the eleastic processes (5.24), In
any case we gain in comparison with the full DWBA scheme which preserves the recoil, incox
porating many 3-body aspects of transfer processes, except for the internal motion in the
bound systems in processes (5. 24), which is only treated in an averaged way, A nice feature
of this method is that it is not bounded to either small angles, or large energies, It should
provide a scheme in which we can study the dynamics of heavy ion processes consistently at
various energies,

5, 4. - Faddeev-Loyelace equations in the eikonal approximation, -

Finally, we come to an eikonal scheme in which one doersl%;cvri’ce the solution for transi-
tion operators, but integral equations for these quantities, Such a scheme can incorporate 3-
~-body dynamical effects in all possible configurations, without some averaging procedure which
was needed before in discussing processes (5, 24). However, this is done on the expense of
solving integral equations, The eikonal technique serves two purposes, First, to simplify the
Green function, second, to bypass partial wave expansion,

To make this program more definite we briefly mention the work of Janev. and Salin(5'6)

where a non-stati onary scattering theory was used together with the straight-line eikonal ap-
proxirnation, The channel wave functions are taken as :

o

> . . - . -1 2
b, = 9,(x)exp ElEat - ipv- T - 1(2m3) 1p v2 t] s

(5. 25)
o= 9,(8) exp|-iE,t +iqv- T - i(2m ]i"lqz'vzt s
B~ 78 i : 3
. . e - - . - mlm3 m2m3
with x = Tgor S % Taq, rij =Ty - ?j’ p = Q= — Y- the relative velocity

my gy my+m,

of the incoming particle and the target in the initial channel, <pa(§), P, (3) the eigenfunctions

for the bound states of particles (1+3), and (2+3), respectively, and E, 8 the corresponding
3

eigen-energies, In the straight-line eikonal approximation we have :
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where t denotes time,

Janev and Salin defined appropriate 3-body transition operators and wrote the Faddeev-
-Lovelace integral equations for these operators, The structure of these equations is similar
to the standard 3-body equations, however an important simplification, caused by the eikonal
approximation is the reduction of dimensions of integration from 6 to 3+1, An by-product of
the work of Janev and Salin is an explicit dependence on one potential of a transition operator
evaluated in the approximation when only two of potentials are kept and one is set equal'to zero,
The whole influence of the 3-rd potential reduces merely to a phase factor :

+oo

A

exp (-1 / V3‘(t) dt) .

This is an important result in connection with our discussion in the previous subsection, where
one of the interaction was only partially included in the wave function over which the processes
(5. 24) were averaged,
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