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1. - Introduction.

Since the discovery of scaling behaviour in deep inelastic electroproduc-
tion [1], quite a lot of theoretical investigations have been devoted to the
study of the origin of this phenomenon.

Various models, such as the parton model, have been invented, that give a
partially satisfactory (or unsatisfactory) explanation of experimental results,
but the most important achievement which emerges is the emphasis that has
been put on fundamental properties of field theory such as dilatation [2-6] and
conformal [6-9] invariance.

In the deep inelastic experiments, physics is tested at very high energies,
i.e. at short distances, where magses become negligible, so the limiting theory
we are interested in is a zero-mass theory.

As a consequence, when masses become less and less important, one is free
to rescale the energy units in the matrix elements: this is the content of the
dilatation invariance[2,3]. In a physical (massive) field theory things are
not 8o simple, and one has to invent quite sophisticated methods to study
the consequences of broken dilatations [4, 5).
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A crucial concept related to dilatations is that of scale dimensions of a field,
a number that only for a free field is the same as the naive mass dimension;
in general, whenever it can be defined, it specifies the transformation of the
field under dilatations (see the Appendix for mathematical details). Here it
is worth noting that commutation relations, being nonlinear relations between
operators, can fix the scale dimension; in particular canonical commutation
relations put the (canonical) dimension equal to the free one.

It is an important idea, due to Wirsow [3], that the renormalization pro-
cedure of any sensible field theory could eventually give an anomalous part to
the dimension of fields: this comes from the infinite strength renormalization,
and is a parameter which is determined by the interaction and in some sense
characterizes the dynamics.

In a massless theory, apart from pathologies and with the caufions we
will discuss in the next Section, there are other transformations that can be
symmetries for the theory, namely the conformal transformations [6-9]. Again,
for an exact mathematical definition we refer to the Appendix; it is however
interesting to note that dilatations and conformal transformations, together
with Poincaré transformations, form the largest group that leaves the light-
cone invariant.

The full conformal group puts more restrictions on physieal quantities,
such as matrix elements and so on, than only dilatations, so one can hope to
derive much more information on the structure of the theory we are considering.
And in fact this is the case: vacuum expectation values are severely con-
strained [10], and in some cases uniquely determined, in terms of parameters
such as anomalous dimensions and normalization constants.

These quantities are in principle fixed by the dynamics, so their computa-
tion is in general impossible; but conformal invariance allows us to make state-
ments also on these.

In fact it has been noted that the Bethe-Salpeter equations that contain the
dynamics become purely algebraic equations (at least in some cases) in these
parameters. As they are nonlinear, one can hope that they have at most a dis-
crete set of solutions: this is the aim of the so-called bootstrap approach [11-16],
where the name means that self-consistency of the two sides of B.S. equations
fixes the value of physical constants.

We have however to pay a very heavy price for this, for, as soon as we
allow dimensions to be anomalous, we find that the LSZ limit no longer exists:
'in fact we lose the particle description [17], and, since scattering states are
not present, also the S-matrix cannot be defined.

In particular there is no hope of obtaining information on the matrix element

{pl,(2) J,(0)|p)

which appears in deep inelastic scattering.
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One way to circumvent this difficulty is that of applying conformal
invariance to matrix elements of off-shell operators, such as the electromagnetic
currents in w°—vyy [18] or ete~—ete~--anything [19].

The other way out is to consider conformal invariance not for the whole
matrix elements, but only for products of operators and expand the products
in sums of local operators [3, 20-26] to obtain conformal eovariant operator-
product expansions which exhibit many interesting preperfies.

All we have said for conformal invariance is implicitly assumed to hold
in a zero-mass theory, however the relevance for the physical massive theory
can be examined at the same level as for dilatations [8, 9].

In the following Sections we will consider more in details these aspects.

2. — Conformal invariance as an asymptotic symmetry in quantum field theory.

In the following Sections 3 and 4 a number of results will be derived by
assuming the validity of conformal invariance right frora the beginning.

It is then necessary to justify the assumption, since it is easy to check that
dilatation (and also conformal) invariance eannot be valid in the presence of
magses: in faet, since (see Appendix)

(2.1) [P2, D] = 2iP?,

no mass. eigenstates can exist in a dilatation-invariant theory.

The problem then arises of understanding in what sense results concerning
an unrealistic invariant theory can reflect themselves in the (massive) real-
world physics. We want to present here only the relevant results, without
giving any derivation.

Consider a definite theory, e.g. the self-interacting ge* scalar theory. Formal
manipulations, namely the use of canonical commutation relations for the inter-
acting field, led to the proof that it is possible, at least in not too complicated
cases, to redefine the energy-momentum fensor 6, in such a way that [27]

(2.2) D :fpo(w) sz, K, :fKW(w) ar
and
(2.3) D, =2,,, K, = (204" —g*2*)0,, .

In order to generate a symmetry these currents have to be conserved:

(2.4) oK, =2w,0,"=2x,0"D) =0,
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so that in a conformally invariant theory the energy-momentum tensor has
to be traceless.
At the same level one can show that

(2.5) 0,4 (w) ~m>@*

so that in the naive Ward identities following from eqs. (2.2) and (2.3) the
Weinberg power-counting argument enables us to neglect the «soft » breaking
term (2.5) at very short distances in the Euclidean region. The behaviour of
Green’s functions is then fixed, in the same limit, to be

(2.6) G A0y ey A7, = OfT[@(A2y) oo @(A22,)]100 ;7 A Ga(@y, .y @),

the dimensions of fields having their canonical value and all things behaving
canonically.

Equation (2.6) should be valid order by order in perturbation theory: it
is however a well-known faet that, on the contrary, logarithmie terms appear
that invalidate eq. (2.6) in every order of perturbation theory [3-6, 28].

The reason for this clash is quite evident: the formal manipulations used in
deriving eq. (2.6) are valid only in view of the fact that the theory has been
cut off to eliminate divergences. Now, a cut-off is a large mass, that largely
breaks dilatation invariance.

So we do not expect that the renormalization procedure will maintain the
canonical dimensions of fields or that the naive Ward identities continue to
be valid.

For dilatational invariance the new Ward identities have been found (%)
by CALLAN [14] and SYMANZIK [4, 5]:

en 3 [wf; (1t y(g))] O|TTp(@,) ... pl@a)]]0> =
= Jd‘lw(O]T[(p(wl) v @(20,) 0()]]0>
where 0(x), which is a sort of effective breaking term

(2.8) 0(x) = —n(g)m**(x) — p(g9) p*(@) ,

depends, through the functions »(g), f(g), n(g), on the detailed dynamics of
the theory.

(*) Obviously this is the form of the naive W.I. when £(g)=y(g)=0, n(g)=—1
which would have been obtained by using formal manipulations.
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11 the r.h.s. of eq. (2.7) had been negligible at short distances, then the
anomalous dimension of ¢ could have been defined as

(2.9) d=1+y(g).

In general this is not the case, since 6(») is quadrilinear in @ and then the
Weinberg argument no-longer holds. )

It however the pliysical value of the coupling constant g were at a zero
of B(g) (perhaps for some self-consistency reason, as proposed by WILsON [29]),
then the theory would asymptotically be dilatation invariant with anomalous
dimensions given by eq. (2.9). This hypothesis turns out to be too restrictive:
we do not need to know if the real world is actually sitting on a zero of g but
simply that such a zero does exist [4, 5], even if it is different from the ac-
tual value.

From the explicit solution of the Callan-Symanzik equation (2.7) it is then
possible to see that in this case the asymptotic form of @, approaches the
solution of the homogeneous equation, which scales with anomalous dimensions
fixed by the position of the zero.

As a remark, we note that it is possible to accommodate in this scheme also
« dilatation multiplets » [23, 30-32] as defined in the Appendix: their Callan-
Symanzik equation becomes a matrix equation and, interestingly enough,
allows for logarithmic terms in the solution, without destroying the underlying
dilatation invariance. The dynamical requirements in order to have operators
transforming in this way are, however, rather obscure.

If we come back to the Callan-Symanzik equation, it has been noted [4, 5]
that in the presence of a zero of § its asymptotic form is identical to the equation
derived by GELL-MANN and Low for the renormalization group [33].

This in turn implies that the asymptotic deep Euclidean limit is equivalent
to the zero-mass Gell-Mann-Low limit (4.6. a zero-mass limit performed in the
renormalization procedure in such a way that infra-red divergences are not
introduced).

The way is now open to give meaning to asymptotic conformal invariance:
the reason why the formal argument leading from dilatation to conformal
symmetry can in principle not be valid is that it is not possible to exclude
a priori that the relation (2.4) is modified by nonsoft terms, 4.e. terms containing
the fourth power of the field.

This happens to be exactly the case: but it has been proved by SCHROER [8]
and later by PARIst [9], that one can identify 6(») with 6,*, without any extra
term, and that the «true » Ward identities read

=1

210) 3 [ (o ) — 00— 200 = 70D | <OITTg@) . glz0) =

_3 f 40 2,<0| T[p(@,) .. @) 0(@)1[0> .
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So, asymptotic conformal invariance is regained in much the same way
as dilatation invariance is: namely only if a zero of (g) exists, the zero-mass
limit of the theory can be conformal invariant. In the following Sections we
will always make the more restrictive hypothesis that we are studying a theory
exactly at the zero of f.

3. — Some results from exact conformal invariance: Wightman functions and
operator products.

Consider now a zero-mass (Gell-Mann-Low) field theory in which conformal
invariance is a «true» symmetry (i.e. f==0).

The transformation laws of fields are then determined, and this puts many
restrictions on the associated Green’s functions [10].

An ingtructive example comes from the study of two-point functions (e.g.
Wightman functions)

(3.1) G, y) = Olp(@)p(y)[0) = Gyl —y) .

Simple algebra, using dilatation invaﬁance, shows that
(3.2) Go(w—y) = o[— (@ —y)* + te(@— Yo)I*

with ¢ an unspecified constant and ! the dimension of ¢.

When 1=1, the two-point function is the free ome, so the field ifself is
free [33, 34]. We are thus interested in examining the case in which I5£1.
The spectrum condition requires 11, so, in all interesfing cases, the matrix
elements of fields decrease asymptotieally (in the L8Z sense) faster than the
particle factors in the reduction formulae, and consequently particle inter-
‘pretation is lost (infra-particle theory [17]in the language of SCHROER).

Taking the discontinuity of ¢, we have the V.E.V. of the commutator,
which, if dimensions are not integer, has the form

(8.8) G (o —y) = c[0(x—y)*Te(@wo— o) (@ —¥)*]™",

while it is proportional to derivatives of delta-functions when the dimensions
are infeger.

This fact exhibits the most serious diffieulty coming from conformal inva-
riance: in fact it is obvious that, if there exists a unitary operator U(g) that
represents conformal transformations ¢ (which can mix spacelike with timelike
intervals) we can have, in the commutator

(3.4) U(g)lp(@), ()] U(g) = S(g, ) 8(g, Y)[plg~*2), plg7*¥)],
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a violation of causality, if Is4integer (i.e. the commutator has support also
inside the light-cone).

The conclusion is that no unitary U(g) exists at least in a striet sense; a
more careful examination reveals that what is not left invariant is the boundary
(t¢) prescription [35], while the functional form of vacuum expectation values
is left invariant.

The concept of « weak conformal invariance» as proposed by HORTAGSU,
ScHROER and SEILER has ifs basis on this circumstance. They propose not
to consider conformal {ransformations as a symmetry for operators, but rather
for Green’s functions continued into the complex domain of co-ordinates (e.g.
by Wick rotation) where no causality problem arises.

The quantities defined in the pseudo-Euclidean space-time are then ob-
tained as different boundary values of the above-defined functions.

In the case of operator quantities one has to prove that the application of
conformal invariance does not lead to wrong conclusions, by taking the ap-
propriate matrix elements; in this way one can prove, as we shall see later on,
that in fact the kind of invariance relevant for operator products is the weak
one [36].

With this in mind, we can proceed in the study of the two-point function.
Since its functional form is completely determined by dilatation invariance,
the requirement of being also.conformal covariant is either identically verified,
or it implies that ¢ =20.

A gelection rule in faet can be shown to hold, namely that the (conformal
invariant) two-point function of every pair of operators is zero, if they do not
belong to the same representation of the conformal group [37, 38].

Translated for Lorentz tengors (i.¢. symmetric and traceless) this means that

(3.5) 010, ,.(@)04 4 (0)]0> =10
if n£=m or 1, %1,

The properties of two-point functions are then completely specified by
conformal invariance, so also current conservation must be implicit, when-

ever it is required by the theory. It is a simple matter to prove that, in fact,
the generalized conservation laws [36]

(3'6) a:1<0l00¢1.“o¢"(m) Oﬁlﬁ"(y)lo> =0
hold, if and only if the dimensions of the tensor operators are «canonical », i.e.
(3.7) la=2+mn,

in other words the same dimensions as they have in a free-field theory.
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Congervation in the operator form then follows [20]
(3.8) o™ O%M“”(w) =90

if the metric of the Hilbert space of the theory is positive definite; in the fol-
lowing we will see the implications of this result.

The above relations are a particular case of a more general statement that
can be phrased in the following way: any n-point Green’s function that trans-
forms covariantly under the conformal group depends on an arbifrary func-
tion [10] of n(n—3)/2 (if »<6) or 4n—15 variables of the form

(3.9) w0, = (mi—xi+1)2(wi+2_‘xi+3)2
DB 00) (@ — B)?

The afore-mentioned selection rule is a particular case of this result: in fact,
for » =2, we have n(n—3)/2 = —1, 4.e. the function is over-determined.

Analogous, and more stringent, conclusions can be stated for fields belong-
ing to «dilatation multiplets » from the study of their two-point functions.
Even the definition of such fields in fact leses sense, if one insists that the fol-
lowing conditions be verified: D|0) =0 and K,[0)> =0 and positivity in the
Hilbert space. So one is led to the conclusion that in this case conformal in-
variance is (possibly) realized in a spontaneously broken way.

When n =3 (n(n—3)/2 =0) the Green’s function is completely determined,
apart from an arbitrary multiplicative constant: for scalar fields we have, for
example,

(3.10) <0 l<P(w1)<P(w2)<P(ws) 10> = ¢'[(#y— @2)2(@y — 13) *(@y — x:;)2]—”2 .

The four-point function (w =4, n(n—3)/2 =2) is fixed up to an arbitrary
function of two «harmonic ratios »:

0lp(@1) (@) P(23) P(24) 10> = [(y — @3)* (@2 — 4)* ] F (7, 0)

where the variables 7, ¢ are of the kind described above.

It is not possible to put further restrictions on F, unless one makes some
dynamical assumption, 4.e. one specifies better the model one is considering.
As an example we can congider the model proposed by MIGDAL [38], in which
the field g(x) is composed of » free fields:

(3.11) (@) = p(@) ... pa(x),

and analytical continuation is performed in #»; this model, which is interesting
for other reasons, is trivial from this point of view, in that the model is sol-
vable and all the n-point functions are determined.
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Another possible approach will be pointed out in the next Section: we
emphasize that a conformally invariant four-point function has no clear-cut
relation with quantities such as for example the structure functions in deep
inelastic scattering, due to the lack of an LSZ particle interpretation in all the
physically interesting cases.

A Dbridge to this kind of applications is provided by the well-known ex-
pansion [9, 39, 40] for the product of two or more local operators

(3.12) A(@)B(0) o > cal@®) 2™ ... "0, ,.(0),

where the c-number functions ¢,(x?) have singularities at short and lightlike
distances governed by the dimensions of the fields:

(3.13) n(@2) = o(— @ -+ G, Heatta i

Conformal invariance can then be required to hold on both sides of eq. (3.12);
so giving relations inside « towers » of operators forming an irreducible repre-
sentation of the conformal group [41,42], i.e. an operator O, , (») transfor-

ming as in eq. (3.12) and its derivatives: at the leading order in #* these rela-
tions take the form (%) (*)

1

A(x) B(0) ~ Y e (@)@ ... w“nfd/lita—l(l — A0, s (®) ,

n

(3.14) ’

o=ty bt ), b= lut lu).

The expansion (3.14) automatically solves some problems left open by
eq. (3.12): for instance that of causality, in the sense that

(3.15) [A(x)B(0), C(z)] =0, if (z—a)2<<0, 220,
on both sides of the Wilson expansion: this is a dynamical requirement for

eq. (3.12), while it is automatically satisfled for every » in the conformal inva-
riant expression.

(*) The validity of the Wilson expansion has been proved also in the Callan-Symanzik
framework, if a zero of the B(g) exists. Also the equation (3.13) can be verified in this
case, as a relation between leading and next-to-leading terms (in x) when the short-
distance limit is approached in the Euclidean region [24, 25].

(**) The c,(#2) have the form (3.13); note that the constants a, are not specified by
conformal invariance.
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Operator-product expansions can also be derived that aecount for conformal
invariant relations between leading and nonleading terms in x?: their derivation
is very difficult, since one cannot use only the conformal algebra, but rather
the action of finite transformations [43, 44] or the 6-dimensional formalism [45].
The two approaches have been proved to lead to equivalent results, at least
in the Euclidean region [46]; a lot of care must be taken in order to translate
these results into the ordinary Minkowski space [47].

The use one can make of these « whole space » expansions (*) is mainly related
to the study of the structure of the fourth-order [37] (and higher-order [48])
functions: the insertion of operator-product expansions in V.E.V.’s in fact
allows one to reduce a higher-order function to a sum of smaller-order ones.
However the causality requirements are not easy to verify for a « whole space »
expansion, so the best one can hope to prove is that, e.g., the four-point function
48 causal [49].

An important feature one can easily check is that the invariance of the
operator-product expansions is equivalent to the invariance of the ftwo re-
spective three-point functions plus the selection rule [453, 50]; in this sense
Wilson expangions are « weakly » conformal invariant.

As a consequence normalization factors are connected each other: for ex-
ample, from eqs. (3.2), (3.10) and (3.13) we obtain

I
¢'= cay,.

This fact is important for phenomenological applications, as these normaliza-
tion factors can be possibly measured in experiments.

Let us illustrate this possibility by briefly describing the result derived, in
a slightly different framework, by CREWTHER [18]. The use of Wilson expan-
sions for e.m. and axial currents

T(J,(0)d,(0)) = R(g,,s* —2w,,) I(7e*)* + Ke,, a2 A°(0)(3n?x?)
(3.16)
T(Aﬂ(())A”(y)) =R'I(g,,9*—2y,9,)(@y*)~* (I is the identity operator),

and conformal invariance for the 3-point function allows one to write the
anomalous Adler’s constant (which is fixed by PCAC and =°->+yy decay:
S~0.5)

1
(3.17) 8 =—1 m e f A A%y w, Y (O (@) ,(0) 9* A,()[0)

(*) For the validity of these expansions we have to require that either the physical
world is at a zero of f(g) or that f(g) =0, as happens to be the case in the two-
dimensional Thirring model.
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as

(3.18) 38 = KR',

where K can be measured in polarized deep inelastic scattering and R’ is con-
nected through asymptotic chiral invariance to the electron-positron total
cross-section.

Similar relations can also be found for other off-mass-shell processes [19],
like ete~— ete~ 4 anything.

Wilson’s expansion can also be used to transfer properties coming from con-
formal invariance to on-mass-shell matrix elements such as the pion form
factor [12, 51]; unfortunately application to the most interesting case, namely
the deep inelastic electroproduction, is hopeless, since in the matrix element
between equal-momentum states all the derivatives of operators disappear

and an infinite sum over inequivalent representations of the conformal group
remains:

(3.19) (P (@) TO0)|p) =, S eala?) (P10, (0)[p> 2™ ... 2%

The observed scaling in deep inelastic experiments implies that an infinite

number of local tensors contribute with «canonical dimension» 1,=2 -4 n,
so that.

(320) ¢, = an(_ 22 ,58%)—%(14%3—2) .

Conforms] invariance in turn implies that the operators are conserved.
We have then this situation: dilatation invariance at short distances implies
conformal invariance—scaling plus conformal invariance constrain the limiting
(Gell-Mann-Low) theory to possess an infinite number of conserved tensor
quantities. It has been proved [62] that the infinite conservation laws in
simple models (such as the gp* mean that the theory, though formally inter-
acting, is free.

However this is not always the case in more complicated theories, such as
the-above-mentioned model proposed by MIGDAL [38]; there the conservation
laws are the consequences of the conservation of the «type» of fundamental
constituents ¢.(x).

It is however necessary to note that we should perhaps have put a question
mark on the statement of the « observed scaling »: in fact recent semi-em-
pirieal [53, B4] analyses have shown that the observed data are also consistent
with anomalous dimensions of the type

12
(3.21) ln=2—i—n—|—w[1-—(—n—+l—)(n—+—2‘)],

which have been suggested also from theoretical arguments [55-57].
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4. - The bootstrap approach.

The considerations developed in the preceding Sections are in some sense
the «kinematics » of conformal invariance: quantifies such as anomalous
dimensions or normalizations are not specified and not constrained by the
theory inself,

An interesting tool for studying dynamical Pproperties of the theory is pro-
vided for by the bootstrap approach, first proposed by MiepAL {13] and Po-
LYAKOV [11] and by PARist and PELITI [14]. We can consider this approach
as complementary to the study of «kinematical » properties of a conformal
invariant field theory in the sense that it starts from the knowiedge of the
structure of the Wightman (specifically 2- and 3-point) functions.

Let us take as an example the case of the 3-point bootstrap equations, closely
following the original treatment of MIGDAL [13].

Consider a theory with a conformal invariant trilinear interaction, such
as the gg® in 6-dimensional space-time (or the ps-n interaction in four di-
mensions): two- and three-point functions are functionally determined and

we can make the hypothesis that all n-point functions have a skeleton ex-
pansion [15, 58]

that is an expansion in Feynman diagrams without self-energy parts and vertex
corrections, in which propagators and vertices are the «true» conformal in-
variant ones.

This kind of expansion can then be used also for the Bethe-Salpeter kernel
that appears in the renormalized Schwinger-Dyson equation for the three-

point function (inhomogeneous terms are absent since they would violate di-
latation invariance)

(4.2) —o<—~—o/ | :

where means that the B.8. kernel is two-particle irreducible.

We know that conformal invariance fixes the form of propagators and vertex
functions appearing in the expansion (4.1) up to normalization factors. It
can be shown that all the normalization factors ean be reabsorbed in the nor-
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malization of the vertex function (the « coupling constant»). So we are left
with an integral equation that, whenever the integrals involved in eq. (4.2)
do not introduce divergences, thus spoiling its meaning, becomes an algebraic
equation in the unknown coupling constant and anomalous dimensions [16, 58]
which are the only parameters left: since the equation is nonlinear one can
hope for at most a discrete set of solutions.

As for the propagator, since unitarity is not satisfied term by term in the
skeleton expansion, this requirement can be adopted as a bagis for bootstrap
equations (note that it is sufficient to know the imaginary part of the propa-
gator) [14]:

S

Also a Bethe-Sapeter approach can be used [16].

The main point for the validity of the previous statements deeply relies on
the absence of divergences: this has been proved by MAck and Toporov [15]
for some range of the value of the dimensions. Up to now there is no solution
of the bootstrap equations in 4 dimensions, whereas solufions have been found
in the framework of calculations of eritical indices [16], and, through analytical
continuation in the dimension of the space-time, in 6 4-¢ dimensions [56].

The other hard problem in this approach is the verification of the Ward
identities when the vertex functions contain currents or the energy-momentum
tensor: a detailed treatment of this point can be found in the paper by MAOK
and SYMANZIK [16].

Finally, as has been pointed out by MAck [53], the bootstrap approach is
also important because it can be thought of as a constructive way to the Gell-
Mann-Tiow limiting zero-mass theory: it is clear in fact that conformal inva-
riance is maintained in every step of the procedure thus yielding at the end
a dynamical and gelf-consistent invariant theory.

5. — Twe-dimensional models.

Two-dimensional field theory has often been used as a laboratory for the
study of quantum field theory: as an example the Thirring model [59, 60],
being solvable in its zero-mass limit, allows one fo study many formal
porperties of quantum field theory.

From the point of view of conformal invariance, such models stem from a
twofold interest: the structure of conformal transformations is rather peculiar
in two dimensions [60] and, secondly, in the Thirring model it can be proved
that the Callan-Symanzik function is identically zero [61], so the theory is
exactly conformal invariant in the Gell-Mann-Low limit.
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As for the peculiarity of the conformal group in two dimensions we can
see, from the Appendix, that in the defining equations D = 2 is an exceptional
case (see eq. (A.Sb)): in fact the generating funetion A(x) is no longer con-
strained to be linear in @, but has rather to verify the equation

(6.1) DAz =o0.

The full conformal group becomes then infinite dimensional, i.e. every
harmonic function can generate conformal transformations. Of course this
algebra contains a subalgebra which is the restriction of that in 4 dimensions
(04), that is O,,: this algebra plays a special role, as we shall see later.

The structure of the generators, the transformation laws of the fields and
80 on can be easily derived in general, but are better illustrated in the framework
of the Thirring model.

Here, as is well known, we have a self-interacting «spinor » field with
equations of motion of the form

(5.2) (@) =g:(y- )y (v) (I, = F@)y,p@):).

Here the canonical approach, starting from the commutation relations of
the fields, can be substituted with some advantage by an alternative one that
uses the currents

(5.3) J () and Ji(w) =8 d,(x) = YY), S = — & =—1,
as dynamical quantities.

The relation between the axial and vector currents, which is a consequence
of the fact that the stracture of the Dirac matrices is poorer than in 4 dimen-
sions, is an important feature of the model. In fact, together with the conser-
vation of both currents (which can be proven in the zero-mass limit), it implies
that the currents fulfil a free Klein-Gordon equation, which makes formal
manipulations very easy to handle, and, more significantly, allows us to prove
that the Callan-Symanzik function is zero for every value of the coupling con-
stant [61]. This is a very crucial point: it means in fact that the short-distance
limiting theory is ewactly dilatation and conformal invariant. Of course the
conformal group here implied is the «restricted » (0,,) one, as we shall better
see later.

Coming back to the «exfended » algebra, simple computations allow us to
write its generators in terms of the currents [60], via the energy-momentum
tensor

(5.4) L) = [aa7 0, (@) (@) .
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Here f*(x) is the generating function of infinitesimal conformal transforma-
tions, connected to A(w) through eq. (A. 3a), and

(5.5) Ou(@) =1d, (@) I (0): — %g,,d (@) (x) .

It is easy to see that, if we use the standard light-cone variables

(5.6) W =g°4 o', v=a"—ua',

the whole algebra splits into the direct product of the u- and v-part (in the

same way as the 0,, subalgebra splits into 0,,&®0,,) which in a particular
basis can be expressed as

Lz~ [dut, ()= (0. = Boo -+ Oun),
o0 I = [avo_(v) v (0_ = 60— By),
with commutation relations
(5.8) [Ly, Lt ] = (m—mn) LY, - ¢-number, [Ly, L' 1=0.

Amusingly enough, this is the same « gauge » algebra that appears in the
dual models [62, 63].

We have anticipated that only O,, is the invariance group: in fact, while
the equations of motion are formally invariant under the whole algebra,
Wightman functions are invariant only under O, ,, thus resembling a situation
in which the symmetry is spontaneously broken.

Finally, the fact that §(g) =0, i.e. the exact invariance of the zero-mass
theory, allows us to write a « whole space » operator-product expansion; it turns
out that the expansion originally proposed by DELL’ANTONIO, FRISHMAN and
ZWANZIGER [64] is invariant not only under O,, transformations, but also
under the whole algebra.

6. — Conclusions.

In the preceding Sections we have tried to illustrate some of the most
relevant results that follow from the assumed conformal invariance of field
theory: they are encouraging, mainly in the direction of giving a self-con-
tained theory that can be thought of as a limit of realistic theories. However,
the relevance to the real world is not clear and normally requires addi-
tional hypoteses, such as the operator-produet expansion.

There are of course many other ways in which this argument can be studied:
as an example we can quote the work presented by NoBILI to this Conference [65],
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in which broken dilatation invariance (i.e. partial conservation of the dilatation
current) is used to derive constraints on Green’s functions.

Beyond these applications, there is a number of purely theoretical problems
left open, and the most important one is perhaps that of the formulation of
quantum electrodynamics in a conformal invariant way.

In fact, although conformal invariance found its first physical application
as the symmetry group of the Maxwell equations, its extension to the quan-
tized theory is very difficult due to the fact that conformal and gauge trans-
formations are strictly connected.

An important achievement in this direction has been found by ApLER [66],
with the formulation of a conformal quantum electrodynamics for massless
particles, not taking into account photon self-energy parts.

APPENDIX

Some general results about the conformal group.

Conformal transformations are defined as the space-fime transformations
that leave the metric tensor (in the flat space) invariant up to multiplication
by a scalar function of the co-ordinates:

, , ow* 0z
(A1) By =Wyt (@) = S g I = A(@) gy -

Their name comes from the fact that they leave the cosines of infinitesimal
angles invariant.

In the following, unless otherwise specified, we will consider a D-dimensional
space-time: in it infinitesimal transformations

(A.2) @, ~ x, + Sw,(x) , A@) ~1— Ma) ,
are constrained to obey the equations

(A.3a) 0,8, - 0,82, = g,,A@)
(A.3D) [(D—2)010, + ¢, LU1A(w) = 0,

which, for D=2, fix their form to be
(A.4) 0, = 3, + S, a” + 2,80 + (2230, — 2(x- Se) ) .

As dwy, is antisymmetric, 3z depends on (D -+ 1)(D + 2)/2 parameters,
a8 is appropriate for an 0,, group: in the case usually considered D — 4
and the group becomes 0,,. An interesting feature is that 0,, does not act
linearly in the Minkowski space, but rather in a 6-dimensional space [6a, b],
thus conformal invariance can be induced through a set of linear relations and
the results mapped in a well-defined way into the physical space-time.
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Going back to eq. (A.4) we can easily identify the first two terms as infin-
itesimal Poinearé transformations, while the other two correspond to dilata-
tion and special conformal transformations, that in the finite form read

@, = %, dilatations ,
(A.5)

_ 2
R N X
3

special conformal transformation .

Note that all these transformations leave the light-cone (z*=0) inva-
riant.

Action of transformation on flelds is related fo the existence of unitary
operators such that

(A.6) U(g)p(x) U'lg) = S(g, ») p(x)

(9 is a member of the group) with multiplication law

S(gg'y %) = S(g, ) S(g', g ') .

Here ¢(x) stands for an arbitrary collection of fields.
It turns out to be more convenient to deal with infinitesimal transforma-

tions, 4.e. representations of the algebra: they can be found with the help of
the standard induced-representation method.

For our purposes we need to consider only dilatations and special conformal
transformations.

For dilatations we have
(A7) [p(x), D] = i(2*0; + L)p(x) ,
where the matrix L can be put in the block-diagonal form

2‘1]
(A.8) L= 2 |

| 2

and the matrices A have the Jordan form
(A.9) =1

If the rank of the j-th block is 1, i.e. A; =1;, then the j-th field is said to
have «scale dimension » I;; in the other case the fields belonging to the block
are said to form a «dilatation multiplet » and 7, is called « diagonal dimen-
sion » [30-32].

For conformal transformations we have

(A10)  [p(), K,]= i(2w,2" 8, — 220, — 20" [gu L + 12,,]) p(@) + K, p(x)
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(X, is the spin part of the Lorentz generator M,,), where the form of K',, is
roughly similar to that of L; however all the physically interesting cases are
those for which K, =0.

Finally we list the commutation relations of the conformal algebra

[K,LH er] = i(gﬂlKv—g/le) ’ [—D7 Mzu] =0,
(A.11) [Ky, P, =— Zi(gm,D —+ MW) , [D, PM] = iPﬂ y
[I{,uy K,,] =0 ’ [KM D] = iKZ ’

plus that of the Poincaré algebra.
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