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1, - INTRODUCTION, -

One-of the-dreams:of theoretical physicists has been for:a long time; the search for:
non trivial generalizations of space-time symmetries mainly in order-to incorporate; notin an .
ad hoc way, properties that fundamental interactions of particles exhibit'in Nature-beyond rela.
tivistic invariance,

Two years ago Wess and. Zumino(g‘a" 91, 89, 90)','" generalizing from:.dual-model super=

~gauge symmetries, succeded to construct an algebraic:structure in physical four-dimensional
space~time, now called supersymmetry, whichis quite remarkable in at least:two respects:

a) the irreducible representations of this symmetry combine fermions with bosons ;
b)' it is a truely relativistic spin-containing symmetry and the struetures of known previously-
stated no-go theoremst60:11) are circumvented,

The algebraic-structure underlying supersymmetry is not.a Lie algebra and this.is
the main reason why previous-attempts to construct non trivial generalizations-of relativistic -
symmetries in the framework of conventional Lie algebras failed,

Surprisingly enough, later investigations have shown that almost all:‘known renorma::=
lizable interactions of local Quantum Field Theory can be arranged in such-a way-to manifest:-
this symmetry,

Moreover, this symmetry has beenshown not only to be preserved by the .quantum:
corrections but also to provide the less divergent model field:theories known up to now,

It is theaim-of this artiele to give an almost.complete review-of the main applications
of supersymmetry invariance - in the Physics of particles and fields,

(x) = CERN, Geneva(Switzerland); Address after December 1975% Liaboratoire de Physique .
Theorique; CNRS, BEcole Normale Superieure, Paris (France);
Permanent address ;:Lahoratori-Nazionali di Frascati (Italy),



2. - THE SUPERSYMMETRY ALGEBRA. ~

. The supersymmetry algebra, as naturally arises generalizing from dual mudel‘s(l’
42, 517, 70), is obtained adding to the conformal algebra of space-time two Majorana spinors
Qqs Sq and a chiral charge Il. :

The two spinor charges, to be called restricted and special supersymmetry trans-
formation generators, admit the following commutation relations with the conforimal and chiral
charges:

" e be [ou] -3 5
[ Qe M| = 109, (80 M) = 106,550
[@wR] - O (S ] - (-1)
QK] =-i0,8), (50 .] =100 @,
Q1T = - 107, [850 1] = 51 755),

and the following anticommutation relations among themselves

A = o B ' 5, = ] M
{9 QB} ?Pulag 1 Sﬁ’} AK“ZB (2-2)
<3 - P‘v 5
{Qa, SB} =2(6""M - D+ 2y,

~ Itis for instance in this general form that the supersymmetry algebra i four-dimen
siong was originally discovered by Wess and Zumino 91 .

We note that we are using a Majorana representation for the y matrices i.e. they
aré real and-satisfy the properties

2 2

= o ey = = l D
7 Y 1 Oy = I 7[4’74{] (2-3)

and -
P = <P’Yo = 7P for Majorana spinor, (2-4)

If we introduce parameters a's which are totally anticommuting spinors (they can be regarded
as odd elements of -a Grassmann Algebra) ~

0.0 = 0.0 i, = 1,...,4 (2-5)

then the anticommutation relations (2-2) become commutation relations among the infinifesimal
action 6 = @Q of an element of the aigebra, Moreover we observe that a general supersymme-
try transformation is an eight (anticommuting) parameter transformation because we must asso
ciate a Majorana spinor a© to the charge Q, and an independent Majorana spinor a' to the
charge Sy, they can embedded in a linear x dependent spinor'“*

a(x) = a® + ’YP’XP'G' (2-6)
which is in fact the most general solution of the differential equation

1 = j
('rpav +'yv6pL -5 8 9)alx) = 0 (2-7)

which ensures that the product of two such transformations



E F‘L(-X): = St-ia';i(x.)fyna'z(x)k . (2-8)

is indeed a conformal transformation of the space<time point x, i, e, it satisfies the differen-
tial equation

. I
3 3 | - = L] | = 0 -9)
GMEv(X) a'ug'r&(x) 5 gpviﬁ & (x) 0. (2-9)
We know that the general solution of (2-9)is

2 )
- (x) = +o xV+ + a -2 X =@ ) '9-10)
§p(x) e te x e Fax x 2 (o, mw) . (2-10)

this means-that the parameters involved in (2 10) can be uniquely expressed, because of (2~8);
in terms of the anticommuting parameters “1 2 Gf, @ 2, @2 as the following bilinear expres-
sions

c =2i a]?y aag’ R
a, =21 ""]1 Y azl ’

o (2-11)
€ = 2i(ay ad - ii;zaﬁll ),

(al 'Yp.a'l’ ]“2’ a‘? }_YIJ’, ] )»

the remaining independent bilinear combination of the a's being the parameter of the chikal
transformation

. o c—-l i -—1 i -k
n = 4i( @y g a‘2°; - 4, 'yaatf Y. . (2-12)

We remark that the above algebraic system given by eqs, (2-1), (2-2) can be written in a much
smore elegant form if we embed tha two spinor charges in a eight-dimensional spinor 2, which
transforms according to the Dirae representation of the spinor group SU(2,2) (locally isomorp
hic to O(4, 2)) and the corresponding 15 conformal generators ina 6x6 skew-symmetric ma-

trix Jap which corresponds to the generators of the O(4, 2) (conformal) algebra,

Then we get(m)
- 1= i b,
[ %2 7aB] = YaBa %

[ x ’HJ 4 771 Zb» (2-13)

1 a— AB> v
{ ’a'xb} 20, Tap ¥ gD -

ABCDEF

. X o
where v, = & ¢ YYBYC DR F

is the chiral transformation matrix,

We observe that the previous %lgebnwai‘c system, which is an example of Graded Lie
Mgebx'ax(12 18, 39, 53, 54, 58, 59, 66, 85, 43) " ¢ou1d be useful, with regard to possible appliea:tions
to Physics, only for massless systems, ThlS is of course due to the fact that such a cloged al
gebra caontains the conformal charges, However there is a non trivial subalgebra 9;2 73,33,9, 72)
of the previuus strueture generated by the Poincare generators MPW’ P,1 and the spinor charge
Qq

{ou G} = -2mty (2-14)



EREARK [@p M,,] -i60,,Q), (2-15)

whose elements commute with the square mass operator p° Pp and which therefore can very
well be a symmetry of a massive system,

We will confine ourselves, in the sequel, to the smaller graded algebra defined by
eqs. (2-14), (2-15) in order to avoid the usual problems connected with massless particles,

Finally we note that the product of two transformations generated by the Q, give,
because of eq, (2-14) ’ .

[6p05] =[O ,Q] - -23i17'"a2Pp (2-16)

a four-dimensional translation with parameter a T - 23[1 Y, 09 which is a nilpotent quantity i.e,
aP =0 for P=<38 due to the anticommuting properties of the a's, As a consequence any trans-
1dted quantity f(x+a) will depend only on a finite number of derivatives at the point x.

We shall see in the sequel that this is the fundamental property which allows to con-
struct representations of this relativistic symmetry with a finite number of particle fields,

3. - NON TRIVIAL MIXING OF INTERNAL SYMMETRIES WITH SUPERSYMMETRY, ~

The supersymmetry algebra given by egs, (2-14), (2-15) can be generalized in a non
trivial way, assuming that the spinor charge belong to some representation of an internal sym=-
metry group G. This has been achieved by Salam, Strathdee (76, 77, 78) and Wess , Zurmino 00 .

Imagine the previous algebra written in two component Weyl formalism

{Qa’ QB} =0 1. Q) - o (3-1)
(ondit-on  [%eR] o

Then if-the Q‘f; transform now according to some representation of G and the '@%‘ according to
the ¢complex conjugate representation, the algebra (3-1) will become ! ’

{hay} - {35 a} - o

L oMl | LM p o
{Qa, Q } 20 oa*;} P, ) 5.2
[Qi', P ] =0 LQ];, 'Bl] - is{‘MQI;’[

[B1 By = 165m5,

1

where SLM are the hermitian matrices of the representation to which the QI; belong and Bl
are the generators of the (compact) internal symmetry group,

. Of course we have written only the relevant commutators and anticommutators, the
others being obvious; ’ ) '

. Actually the algebraic system given by (3-2) g:ah be further generalized in the sense
that the first anticommutator does not need to vanish, Namely it can have the form

‘{Qf;, QI{;/[} = eaBZLM ’ (3-3)
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where -are operators which commute with any element of the graded Lie algebra

LM 1 . o o> LM .
[:z , (x] =0 for c=z"Yq, PoM LB . (3-4)

It has been shown by Haag and collaborators{47) that the above graded Lie algebra is indeed
the most general (non trivial) symmetry of the S matrix, for massive systems. The only furf-
her possible generalization consists in adding an internal symmetry G' which commutes with
all elements of the graded Lie algebra, Note that the only freedom one has, is the group G and
the representation for the spinor charges, '

Surprisingly enough Haag and collaborators(“) have further shown that, if the inter
nal symmetry is combined with the enlarged algebra (2-1); which holds for massless particles
(note that this is true modulo infrared problems !), then the group G itself is fixed to'be U{N)
and the spinor charges are in the fundamental (N dimensicnal) representation of the group. The
only remaining freedom is, in this case, jusi the number N of spinor charges one has and a
complete fusion among space~-time symmetries and internal symmeiries is obtained, We obser
ve that only in this case all boson charges, namely the internal symmelry generators and the
conformal charges, can be written as well defined bilinear expressions of the Fermi charges,
so this is probably a possible reason why in the zero mass case the algebra is so stringent,

Unfortunatly the more general algebra we are talking about is not useful in order fo
construct field theory models because it always leads o non-renormalizable interactions. Also
from a phenomenological point of view, the algebra considered in this section, turns out to be
not very interesting because the spectrum of states is rather unphysical {apart the problem of
mass degeneracy), for any choise of the group G and of its representations, We will discuss
these agpects in the next section,

4. - PARTICLE SUPERMULTIPLETS, -

(

Following Salam and Strathdee’ 78, 77) the representations of the supersymmetry 81176)

gebra can be studied in a very simple way using the Wigner method of induced representations

Consider for instance the previous algebraic system of commutation relations
L - ~ L sy L
[@; B, ] =0 (o, M ] =ie,,@),

- (4-1)
L =Ml LM p
{Qa, Qp % =9 Tag B

where QI&‘ belong to some representation of an internal symmetry compact group G, The con-
struction of unitary representations of (4~-1) begins with the observation that the Q's charges
leave invariant the manifold of states with given momentum P ., On this manifold the anticom-
mutators. of the Q's become a fixed set of numbers and in fact these commutators generate a
Clifford algebra, We consider first.the simplest case where there is no internal symmetry at
all, and we restrict first to the case of non-vanishing mass, The four-momentum, being time-
-like, can always be assumed of the form P, = (M, 0).. The little algebra of the supersymme-
try algebra.is therefore generated by the Q's and by the angular momentum J, the 0O(3) group
being the little group of a time-like vector, In ferms of Weyl spinors the anticommutation re-
lations in eq, {(4-1) become

{or b - {TFt -0 {0 @l-ay. (4-2)

having.chosen a suitable normalization,

The Q's satisfy the algebra of creation and distruction-operators and can be used in
a familiar way to build a 4-dimensional Fock space with positive metric,Indeed one can start
with aparticle state | J, J3 to be considered as the Clifford vacuum i, e,



Q. 33> =0 (4-3)
and build up the states
v B ’ '1’11 gy . .
{0 dgnyn,> = Q7 Q715,30 (4-4)

where ny, n, take values (0,0), (0,1), (1,0), (1,1), These states span-a 4{2J+1) dimensio~
nal irreducible representation of the little algebra, The spin-parity content of such represenw
tation is (J-1/2)7, 3%, 37, (3+1/2)"" where n=ti, T1 for J integer or halfinteger. Such
irreducible representation is therefore, when reduced to the Poincare group, the direct sum of
four inequivalent representations

IM, J-1/2,7> &M, J,i1D> | M, J,-ind> @ 1M, J, -1 (4~5)

which are mixed together by the spinor charges Q's,

We consider now some examples, The simplest representations are those with J =
=0, 1/2, 1, 3/2, Their particle contents is respectively: a scalar, a pseudoscalar and a spin
1/2; a pseudoscalar and a spin 1/2; a pseudoscalar (scalar), a vector (pseudovector) and two
spin 1/2; a vector, a pseudovector, a spin 1/2 and a spin 3/2; a pseudovector (vector), two
spin 3/2 and a tensor (pseudotensor),

In the case of zero mass it can be show that there are only four physical states span
ned by the Q's (J#0) of helicities i, Y+l /2). The second and the fourth of the previously
described multipléts contain messless particles of helicities respectively (1/2, 1) and (3/2, 2),
‘and can be therefore regarded as the multiplets which contain the photon and the graviton in a
supersymmetric world, The reason why, for zero mass, there are only two helicity states, is
very simple : if Pp is light-like, then it can be assumed of the form ]?‘I_L =(1,0,0,1). The little
algebra becomes

{AQ]_: 31} =1 {QZ" .Qzlj = {Q]_: "ﬁz} = {él,'Qz }=()(4“‘6)

the physical states are [A> and Q14> , while QylA>, Q1Q2M> are zero-norm states,

We now consider particle supermultiplets classified according to the supersymmetry
algebra non trivially mixed with internal simmetries, As before, the rest frame anticommuta-
tion relations are

{ab, o} § - tal, o Yo -
{oh. o5 |

I the QI&‘ belong to a real n dimensional representation of the internal symmetry group G,
then they will give 22n ‘independent new states when applied to a given state which/as a ground
state, In the'case where the representation is complex thay will erect 24n independent states,
The dimension of the representation of the little algebra will be 227 times the dimension. of
the ground state, We are going now to consider some examples, Take the Qg to be in the fun-
damental rappresentation of SU(2), then n=2 and the algebra will give 16 new states when ap-
plied to a Clifford vacuum | J,J 3; L, 13 > defined by the equation

6LM

i

buf -

Qz19, I3 L 1> = 0, | (4-8)

Consider the lowest representation, namely |J, Ja; 1, I3> =}0, 0> . The (J, I)P content of the
states:of the little algebra will be

(0, 0" @ (1/2, 1/2) @ (1, 0) @ (0, 1)” @ (1/2, 1/2)" @ (0, O)* . (4-9)



7,

The structure of any irreducible representation will be given by vector multiplication of such
representation with an O(3)®SU(2) multiplet (J, I) which acts as a ground state. It =i}l be no
ticed that the rest frame states can be classified into SU(4) multiplets, namely as

16 = 1®40604@1 . (4-10)

This is because the rest fr'e;me algebra contains the SU(4) algehra as a subalgebra, Its.gene-
rators are given by '

%{Q]J’ 151;[ } . , (4-11)

This ig trlie in general, in the sense that, if we start with n spinor charges QId’(L=1, ceeesl)
the 247 (2 n) states can be uniquely decomposed-into a direct sum of irreducible representa-
tions of the SU(2n) (SU(4n)) algebra, the spin running from 0 up to n/2(n),

As an other example, consider the Q][; transforming according to the vector repre~
sentation of O(3), In this case 22" = 64 and the states can be classified according to SU(6)
representations

64 = 1®601502001506@ 1, (4-12)
The spin-isospin-parity contents (J, I)P of these representations is

0,07 ® (1/2, 1) ® (0,0)" ® (1,1)" @ (0,2)" @ (3/2,0 @ (1/2, 1)
. . . (4-13)
e (/2,20 @ (0,07 0 (L1 0 (0,27 @ (1/2, 11 © (0,0)".

As a final example we consider the case where the charges are in the quark repre-
sentation, i.e. they are SU(3) triplets, In this case the lowest representaiion is of dimension
212 = 4096 and these states can be classified according to SU(12) as

4096 = 1® 1206660 220® 495 ® 792 ® 924 ®
— e ' (4-14)
792 ® 495 ® 220 @ 66 ® 12 @1,

The maximum spin is J = 3 (singlet). Of course all the unitary representations of the super-
symmetry algebra are obtained by vector multiplication of such lowest representations (where
the ground state is a scalar singlet) with an arbitrary representation of the internal symmetry
group and with an arbitrary spin carried by the ground state, The dimension of a given repre-
sentation will be

D = 2%y (2J+1)xd, (4-15)

Being J the spin and d the dimension of the representation which defines the ground state,

5, - SUPERFIELDS AND LAGRANGIAN MODELS; -

The first non trivial representation of the supersymmetry algebra given in the litera
ture was obtained by Wess and Zumino(91) in the following form
0A(x) = ay(x)
0B(x)
oy(x)

i

'E‘Y5QP(X) 5 (
9, (A(x) - v5B(x)) vHa + (F(x) + v5G(x))a (5-1)

n



OF(x) i'ti'y”a”w(X) (5-1)

0G(x) = avgr's ¥ .

Where A and F are scalars and B and G are pseudoscalars, being ¥ a MaJorana spinor,
Note that, on the mass-shell, the following relations hold

(O-mdA = (0D-m?)B = 0

(5-2)
iy o +m)y = 0.
Which means that the representaion is reducible because
d (mA(x) + F(x)) = 0(mB(x) + G(x)) = 0 (5-3)
and therefore one can take
F(x) = - mA(x) G(x) = - mB(x). (5-4)

This shows that the multiplet of fields given in (5-1) describes the off-shell particle field mul-
tiplet which corresponds to the J=0 representation according to the nomenclature given in the
previous section,

In order to construct field representations of supersymmetry, following Salam and
Strathdee(73), one considers the action of a group element e~ -%Q over the group manifold

e_lx.p e- 0Q - e--1x-P -~ 9Q ) (5-5)

From the anticommutation relations of the Q's one gets

-7Q -ix P -0Q -i(x +idy0)- P ~ (0+3)Q
e e = e

or in infinitesimal form, for the "superfield" @(x,0) = e-J'XP"OQ #(0, 0)
= - -—-a=_- + 3ok - 5.
op(x,0) = (-7 +iv Oap) p(x, 0) (5-6)
analogously
0 p(x,0) = iap¢(X: 0)
(5-7)
- s s LB e
04(x,0) = -1,(xpa,, X0, Oaw 26 ) §(x, 0)

respectively for translations and Lorentz transformations,
Following Ferrara, Wess, Zutmino(33) it is convenient to use Weyl spinors 04 3&
- related to the Dirac spinor 8, by the relations

-

1 . , s
0, = —2'(1 -175)0 0y = %{- (1+175)9. (5-8)

Them it follows that the superfield can also be written as

-ixP + i0Q +i0Q

#(x,0,0) = e ¢#(0,0,0) . (5-9)



The main point is that, due to the anticommuting properties of the 0%, @(x, g, 0) is a finite
power series, namely

#(x,0,8) = C+01+6X+00M+00M

- —_ - (5-10)
+ Oopﬁvp‘ +000)+0002+00806D

where, without loss of generality, we can assume ¢ to be real,
Because of the transformation law (5-6) one easily realizes that the individual com«

ponents transform into
c—1 104, M, M%, v, M, M* > 571,

(5-11)
A — oM, aMS, 8 vy D D — 34

under supersymmetry transformations, In terms of component fields one can write the infini-
tesimal transformation as follows

C 0 idv, 0 0 ] 0 0 - C
x ~Y57'0a 0 & vga yp’a 0 0 3 4
M 0 igy.s O 0 0 ia 0 M

é N = 0 igygra O 0 0 i‘a'ys 0 N (5-12)
vy o mza*pL 0 0 0 ia'yp 0 | ‘ Vp
A 0 0. v0a vgY'da -ZGWG”a 0 ygo ‘: A
0 0 0 i} 0 iy 0 D

So one sees that, as expected, the superfield notation is nothing but an economic wayto deal
with matrix multiplic«ation(62 .

In order to further develop the tensor calculus of supersymmetiry we observe thatthe
group-raanifold can be parametrized in three different but equivalent ways 33 s
-iXP + 10Q + 10Q
e-ixP + J'Lg(? eIOQ {5-13)
SixP 4+ i N
o ixP + i0Q e;OQ ]

The three expressions in (5-13) correspond to three different (equivalent) realizations of super
symmetry representations i, e. to three different definitions of superfields which are related by
the following identities

$(x,0,8) = P,(x +iOaM-6, 0,8) = Pylx _,19%5, 0,9 . (5-14)
We note that, once a superfield has been defined as type I or II, it becomes intrinsically com-

plex so that the reality condition cannot be longer imposed,

This fact can be better understood from the fact that iO-‘aFLE is a pure imaginary shift
on the first argument,

The group action on @, and P, is respectively

- & R ) '
‘sa¢1 = ((1—5‘-5. +a—6—.g.-+21190paap)¢1 . (5-15)
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U N IO .
‘sa¢2 = (a—g +0 35 21aopob)¢2 . (5-15)

From (5-15) it follows immediatly that 0/68, 9/90 are invariant differentiations on
type I or type II superfields. Therefore for ?ny given superfield §§ (for example in real basis)
there are two invariant differentiations(33: 18

s« (-2 +igo Bot
D,§ = (= +icc 0079
a 00 3] (5-16)

0 . ST
D) %= (= ~i00 G0 .
af = | " )

We shall call D, ‘f)& = (D,) the covariant derivatives, They obey the following relations

10,03} =:21_o*§fap {%DBE ={5¢‘z»5@} "0 (5-17)
D,DgDy = D3 DzD; =0

The last line being obvious,
Because of the existence of the covariant derivatives a (complex) superfield can be
reduced further inposing on it the contraints

Dyf = 0 or D:g = 0, (5-18)

A superfield ?atisfying (5-18) is called a chiral field, according to the nomenclature of Salam
and Strathdee 78) (it was originally called a scalar superfield),

A general (real) superfield will be called a vector superfield, Strictly speaking there
are superfileds which are nor scalar nor vector i, e, superfields which satisfy the relation

DD§ = 0 or DDP = 0. (5-19)

They are called linear superfields(33). However, as they have not been used in any interesting
application, we will omit them from our discussion.

Chiral fields are called left-handed or righi-handed if they satisfy the equation

B&¢L = 0 or its complex cornjugate Da¢R = 0 (5-20)

The reason of this definition is that, when tranglated in I or II basis, they do not longer depend
on the right-handed (left-handed) part of the Majorana spinor 8, We note that the general form

of ¢IL is

¢,IL = A+QY+00F (5-21)

being A, ¥, F complex fields, Their transformation law is, in term of real fields

A 0 0 ia 0 o A
B 0 0 iay, 0 o B
ol w | =1 7voa “v5vde 0 a v P (5-22)
F 0 0 iGy+a 0 0 F
G 0 0 iyzyd 0 0 G
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We have confined, so far, our discussion to superfields without an additional (external) Lorentz
index {or,} . Of course such an index is completely irrelevant for supersymmetry transiorma-
tions so it can be added without difficulty to the previous superfields without modifications of
the established results,

Multiplication among different superfields is also well defined, It will be an esSen-
tial ingredient in order to build up supersymmetric model field theories, For example one ea-
sily verifies the following relations

Py¥y = (Bv)y Py,

fr¥r = (P¥)g b ¥g

(P,
Pr¥y, * Py

i+

where ’ZJR = EL’ wL = @R and the subscript V stands for vector superfield,
Moreover
DD, (x, 6,8 = (DDPp(x, 6,0).
If §; has components A, ¥, F according to (5~21) then ¢L =DD ¢;, has components respecti
vely given by:
F, G, vy 0, Oa, OB.
In ter(ms of component fields the covariant derivatives are nothing but finite -dimen-

sional matrices\71s 72) For example the previous operation is given by the following matrix
in the component space

F 0 0 0 0 1 A ‘

G 0 0 0 1 0 B

vow|=j O 0 yo O 0 v (5-23)
oA 0O o 0 0 0 F

0B o O o 0 0 G

In order to derive lagrangian field theories which are invariant under supersymmetry transfor
mations, we remark that, because of (5-6) the last component field of a given multiplet always
transforms as-a total derivative,

3g; AST(X) = i'yl"'apX(X) . (5-24)

Being % (x) some Fermi field, Therefore it follow that

4
jd X ¢LAST(X) (5-25)
is invariant,

The first supersymmetric model field theort which has been studied is the self inter
action of a chiral multiplet, namely the interaction of the A,B, ¥,F,G component fields 92 .
In order to derive the corresponding langrangian we will use extensively the superfield techni -
ques. In particular we will show that the kinetic term, the mass term and the interaction term
are separately invariant under supersymmetry,

Kinetic term : starting withthe chiralimultiplet S (Bas = 0) the kinetic energy is the D compo~-
nent of the following real (vector) superifield SS

z . 1.2 1 2 iz eg+ip? Lo -
S8y = -5 (0,A)° -5 B) -5 ¥V, F +5G . (5-26)
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Which is equal, up to a four-divergence, to the F component of the chiral bilinear S DDS.

Mass term : the mass term corresponds to.-the ¥ component of the chiral multiplet 54

ms2 = m(FA +GB - L) . (5-27)
Interaction term : the interaction corresponds to the ¥ component of the chiral multiplet S3

gsg, = g(FA® - FB®+ 2GAB - iPyA + {Pys¥B) . (5-28)

Therefore :

= + L -
L(x) = L +L_+L . (5-29)
Using the equations of motion for F and G :
F+mA+ga2-8% =0
(5-30)
G +mB + 2gAB = 0.
The lagrangian (5-29) takes the more familiar form
___1_ 2 1 121--“ 122_1_22
L(x) = - 5(0,8)7 -50,B)" -5 Py 0¥ +5m A" +5m 8" -
(5-31)

. 2 . _
- %m@w- gmA(A2 + BZ) - %— (A2 + Bz)z - 1igW¥(A - v;B)Y

i, e. a combination of cubic, quartic and Yukawa interactions with a well defined relation bet-
ween masses and coupling constants,

The Noether supersymmatry current is given by the following expression(gz" 20)

J &) = yo(A-ygB)y ¥ - (F+yG)¥ , (5-32)

and is conserved as a consequence of the equations of motion,

It has been shown by Iliopoulos and Zurnino(®1) that this model is renormalizable pre
serving the symmetry. This means that the infinities can be absorbed in supersymmetric coun
terterms of the form given by eq. (5-29),

Moreover, remarkably enough, it turns out that there is only one divergence, a loga
rithmic infinity due to a wave function renormalization of the multiplet. We observe, en passant,
that the fields F and G are auxiliary fields and do not correspond to any asymptotic state,

The renormalized mass and coupling constant are given by the following rela’cion(mwss)
m, = Zmpg 8 = Z7\"gp (5-33)

where Z is the wave function renormalization,
It has been shown by Ferrara, Iliopoulus and Zumi.no(?’z) that the renormalized one
particle irreducible n point functions I s Where the external lines stand for any field

of the chiral multiplet, satisfy the followifg. .C.aﬂan-Symanzik. equations, at each order of per-
turbation theory

0 i} . m . .
[m P + B (g) g nv(g)] 1"¢1m¢n(l?i; m, g) = Zgé(g) FA, ¢1---¢'n(0’ B; m,(g?-%)
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with B(g), v(g) and d(g) expressed in terms of a single function

3,1 g =1 L =
Blg) =5 e1iF » 1) =5 % ° d(g) H (5-35)

being fg) defined as
2
f(g) = O_J-O_g__z.. ..g.:s. de vee

5-36
note that (5-35) imply the relation(32)
B(g) = 3gvl(g). (5-37)

Which shows that there is not fixed point which can be reached in a continuous way from the
origin,

In order to unclersta.nd the {mev:ous result in a simple way we can use supersymme-~
tric perturbation theory( s 9, 14, 40, 41, 48, 50, 7

The previous lagrangian (and the corresponding action) can be written as a density
over a superspace whose point are labelled by x, 0,, 05 . Spinor 1ntegrat10n is a well defined
operation, For instance one makes use of the fo]lowmg fundamental property(

Ja 9;8; = dy5 . (5-38)
Using (5-38) the action of the previous system can be written as
Jats I'fdzo SDDS+ ms* +-5-‘- gsS+n, c] fd4x[,_ dziDJS+h.c.] (5-39)

The free propagator is.obtained for g =0

S(1) = ——=—— (B,B,3(1) - ma(1)) (5-40)

08(1) _ _ 4 L= 2
85(2) = ﬁs(la 2) = ¢ (x1 - X2: *—101792)6 (91 - 02)
68(1) o s iy 42 RN
55(2) 08(1, 2)=29 (x1 -x,+10, yoz) 6°(8; - 8,) (5-41)
6S(1) . 05(1) . 2 .. 1 |
b5z | os@ | ° 67(6) - 05) = (81~ 05)(0; -0y)
one obtain _ _
= 8s(1) - §1705k~0;,008; )k
S(SE)> = —= =
<s(1)S(2)> 317(2) T6(m2eED) e
: i ° 0.k
68 L im 17%
<SS = 303 . 6,0y, -

16(m >+
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Consider now the one loop diagrams for the Se]fneenergy(14). They are

3,.(,2)=4, (1,2)4 (2,1)

which coniribute to 3 bt Dg_ e Because Ai+ =0, EH_ =0, For 2, ohe gels

~ 4 1 1
34+.(q, 04, 05) = /d k =53 73 X
kK +m (k+q) +m
e =0 060 k 0.y 0. (k+g) ¥ 0..00__ (k+
0,79,k -0,,00 k 0,7 05(ktq) + 0,508, (ik+a) i
[ X e -
i) )
078,01 0,9,9%159 [ 4 1 1
= d*k
o 2 2

2 2
k™ +m (k+g)“+m
i,e. a logarithmic divergence, This divergence can be absorbed in a counter term of the type
SS i.e. in a wave function renormalization, Because X 4+ = 0 no mass counter term is needed,

We consider now the vertex correctiona‘l“]“), The only graphs one can write are:

Ve (1,2,3) =4 ,,(1,2)A,,(2,3) 4,,(3,1)

‘V++_(1: 29 3) A-{-—l-(‘ls 2) JA+_(2; 3) A__+(3.9 1)

which contribute to V,,,, V;, . However, because 0490819013013053023 =0, Vy44=0, For
the 'V, ,_ vertex we get
0,70,k
1
2 0.0 X

f d4k 1 1 1 e
2 )
k2+m -(k+q)2+m (k+t)2+m2 12712

— , - — E.I -
. e°2”"3k %237 %a3" gVOyk+ 8557054k

4 1 1 1

= / d'k 0,.,0
2 . 2 2

k +m2 (k+q) +mz (ket) )+m2 12712

i, e, a finite result, Therefore there is no independent coupling constant renormalization,

In the same zvay one can show that all higher n-point functions are finite, Moreover
Capper and Leibbrandt 9) have established the superficial degree of divergence of any graph

d = 4L - 2I +2p where p=minn,.1, n_-1

being L, I, ny, n_ respectively the number of loops, propagators and vertices of any graph,
Using the following topological relations

I+E; =3n,, I+E_=3n_ L=I-(@n-1), n=n_.+n_

one finally gets
d = 2-2E_-4N,
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E - E_
where Ej are number of external +, - lmes and N U which has b%en a%sumed to be
- Ty
positive (if, on the other hand E_> E, then.d =2~ 2R 4+ = 4N where N= ——7— . The
power counting formula shows that the only divergent graphs are those with N = 0, £ _=E,=1.
i.e. the self-energy graphs X, .

Finally we would like to mention that the super S4 theory; as shown first by Lang
and Wess(55),\ leads to a non-renormalizable lagrangian, This fact can also be understood, in
a very simple way, using supergraphs and the previous power-counting formulae,

6, - SPONTANEOUS SYMMATRY BREAKING AND GOLDSTONE FERMIONS. ~

The notion of supersymmetry is very elegant, however, as we have seen, it leads to
a complete degeneracy of masses inside a supermultiplet. As Nature does not show such multi-
plets it is very compeling to look for a spontaneous symmetry breaking of this symmetry.

It has been shown by Salam, Strathdeeand Wess, Zumino(74~" 51) that when the va-
cuum is not a supersymmetric singlet, then a Goldstone phenomenon emerges with the imme-
diate implication that the system must contain-a massless spin 1/2 fermion because of the foll-
owing general argument:

the infinitesimal change of a Dirac field ¥, under a supersymmetry transformation is
bva 0 = [y, [aPna, gm0 (6-1)

where J (x) is the vector spinor current, The vacuum expectation value of (6-1) yelds to the
expression ‘

0, LTELT()V6(0)> = - 0,0x) LOv,, (0> (6-2)
because of the non-invariance of the vacuum
Lo (0)> = a P> (6-3)

where § is some scalar field related to yg through supersymmetry transformations,

Eq. (6-2) gives

0, LT3, K10 (0> =<9 04 0 (6-4)
the Fourier transform yelds to.
/d x e <T J \X) P (())> M(kz)kpéag EER (6-5)

which hecause of (6-4) gives finally
2mk?) = gD ~ (6-6)

i.e.- a simple pole in M(k 2) at k“ 0 with ren31due / ¢> ThlS indicate that an intermediale
state which is a massless spin 1/2 particle contributes to M(k ).

The notion of Goldstone fermion is very exciting since it might give a fundamental
explanation of the neutrino‘®s 4
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Salam and Strathdee(sz) have further shown that in any spontaneously broken theory,
where the multiplet described in the previous section are involved(i,e. chiral multiplets and
vector multiplets), the expression of the Goldstone field in terms of the basgic fields is

1 :
1,0 = .JZ'(Fj “58> vl - 5 T gDy g ) (6-7)

implying that a necessary and sufficient condition for spontaneous breakdown is that at least one
of the auxiliary fields F, G and D admit a non-vanishing expectation value. The subscript of
these fields refer to a given internal symmetry index, The D, A . fields are therefore assumed
to be matrices because the vector multi plet can only appear as a gauge multiplet in a given rew
normalizable lagrangian. In the next section we will encounter an explicit lagrangian model
where the Goldstone phenomenon occurs,

7. - GAUGE INVARIANCE AND SUPERSYMMETRY, -

The model we have described in the previous sections consists of a scalar, pseudo-
scalar and a spin 1/2 particle in interaction among each others. However Lagrangian field the
ories which combine supersymmetry with gauge invariance have also been constructed 8,3 75:59)
and shown to be renormalizable in a way consistent with supersymmetry and gauge invariance
(21, 22, 37, 48, 68, 83, 84, 18),

g‘he gauge superfield is a real vector multiplet V(x, 0, 8). To define gauge transfor
mations in way which is consistent with supersymmetry we must enlarge 93) the gauge function
to an entire chiral multiplet A(x, 9,9) (Dg4 =0) so that
6V(x,0,0) = i(A-4) (7-1)

under a gauge transformation, In terms of component fields (7-1) reads

or = dA =0

0C = B ov. = 9 A

: BT (7-2)
M= F oD = 0
0N = G

So one realizes that C, ¥, M, N are not physical degrees of freedom {they can be in fact gau-
ged away) while 4, D are gauge invariant quantities,

The supersymmetric extension of the electromagnetic strength corresponds to the
following chiral field
W, = DDDyV (7-3)
which contains the component fields ), D, F
under (7-1).

The free supersymmetric lagrangian(gl) is given by the F component of the chiral
multiplet WeW,

wv™ d‘“vw -GVVH’ v+9A and in fact Wy = 0

a = J1g2 = 1
WiWap = -ZFy gAY+ 3D

2, (7-4)

The gauge superfield can -be put in interaction with a complex chiral multiplet S =85, +iSy then
providing the supersymmetric extension of QED, If one defines S4 = 5, T isy (D, Sy = 0) the
gauge transformation on S4 is = -
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(5S._|_. = ¥ igASt o : : ‘ (7-5)

and the corresponding supersymmetric minimal coupling i$(93)

gv -gV

)y - (1-6)

lia § 3
§(S+S+e +5_8_e
of course also the mass term

2mS.S_ (7-7)
is both gauge invariant and supersymmetric,
The supersymmetric lagrangian is just given by the following expression

(WOW, )+ (S, 8 ) + 38,5, 08V +5_5_e8) o (7-8)

The quite unconventional form of the interaction term is merely due to the presence of the un-
physical field C(x) (of zero dimension) which is however essential in order to write the cova-
riant derivantive in a supersymmetric way, The important poln'l: is that, using the gauge free-
dom, onecanfix C = x=M=N=0 (Wess, Zumino gauge«s)( 3). In these gauges the Langran-
gian given by (7-8) reduces to the familiar form:

1 2 1,2 1.2 i
2(6“ 1) -5;(apA2) - zﬁ;del) ~-2~(6HBZ) - AV yow, -

- y w v 2
- _..'(pzay aw', - —-m‘)(Al + A_ +B +B2) - ?m('wlwl +wa2) - %va -

(7-9)
i S T,
- 'é'l'y oL -~ gv L(Ala A )+(I3 6 B2) —1w17pw2_| -ig} [('Al +'Y5B1)1P2”'
- (Ag+yB) v, | - 2t iaZealintied) - L kA m, - a,8))°
25 Y5291 ¥y p1T e 2 g 14159~ A9™y
where we used the equations of motion ofithe auxiliary fields
F,+mA; =0, G;+mB;=0, D+g(AB,-A,;By) =0, ' (7-10)

The abelian gauge raodel we have described so far, provides the simplest example o
spontanecous breakdown of supersymmetry if we add to the previous lagrangian the term{30)

%VD _ ‘ng | (7-11)

which is supersymmetric and gauge invariant, Upon elimination of the D component field this
term adds to the previous Lagrangian the quantity: -§(A;B, - A5Bq). The mass matrix can
be diagonalized introducing the new fields

- 1 '
a, = —==(A - By, a —= (B, + A,),
1 {z 1 o 2 yy T2

i
i .

b1 (A1 + B ) b

\fz

and the resulting potential is

1
(A, - By)
2y 2 1
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)
2 2 p2)2 (7-12)

2
1,2 2,2, . 1,2 2,.2 % a2,
2(m -§)(a1+a2)+2(m +§)(1b1ib2)+38(a1+42 =P

At this point one sees already that supersymmetry is spontaneously broken, since the masses
of the fields in the same multiplet are no longer equal,

For lgl < mz the fields a;, loi have a vanishing expectation value, while

§

(D% = "’g":

dh = - Syge e

and therefore A is a Goldstone spinor, For |§]> m2 one of the quadratic terms has a negative
coefficient, Now gauge invariance is also spontaneously broken and the vector field v _ acqghi-
res a mass m‘ZI = 2(§ -m?) through the usual Higgs mechanism, It turns out that the Goldstone
fermion is now a linear combination of 4, 7514’ yand ¥,

; Salam, Strathdee(75), Ferrara and Zu‘mino(34) succeeded to construct non abelian
supersymmetric gauge theories,

In this case the gauge transformation for the gauge superfield looks more complica-

ted, For a finite local gauge transformation one-has ‘
3 A‘+ 2 A
'egv.-n» e 8 egV elgA (7-13)
. o gs o ga s . = 23ve ara- . LA

where matrix multiplication is understood. Note, in fact, that V =i , A= AYAT being A
the group generators in the vector representation. The finite gauge transformation (7-13) cor-

responds to a complicated (non linear) infinitesimal transformation for-the gauge field

e (W) (7-14)

= AP -
0V, = A Cba(V)+ ATCy

a

where Cp,(V) = iC%a(V) + Clz)a(V) is a infinite power series in V,. However in the Wess, Zu-
mino gauges

VaVp Ve = 0
so that
1 2 _ c
Cba B 6ba’ Cpa © “fhac V (7-15)

and one recovers the usual Yang-Mills transformations for the fields

a a a
vp. A, D .

The pure supersymmetric Yang-Mills Lagrangian is provided by the F component of
‘the following chiral multiplet

a
Ly = TeWiW), (7-16)
with
W, = DD(e"8V D,efY). : (7-17)

The invariance of (7-16) can be checked using the local transformation of (7-17), In
terms of component fields (7-16) reduces to (Wess-Zumino gauge)

%17%'0}.) (7-18)
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where . -
= - +iglv , v
Cuw = Oy 7 Y, TE [ B! "J

=9 A+i Ff ]
Ry b =0 ATV A

and D2 = 0 because of the eqs, of motion,

The lagrangian (7-18) implies the quite striking result that a Yang-Mills interaction
with a fermion in the adjoint representation is automatically supersymmetric, The correspond
ing conserved (gauge invariant) spinor current is 100, 36}

1 po \
J = -=Tr(G 3. 7-19
" 5 ( vpva'yuM ( )

The Yang-Mills supersymmetric system can be coupled to a matter supermultiplet
(A.p B;, _'wi) belonging to some representation of the group, The form of the Yang~Mills coup-
ling of the matter is completely analogous to the abelian case, In ga)rticular, if also the matter
belongs to the adjoint representation, the resulting lagrangian is(34

1 2 1 2 iz r.o2,2 1 2.2
= (o =( A" - = - . - - -
Tr! 2( W ) 2(&5”]3) z‘w'y Dy 5 m A" -5m®B
(7-20)

“ MATTER
~LmVy + g_zﬁ [A. 8] “igd [A+v5B.9]) .

Remarkably enough we observe(34) that the supersymmetric Yang-Mills theory with just one
matter multiplet in the adjoint representation manifests an additional symmetry, for m = 0, In
fact, because of the particular form of the lagrangian, one can combine the two Majorana spi-
nors A and v into a complex Dirac spinor

1= = (a+iv). (7-21)

=

This leads to the langrangian

(-3 62 - 3@ 0% - 3@ B 17 d1 -

B
(7-22)

- igX Eq. + 75B,}£] +~g§2—- [A, B]z) .

This langrangian, in addition of being invariant under Yang-Mills and supersymmetry transfor-
mations, is also invariant under a "baryon number" phase transformation X -» Pz

xE > 1P y% (the other fields remaining unchanged) and therefore is invariant under a global
U(1) group 80, 81). The langrangian under consideration, being supersymmetric, admits a con-
served spinor current. We leave, as an exercise, to verify that this current is given by the
following expression '

_ . _1- po , . ‘ -
JI_|L = Tr (- 5G Y pr +ig [A,}i] 757,“,1 ~iye (A~ ’Y5B)'YMZ) .

Renormalizability of supersymmetric gauge theories has been proved using different
techniques(21s 37,49, 68, 83,84) 1 thegse theories, like in the model without gauge fields, the
same '?henomeinon occurs, namely the absence of mass renormalization for the matter multi-
plet(37,18)

The main problem one has to deal with, in order to prove renormalizability, is the



"’group(Gl 63, 64, 65, 78)
“‘O'Rafeartaigh and collaborators 7 , this is sufficient in order to build up a theory which is-both
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fact that one has to abandon the Wess~Zumino gauges, where the lagrangian looks renormaliza-
ble by power counting, and to consider a supersymmetric gauge where the lagrangian is intrin-
sically non polynomial,

It is straightforward to show thlatzthe supersynzmetrlc gen«=rahzat10n of the usual
Fermi type gauge breaking term 1/a (6 v#)% is given by

1 ppvDBDWY, (7-23)

moreover one has to introduce also Faddeev-Popov ghosts which are anticommuting chiral
fields. The new feature of supersymmetric gauge theories is therefore the presence of spin
1/2 fields which obey Bose statistics. These new ghosts are decoupled in the Wess~Zumino
non covariant gauges but they are needed for general gauges.

The regularization procedure is also a problem in supersymmetric gauge theor‘ies(g’?).

In fact dimensional regularization 87) cannot be longer used because of the fact that supersym-
metry transformations depend on the space—tlme dimension{16), However it turns out, from
the works of Ferrara, Piguet, Schweda 37, 67) that the higher covariant derivative method ‘and
the BPHZ renormalization scheme can be generalized without difficulties to supersymmetrlc
theories,

:Concerning the problem of spontaneous supersymm%try ]breakmg(zg), we would like
to mention that the mechanism used in the. abelian situation( (Fayet, Iliopoules), cannot be

longer used in the non abelian case, In fact, in this case, the D component of the vector multi

plet is no longer a scalar (it belongs to the adjoint representation) and would break exphcfcely
gauge invariance, The method can only be applied o a non s semisimple group like U(2) with
SU(2) as a residual symmetry, but there is no obvious generalization to semisimple groups.
The same difficulty would not arise if one requires a spontaneous breakdown cf the gauge.

the supersymmetry remaining unbroken, Remarkably, as shown by

asymptotically free and infrared convergent, i, e., this is sufficient to equip all but an-abelian

subset of the Yang-Mills fields with masses,

8, - ASYMPTOTIC FREEDOM IN NON ABELIAN GAUGE THEORIES, -

A question of great physical interest, in a non abelian gauge theorir of particles, 1is
its ultraviolet behaviour and in particular when it can be asymptotically free 44, 69, 87)

We observe that, because of the results discussed in the previous section, the super
symmetric Yang-Mills theory, if we do not add some extra-couplings like g'd; JkS"SJSk turns
out to be controled by one coupling constant only, the iauge coupling constant, so there is one
Callan-Symanzik function B(g) common to all fields(3

Ifone defines the following. group invariants

T(R) 0% = Tz (R*RP) Co(R)I = R®*R? _
., o 48-1)
Cy(G) 6% = 12°9¢% cq o

where R? are the generators of the representation to which the matter multiplet (Al, B, ¥; )

belongs, and Cy(G) is the quadratic Casimir in the adjoint representation, i.e, in the repre-

sentation of the gauge multiplet (A4 ik , then 1he Callan- Symcmmk function is given, up to
second loop, by the followmg expressmn,&l’{z o

A 1_'3,4 _B 5 , R
Ble) =T 2 & (16222 © (8-2)

with



21,

A = nT(R) - 3C5G) | (8-3)

1]

B = 4nCy(R) T(R) + 2C5(G) T(R) - 6C5(G) (8-4)
being n the number of matter multiplets,
The condition for asymptotic freedom is(3 4,52)

nT(R) - 3C4(G) < 0, (8-5)

Note that for A =0 the theory is never asymptotically free because(sz)v

B(A=0) = 12Cy(R) Cy(G) >0.

There is a wide class of solution of (8~5), For example, if the matter field belongs to the ad-
joint representation and G = SU(N), then (8-3), (8-4) simplify into

A = N(n-3), B = 6N%n - 1), : (8-6)

therefore for n=0 A <0, B < 0 (pure Yang-Mills), for n=1 A<0, B=0 for n=2 A<0,
B> 0 and .we have a perturbative zero at

I
161r2 6N

For n = 3 the theory is infrared free,

A problemg%), recently solved by O'Rafeartaigh and co]laboratorsw), is that of hav
ing infrared convergence in an asymptotically free supersymmetric theory. Namely to equip
all the gauge mesons with mass but an abelian subset. They have shown that this can be achie-
ved through a spontaneous breakdown of the gauge group (supersymmetry remaining unbroken),
This mechanism can be triggered if one adds to the original Yang-Mills langrangian

= me(-ig? .13, L5y Lo agrat
L Te(- 3Gy, -5 A7 @A) - 5T &v - 3P AlPAT -

b1

-%JDPB@”B+ -2 m¥(a%+B%) - mTw +igL;1'(A+RW) o (8=7)
= + 2 4 2

+ Avg(BTRY) +h.c.] + 53— (A'RB +h.c.)*

a supersymmetric matter-matter interaction of the form

o

g dyy S'sls® (8-8)

which is of course locally Yang-Mills invariant, Note, however, that a term like (8-8) cannot
be generated from (8-7) because it is odd in S; while (8-7) is even,

If the matter ficld itself belongs to the adjoint representation then, irrespectively of

'tl"xe: new term (8-8), the condition for having asymptotic freedom is unchanged i.e. ‘n <3, Ho-
wever the important point is that, the resulting potential one obtains by adding (8-8) to (8-7),
has not a SU(N) symmetric minimum and in fact it originates a spontaneous breakdown of the
gauge group,

_ In turns out that the simplest way to achieve infrared convergence is that.of having
two matter multiplets in the adjoint representation of SU(3). This model is rather unphysical,
in particular it still contains massless scalar particles, however it shows that, in supersym-
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metric theories, the problem of infrared convergence, is less severe than in conventional theo
ries,

9, - SUPERSYMMETRIC EXTENSIONS OF THE U(2) WEINBERG- SALAM AND U(l) HIGGS
MODELS, -

Attempts have been made in order to construct realistic models for unified weak and
electromagnetic interactions with the additional properties of supersymmetry invariance. The
main difficulty one encounters is that, if one wantsto build up a realistic model with the neutrino
as a Goldstone fermion, there is place only for one kind of neutrino in a supersymmetric theary,
just because the number of Goldstone particles cannot exceed the number of spinor charges in
the theory. On the other hand, if one wantsto introduce two types of neutrinos, then one neces-
sarily must double the charges and therefore provide the supersymmcatry algebra.of a non tri-
vial mixing with an internal symmetry group,

Unfortunatly it has been shown that renormalizable lagrangians with this reacher sym
metry do not exist'““s €9 8} A model calculation showing this fact has been carried out by Cap
per and Leibbrandt

The most realistic model, restricted to the electron sector, has bee:n.giveh by Fayet(Z{)
It can be regarded as the supersymmetric extension of the SU{2) 8 U(l) Weinberg-Salam model
of weak and eleciromagnetic interactions,

The original lagrangian contains a doublet of complex chiral multiplets and a singlet
interacting with a triplet and a singlet of vector multiplets, i.e. the gauge supermultiplets of
SU(2) @ U(1).

Sponta.neous symmetry breaking occurs in two steps, First there is a spontaneous
breakdown of SU(22 with the gauge group U(1l) and supersymmetry remainingynbroken, A super-
v-nggs mechanism is operating in such a way that three real chiral multiplets are elimina-
ted and three (real) vector multiplets acquire a mass, The resulting particle multiplets are
therefore ;

a) The massless vector multiplet (v, v ) which contains the photon and the neutrino ;

b) The massive (neutral) vector multiplet (Z, E,, z) which contains the Z neutral vector boson,
a neutral lepton and a scalar with the same masses ;

c) The charged massive vector multiplet (W, E4s eyqs 74) which contains the W, vector mesons,
the electron and a new lepton and a charged scalar z all with the same mass;

d) A complex (neutral) chiral multiplet (e, @, §) which contains a lepton and two scalars,

A second step, spontaneous breaking of supersymmetry occurs (the gauge group U(1)
remaining unbroken), The v particle becomes a Goldstone fermion, All masses inside the mul-
tiplets remain the same but for the electron multiplet where the masses of the leptons E_, e
are splitted on each side of the W_ mass according to the formula

mp_ = my_+§, me = mw_-§
where § is a parameter which measures the symmetry breaking, . Z, Wi are the ordinary i(ec—
tor mesons of weak interactions, v, ¥ are the electron neutrino and the photon e_ is the elec

tron and E. an heavy lepton. eg, Eo are two heavy neutrinos,

It ‘can bershown that the present model solves the dlfflculty related to the vanlshlng of
the anomalous magnetic moment in. supersymmetric gauge theories,

In fact, it has been shown by F.ayet that the graphs, which in a supersymmetric ‘theory
exactly cancel the “QED - graph for the g-2 are higly suppressed in this spontaneously broken
version of the gauge theory, as. prevmusly suggested by Ferrars and Remldd1(3
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Fayet(zg) succeeded also-to construct in a very elegant way the supersymmetric ver-
sion of the U(1) Higgs model, Such a model describes the interaction of a massless vector mul
tiplet with a chiral multiplet,

The lagrangian, .in the Wess~-Zumino gauge, is

= _:_I'_tz
£ . 1

it oen i Y By - Xpb
" 5 A7 0A - iV v DY o’Opfﬁ 2l +

(9-1)
+1eV3 (P A2 +9¥Tv ) - L5+ e9¥p)®

If £<0 supersymmetry remains intact but gauge invariance is broken in the vacuum, If
i :
5 e em—— - 1 ’ = +
p lﬁ!. (A - iB) and E WL }'R

we can choose <AD =0 B> =48>0 where ¢ satisfies the relation §+-§— c6? = 0.

As a consequence of a super Higgs mechenism the chiral multiplet disappears and the
vector multiplet (B, E, Vp.) becomes massive with mass given by m = ed,

The new lagrangian is

/ 12 .= 1 1 2.2
= Lv° iFJiE-=0BI"B-S(m+ -
L i T, 1EfE -5 9 BB - SlmreB) v,

(9-2)

Remarkably enough the lagrangian in (9-2) is nothing but the most general self-interaction of a
massive supermultiplet which does not contain quartic terms in the Fermi fields,

This lagrangian has in fact the most general form

2
- — 2 2eV
L = VIDDDDV'+m2V?+(§V +-é‘i- e € ) (9-3)

where, if £ <0, spontaneous symmetry breaking does not occur, If one makes the following
identifications
= 5.€C - eC
B ée B A R + ede 7 X L -
Then (9-3) is just the Higgs lagrangian, In other words, the supersymmetric Higgs model is
nothing but the self-interaction of a massive vector multiplet,

10, ~ SUPERCURRENT AND THE GRAVITON MULTIPLET, -

It has been shown up to now that almost all renormalizable theories, including gauge
theories, can be made supersymmetric and in addition it has been realized that their supersym
metric version has less divergent quantum corrections,

On the other hand it is well known that the classical Einstein theory of gravitation
does not have a consistent quantum counterpart,

It is therefore of great theoretical interest to investigate the properties of a super-
symmetric version of gravitation 99) and'in particular if it leads to a renormalizable theory.

As a very preliminary step to this problem, Ferréra and Zumino(%' 23) have studied
in details the transformation properties of the various conserved quantities which are present
in 3 symmetric matter system,
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Let us consider first a massless supersymmetric system, i.e. a system described
by a lagrangian field theory which is (classically) invariant under the 24 parameter Graded.Lie
Algebra introduced in section 2, :

It has been shown by the previous authors that the spinor current can always be re-
defined in such a way that the improved spinor current

- 10-
2, = Jump, (10-1)

which satisfies vy-% = 0, is Va member of a real supermultiplet having the following general
structure

aa - .= 2 )
o, V. 5(%,0) = CH(X) +10v, Z”(X) +iBvgy Q(VA M(X))

1 vp . 1= = .

- - c)) - = . + 10-2
3 2,0, C ) = 9, Cyx)) - 300075702 (x) ‘(10‘ 2)

+ 16,00y 02 () +1 (50)? Tic (x)
4°75°°7 " 8 o

where
=145 =.3 =.3
Cp 2 Jpn ? : vlp 2 g}l.p ! xf;. 4 JP-IMP (10-3)

are the conserved axial current, the traceless energy momentum tensor and the conserved gpie
nor current, The form (10-2), together with the conservation equations and the conditions

. =0, p:o
e o2 0 Qp

is actually equivalent to the following covariant conservation equations

o . =0, - '
D'V, = 0, DV, = 0. (10-4)

The supermultiplet Vs actually contains all the local currents of a supersymmetric system,
The corresponding elements (charges) of the Graded Lie Algebra are obtained as moments of
the local currents contained in the multiplet, o

If one performs an infinitesimal supersymmetry transformation a(x) as defined in
section 2, then the multiplet Vs undergoes the following transformation

0 ClJL = ia'y5 XH

60z

=14 14, VP ~ y A
= =yMv, + - C - > -
w37 ( " vM)a Sv"e 6pL K 3,C WYs1ha

Al

A A -
- Cvsr*a,a - 2C) vy g, 0 (10-5)

- 13 +0 41) = L5y e L
SV ansym 5 U0, 1, T oM - aly,vok ty vaky) +
+5i (Bl‘axp+ ﬁuall) .

It is therefore clear that the above supermultiplet should play in a supersymmetric
theory a role analogous to the stress~ tensor in a usual theory.

o In the case of a massive‘system the equati‘ons(lom/l);become partial conservation equa
tions, They are
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a -
D'V, = Dgs L . (10~-6)

-8 being a chiral multiplet (D,S = 0).

These equations imply that the supermultiplet Vs contains now a scalar and a pseu-
doscalar field beyond an axial vector and the conserved spinor current and-stress tensor.

If one implements the equations {10-4) with the mass~shell condition
(D-md) Vg = 0 (10-7)

‘then the multiplet V¢ can be used to describe a multiplet of particles of spin'l, 3/2, 3/2'and

This multiplet corresponds to the J = 3/2 multiplet according to the classification given in
sec1tlon 4, For m=0 the eqs, (10-4) become gauge conditions and the remaining degree of {ree
dom are two particles of helicities 3/2 and 2,

This may very well be the graviton supermultiplet which should play a fundamental
role in a supersymmetrie theory of gravitation, ¥Finally we note that the massless'spin 3 /2.
particle in the supersymmetric gravitational theory has the exact counterpart in the massless.
spin 1/2 particle of the photon multiplet,

11, - ACTION PRINCIPLE IN SUPERSPACE, -
Arnowitt, Nath and Zulrnino(2 3) developed an action ﬁrinciple in curved superspace
which was'a natural extenulon of the usual geometry of Mlnkowsky space.to a Rlema.nn geometry.,

: - They considered a point on a superspace:labelled by coordinates . P (x*, %) (whe-
ve x* is the usual space-time coordinate and 0% is a Majorana spinor) and generalized the su-
persymmetry transformations to a local gauge group of arbitrary coordinate transformatlons
in superspace

2™ = 2 ) - | iy

{11-2)
invariant,

The Ep { By Spa gaB} are gauge supermultiplets and can be int"ei‘preted as the
metric tensor of supersp ce S

The Riemann geometry of this space can be constructed and leads to a curvature fen-

sor 5 e D
D c
= - +(-1) T +
R amc I e, AB,C
(11-3)
blc+d+e) C(d+e) D
*(-1) AB Ec“‘ 1) A.C EB
and Christoffel affinity
be 1 . DC
1 \ + (-1)* -
FBC (-1) L( - " ab 88D, A” gAB,D]g (11-4)
atb+ab
1. =(-1) .
ab

An action principle can be formulated in superspace starting from the following action, which
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ig invariant under genersl coordinate transformations in superspace

A = ,\/dsz lﬂ_g R (11-5)

where R is‘the scalar curvature

R = (<)% g0 R,p (11-6)

and R is the contracted Riemann tensor,

The action principle leads to the supersymmetric Einstein equations

=0, » (11-7)

which-could eventually be generalized adding to the original action an allowed additional inva-
riant
rg -
Ja% %
which would give a cosmological term in (11-7)

R (11-8)

AB  AEam-

‘The actual weakness of this approach is due to the fact that usual supersymmetry
transformations in-Minkowsky space, which one would naturally associate to a flat limit of the
above:curved space, are not solution of (11-7) nor of (11-8). This is a consequence of the fact
that gag(z) is not constant in flat space and its actual form does not satisfy the previous equa-

“tions,

W‘oo(9'7) has in fact shown that the usual supersymmetric equations of flat space cane
not be identified with the corresponding covariant equations in curved space in the flat 1imit,
In order to make such an identification a limiting procedure has to be taken into account,

Such limiting procedure probably corresponds to a contraction of the local gauge
group of general coordinate transformations in superspace into a (geometrically different) local
group whose flat limit would be identified with the flat supersymmetry,

The construction of this contracted geometry and the corresponding consistent for-
mulation of a supersymmetric Einstein theory of gravitation is gtill an open problem,
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