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A conformally covariant formulation of operator product expansion is discussed as
an expansion of the product of two representations into a direct sum of irreducible
representations, The basic irreducible representations are analyzed and classified. The
isomorphism between the conformal algebra and the O(4, 2) algebra is used to obtain
a manifestly covariant formalism. The implications of the isomorphism in the derivation
of the representations is discussed. The covariant O(4, 2) formalism directly relates
dominant terms to nondominant terms in the light-cone limit. The essential coincidence
of the problem of a conformal covariant operator product expansion to the problem
of determining the form of the three-point function is stressed, together with the relevance
of a selection rule for two-point functions following from exact (not spontaneously
broken) conformal covariance. The role of Ward identities in a conformal covariant
scheme is pointed out, and the mathematical implications on the n-point functions
from causality are described.

1. INTRODUCTION

The notion of dilatation invariance has for many years been used in theoretical
investigations of high energy physics [1-5]. In particular, Wilson [5] has made the
proposal of applying dilatation invariance to the determination of the leading
short-distance singularities in operator product expansions. Such an expansion is,
for two currents, of the form

Ju®) 740) = ¥ cP(x) 0™ (0) )

where c{,(x) are singular c-numbers and the local operators O™ (x) are a complete
set of operators which provide a basis for the expansion.

161

Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.



162 FERRARA, GATTO, AND GRILLO

Field-theoretic investigations in perturbation theory [5-9] and in model theories
[5, 10-12] generally support the conjecture of the existence of the expansion.

Dilatations invariance, if applicable, allows for a determination of the degree
of singularity of the c-number coefficient ¢{?’(x) in Eq. (1).

The question of validity of dilatation invariance, if examined from a field-theory
standpoint, is very intricate and complex. Very accurate and difficult investigations
[10, 13-18] have been carried out on the most relevant problem of determining
whether the operators O, have definite “scale dimensions,” and, if this were the
case, of obtaining informations on the values of such dimensions.

The problem of scaling will not, however, be discussed in this note, in which
we rather deal with the still hypothetical conjecture of invariance under the
conformal algebra. Our approach will be entirely algebraic, and no theoretical
justifications will be provided for the application of approximate conformal algebra,
as an extension of the Poincare algebra plus dilatations, to physical processes,
in an asymptotic limit.

From a algebraic point of view, the conformal algebra [19-39] becomes of
interest as it provides for an extension of the Poincaré algebra into a higher
dimension orthogonal algebra. On more physical ground, the extension from
dilatations to the entire conformal algebra may be justified —though not at all in a
compelling form—by some reasons which we briefly summarize here. First, one
may recall that in Lagrangian field theories invariance under dilatations often
implies invariance under conformal transformations. A sufficient, though not
necessary condition, for such implication is, for instance, that there be no derivative
couplings. Second, one has the important circumstance that conformal transfor-
mations leave the light-cone invariant.

The relation of the Bjorken limit [40] in momentum space to the light-cone limit
in configuration space is well known (see, e.g., Ref. [41]). It is therefore suggestive
to exploit the consequences of conformal invariance on an operator product
expansion on the light-cone [42-46].

The requirement of covariance under the infinitesimal generators of SU(2, 2)
(the covering group of the conformal group) can be imposed directly on an operator
product expansion on the light-cone [47-49]. The transformation properties of the
infinite set of local operators which provide the expansion basis must then be
preliminarly analyzed [48].

It is remarkable that conformal invariance alone directly solves the apparently
unrelated problem of the causality support for the operator product expansion.
In the expansion in Eq. (1) a problem of support arises when one commutes both
sides of the equation with a third local observable C(y). The right-hand side is
then expected to vanish for y* << 0, but the vanishing of the left-hand side is
guaranteed only for y? <0 and (x —y)? << 0. However, for a manifestly
conformally covariant expansion, the terms on the right-hand side are arranged so
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as to formally eliminate the problem [47-49]. This circumstance also adds some
argument in favor of the conjecture of conformal invariance on the light cone.

In addition to offering a solution to the causality problem, conformal invariance
also solves the independent problem of translation invariance on a hermitan
basis [48].

The most elegant derivation of a manifestly conformal covariant operator
product expansion can be given by exploiting the isomorphism between the
conformal algebra and the O(4, 2) orthogonal algebra. The derivation is uniquely
extensible off the light-cone into the entire space-time [49-51]. Such expansions,
manifestly conformal covariant over the entire space-time, should apply to the
skeleton theory in Wilson’s sense [5], provided such a theory enjoys the property
of conformal invariance beyond the postulated scale invariance.

The manifestly conformal covariant formalism used in this paper is based on the
isomorphism with O(4, 2), and makes use of a six-dimensional pseudo-euclidean
coordinate space. The most important problem to be solved is that of classifying
those representations which contain infinite towers of irreducible SL(2, C) tensor
representations. For such a purpose, it is convenient to deal with homogeneous
spinor functions defined on the six-dimensional hypercone and properly behaving
under orbital and internal conformal transformations.

It is remarkable, and again pointing out to the possible physical relevance of
the conformal algebra, that the case of “canonical dimensions,” i.e., tensors
satisfying the relation 7, = 2 +4- n between their dimensions (in energy) and their
tensor order, plays a peculiar role and is associated with an algebraic pathology.
In such a case a degeneracy comes about in the eigenspace of tensor operators
which commute with the generator K, , of special conformal transformations. The
pathology is reflected in a definite way in the operator product expansion, when
operators of canonical dimensions appear in the basic expansion set. At this point,
we recall that scaling—as observed from deep inelastic electroproduction —directly
implies the existence of a subset of operators O, of dimension 7, = n - 2. Among
them is the energy-momentum tensor, whose basic role in providing a theoretical
justification of scaling has been strongly emphasized [4, 52, 53].

From the standpoint of conformal covariance, the product of two local operators
can be thought of as an infinite sum of irreducible representations of the conformal
algebra. One has therefore to deal with towers of operators which transform
irreducibly under the algebra, and whose classification can be easily obtained—as
we have said before —within the manifestly covariant six-dimensional formalism.

It is also interesting to prove the direct connection of the expansion to the
conformally covariant vacuum expectation value for three local operators.

The content of this paper is as follows. In Section 2 we discuss the field-theoretical
representations of conformal algebra, by exploiting the isomorphism with O(4, 2).
In Section 3 we concentrate on the tensor representations of O(4, 2) on space-time.
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In Section 4 we treat in detail the case of canonical dimensions and the related
situation of conserved tensors. In Section 5 we summarize some results pertaining
to operator product expansions, which provide the main motivation for our work.
In Section 6 we give a discussion of the n-point function. The appendix provides
some mathematical details.

2. FIELD-THEORETICAL REPRESENTATIONS OF CONFORMAL ALGEBRA

The conformal algebra is isomorphic to the orthogonal algebra 0O(4, 2). Its
action on space-time corresponds to the action of the algebra O(4,2) on the
homogeneous space O(4, 2)/I0(3, 1) ® D.

The 15 generators of O(4, 2), can be thought of as the components of a skew-
symmetric tensor J,p , defined according to

Juv = Muv B J5u = l(Pu — Ku)7 Jeu = %(Pu -+ K'u)’ J65 = D. (21)

In Eq. (2.1), P, and M,, are the Poincaré generators, D the generator for dila-
tations, and K, that for special conformal transformations. The O(4, 2) algebra
is of rank three. Its Casimir operators are

Cr = J )8, 2.2)
Cu = €apcpepJ*PJCPIET, (2.3)
CHI - JABJBCJCDJDA. (2.4)

The irreducible representations of the conformal algebra are therefore specified
by the eigenvalues of these operators. Let us consider a pseudoeuclidean space in
six dimensions with metric tensor g, = (4+———, —H) 4 =0,1,2,3,5, 6. We
introduce spinor operators ¥((n) defined on the hypercone %y, =0
M4 = M., 795 > 7¢) Which transform according to

W) = —ieI i  Pal) = —ic'® L + S Put), 2.5

where
Ly = i("]Aas — 7)33,4)

and S}fi is an irreducible finite-dimensional representation of the spinor group
SU(2, 2) which is locally isomorphic to O(4, 2).
We assume that the functions ¥,(n) are homogeneous, i.e., they satisfy

110, ¥ (1) = A¥ (). (2.6)
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Then one can show that the (local) operator

Ow(x) = k™™ )E P (n) @1

1
(k:’%‘i"?s’ Wu:S6u+S5u’ xu:?'r]u)

transforms according to a representation of the conformal algebra on space-time
induced from a representation %, , 4, K, of the stability algebra at x = 0 given by

Z,'u,, = Suv N A = S65 — l)\, KA = Se)x - S5A N (28)
ie.,

[O{rx}(x)9 Pu] == iauo{ot}(x)s

O{a}(x)9 Muv] == {i(xuav - xvau) Bég}} + 2({5)}} ‘?(B}(x),

[0w(x), D] = {ix 8,88 + 4L} 0(), 2.9)

[0w(), K] = {i@xx,d" — x%,) 8{3

+ (&K — 2ix[gnd + Z.DE} O@().

We are interested in classifying those representations of the conformal algebra
which contain infinite towers of irreducible representations of SL(2, C) of the
type (n/2, n/2), i.e., tensor representations.

In the following section the classification of these representations will be
discussed.

3. TENSOR REPRESENTATIONS OF 0(4, 2) ON SPACE-TIME
We start with the following lemmas.

Lemma 1. Every irreducible (infinite dimensional) representation of the conformal
algebra which contains a ladder of irreducible SL(2, C) representations of the type
[(m+K)2,(n+ k)2l k =0,1,2,... can be specified by an irreducible Lorentz
tensor (n|2, n|2) of definite dimension 1, and annihilated by K; , i.e., by an irreducible
representation of SL(2, ¢) ® D.

The proof of Lemma 1 follows from the fact that the Casimir operators (2.2-4)
are given in such representations by

Cy = 2L,(I, — 4) + 2n(n + 2),
Cy =0, G.1)
Ci = n(n + 2)[3 + L,(l, — 4],
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as can be seen by evaluating their eigenvalues on a tensor operator annihilated
by K, . Therefore, these representations are specified by the couple: # (nonnegative
integer), and /, (which can assume any value).

LemMA 2. Every irreducible representation of the conformal algebra, which,
according to Lemma 1, is uniquely specified by an irreducible tensor representation of
SL(2, C) ® D (i.e., by the order of the tensor n and its dimension l,,), can be uniquely
enlarged (for I, # 2 +n) to a tensor representation of O(4,2) acting on

0@, )/[I0(3, 1) ® D. The tensors TAI‘“A,,(T]) are specified by the following
properties:

(3a) They are homogeneous of degree I, ;

(3b) They are irreducible, i.e., symmetric and traceless;

(3c)  They satisfy two sets of supplementary conditions: ¥y .4 () = 0and
aAlY’Al... 4,(n) = 0 (generalized Lorentz conditions).

One can immediately see that these properties of ‘PAI... 4, are equivalent fo the
Jollowing.

(3d) They are irreducible with respect to the orbital part of the algebra
04, 2);

(3¢) They are irreducible with respect to the spin part of the algebra O(4, 2);

(3f) They are irreducible with respect to the whole algebra, ie., L-S is a
constant on these representations.

Proof. Let us consider a tensor operator ’{’Al... 4,(n) under O(4, 2) transfor-
mations on the cone 5 = 0, of homogeneity degree A, = —I,, i.e., satisfying

N4 4y a,(0) = A¥ 4y, (1) (3.2

It is easy to show that the orbital quadratic Casimir operator on the cone reduces to
L pLlA% = 2940,4,(4 + 910,) (3.3)

(the other two Casimir operators vanish on orbital representations), and therefore,
LapLABY 4 ... 4, (0) = 20,4 + X)Wy a () = 20,1, — 4) Yypn, (). (3.4

Thus the equivalence of 3a and 3d is proved; 3b and 3e are obviously equivalent.
To prove the equivalence between 3c and 3f we observe that

JABJAB = LABLAB + SABSAB -+ :ZLA!BSAI’)‘ » (3-41)
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and by explicitly performing the calculations one obtains

(.[4 'SIP)Ar'"An (7’]) = —2 z (7]‘41 8B¥1Al...‘4‘i...AnB(’l]) - ’Y]A aAilﬁAl...ji...AnA(’T]))
g==1

=23 00 ypda (1) = =20 4. () (3.5)

(4; means that the index A4, is omitted), where we have used the two supplementary
conditions in 3c. Moreover, S,3S4% = 2n(n - 4), as can be proved by applying
this operator to the highest order SL(2, C) tensor for which Ses =0and 7 - K =
n (Cyy(internal) = 3n(n - 2) and Cy(internal) = 0).

Let us now prove Lemma 2.

Remembering that

0,af¥) = Kr(e =m0 () (3.6)
and that
(/2)LAPL 45 = L(I, — %), (3.7
(1/2)S 458% = (1/2)S,,8* + m - K — 8% + 8iS,, 3.8)
SpL*® = S, L" — 28 Les + 7+ H + K- P, (3.9)
where
Hy =Ly, —Ly,, P, =L+ Ly,
we have

€T 4T 45T BT = Ll — 4 + 38,8% + = - K — 8
+ 4iSes + S, L — 28;Les + w - A + K- P, (3.10)
where
S, = eS8, eior = S, | (x,m, — x, " m,),
K, = K, + 2x"(8.Ses + S) + 2X,% * 7 — x*m, ,
§65 = Sg; + X -,

Zuu = Luv + Xy Ty — XuTy

P =P, — (3.11)
Ay = Ay + 2il,x, — 2x,x * 7 - X2y,
(] =iln—x'77,

R

65 = S¢z + 2x - + (x w2
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Using translation invariance, it follows that
$+48J 2040, (0) = L(l, — 4) + 35,8 + 7 - K+ K- (2 — =)
=L, —4) +nn+2) (3.12)

and

[0400,(0), K}] = 0 (3.13)

due to the first supplementary condition in 3c. To complete the proof of Lemma 2,
the mapping between the covariant O(4, 2) tensors ‘I’ --4,(n) and the irreducible
representations of conformal algebra on space- tlme of "the type discussed in
Section 2 and Lemma 1 must be shown.

It will be proved that if /, ¢ 2 4 n, the components of the tensor

wAl...An(’Y]) = k—l"(em.TrO)Al...An (X) (313
are completely specified in terms of the divergences of the highest-spin tensor

Otl b4 (x)

To evaluate these components we observe that at x == 0 Eq. (3.13) becomes

y]AI...An(’T])m=0 = k_l"OAl...An(O), (314)
Therefore, the problem is that of evaluating the components Oy, ..o j0-.-(0), where
(J =1,2,..,n) and x - stands for 5 or 6.

This problem can be completely solved by using the supplementary conditions 3c.
In order to study the structure of the components of O 4,--4,(0) we observe that

(S650)A1'--A,” =1 Z (g5Ai0A1...,;i...An6 — gsAiOAl...,;....An5), (315)

=1
and, using the first supplementary condition, at x = 0 we find
Os4y..a, = Ogaye..a, (we omit the index 0). (3.16)

Equation (3.15) becomes

n
(Seso)Al---A,, =1 Z (gsA,. - gGAi) OAI---A{-W‘;,,6 s
i=1
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so that
n
(S650)a1---oakAk+1--»An =1 z (ga.A,- - gGAZ-) Oal---akAHl-nAi---Ane
=k
GaAn
n
= — z (85Ai + 861‘11) 00‘1"‘0‘kAk+1"‘A‘i"'An3 >
=+l

where Ay, - A, are components 5 or 6, indifferently because of condition (3.16).
We get

(SGS‘O)al---uk(i-"G - _i(”l — k) 0”1""’%6""3 (3.18)
and, defining L = iS,;,
(L‘O)ml...ak(;...s = (n - k) 00‘1"‘0%6“'6 Py (3.19)

so that all Lorentz tensors are eigenstates of the dimension. We also recall that

(SABO)Al’“An =i Z (gAAiOAl...A”i...AnB —_ gBAZ,OAl...A‘i...AnA),
n
(Wuo)Al---An =1 Z [(gsA,. + &sa,.) Ouyodyedpu
4=1
- g,_LAi(OAl.n.A”i...An(; —+ 0A1“"‘ii"'l4n5)]’ (320)

n
(i’”uo)‘:izmA,,, =2 (406,42'--,4" + z guAioﬁiz--'/fimAne)
i=2

n
= 2 [40A2‘-‘An6 + Z 0,42...,4‘1....,4”6

=2
+ z (g5Ai()5A2...,4‘i...An - gGAiOGAz““‘fi"'An):I (321)
for A; == 5 or 6 (J/ > K) we have:

(i"TuO)gz"'akAkﬂ---An =2 [(4 + n — ]) 00‘2"'°‘kAk+1"'A’nG

—_— z (85‘41' —I— 8614{) 060!2'"NkAk+1“'Ai"'An6]

t=k+1

=23 4 k) Opy.ooay60s - (3.22)
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Using (3.22) and the second supplementary condition 2¢c we get
30.04,...q66 + 2 + k —1,) Oycnn06 = 0, 2<k<n (323

Note that the second supplementary condition is well defined on the cone #* = 0,
since

Nay 0P yuya,(n) = 0 is equivalent to (L4, — ig4) Pauya,(n) = 0 (3.24)

(the second equation is manifestly defined on %2 = 0); Eq. (3.23) can easily be
solved by iteration to give

I'l, — 2 — n) Yoot
70, —2 — 7+ B OOl B29)

— )k
0“1"'°‘n—k6“'6 - 2

Equation (3.5) solves the probiem.
For the correlated dimensions , = I 4 n, formula (3.25) simplifies to

Iq—2) -
Ta—2 5 &) OmfuDua s (3.26)

— -k
00‘1"‘0%—1;6"'6 - 2

4. CANONICAL DIMENSIONS AND CONSERVED TENSORS

We investigate the particular case /, = 2 + n, which we call “canonical
dimensions.” This case contains, as a subcase, as shown in Ref. (47), the situation
of local conservation of the four-tensors O, ..., (x)

8104, (%) = 0. 4.1)

We recall that only for /, = 2 + » is Eq. (4.1) conformal covariant. Morcover,
ifl, =2 <+ nand 3“10u1...an(x) s 0 then the new tensors

Oy (%) = 0O, (%) “4.2)

are annihilated by K, at x == 0.

This particular behavior is responsible for the fact that (3.25) does not make
sense for canonical dimensions. However, subcase (4.1) is consistent with sup-
plementary condition 3c (generalized Lorentz condition). In fact, in this case 3¢
tells us that (4.1) is indeed a conformal covariant equation. Supplementary
condition 3¢ cannot be imposed, however, in case (4.2) where we have to use a
different method. In the particular situation we are considering, we note that on
space-time the irreducible representations of conformal algebra (see Section 3)
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spanned by Oy,...o. (x) exhibit a peculiarity. There appears in fact a degeneracy of
the eigenspace K, = 0. There are in such a case two irreducible representations
of the stability algebra at x = 0, given by the couple of tensors O, ..., and
60‘00“,‘1...%_1 , which induce the same irreducible representation on space-time. In
fact, these two tensors, irreducible when restricted to the stability algebra x = 0,
behave reducibly under the full conformed algebra, since

0syv sy ©) = [0, (0), P, @3)

This pathology has a well-defined counter part on the manifestly covariant tensors.
In fact, one sees that, starting with a tensor 'z”A .4,(m) which is not conserved,
one can always define a new tensor

TAJL"-An("?) = WAl---A"(T]) —_ % Z ’7A¢ aB'fIBAI»-'J,---'A"(")) (44)
g=1
which is conserved, provided 8%, . 4, o, satisfies supplementary condition 3c

(as it does not carry “canonical d1men51ons”)

This ensures us that the new tensor is irreducible under O(4, 2) transformations,
according to 3a—f of Section 3. Note that the two tensors which define ¥, ..., (n)
are not separately irreducible, and the combination in (4.4) is uniquely ﬁxed by "the
requirement of irreducibility. We also observe that the tensor '1” 4, () =
339734 (1) satisfies both supplementary conditions in 3c; its components can
thus be evaluated with the same method of the previous section. One finds

) _ 1 __—
Oa1'"°¢n—1~k6'"6 = 2% T(z—_!"_—k—)" 8u1...auk05:...5:_1_k 2 (4‘5)

and
Ouprtgy = @Opogevcayy s Oy, 0) = %0 44,...4._(0). (4.6)

The previous discussion enables us to consider only subcase (4.1) when dealing
with a covariant tensor ¥, ..., (1) carrying canonical dimensions /, = 2 + n. In
fact, the covariant formulation of case (4.2) is the same as (4.1) with the sub-
stitution (4.5).

The trouble with conserved tensors lies in the fact that components 5 or 6 are
not physical, in the sense that they cannot be determined in terms of the funda-
mental components ¥, . o+, - This is due to the fact that the second supplementary
condition is 1den‘ucally VCI‘lﬁed in this case; the lower order tensors which
correspond to some component 5 or 6 cannot be built up in terms of divergences
of the highest order n-tensor (they vanish!). Moreover, these components cannot
be chosen to be zero as this would destroy the covariance. So we must conclude
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that, for conserved covariant tensors of canonical dimensions there is not in general
a one-to-one correspondence between irreducible representations on space-time
and covariant O(4, 2) tensors. This situation is deeply connected to the problem
discussed in the paper by Mack and Salam [33], where they stress that a conformal
covariant coupling, to be acceptable, must not mix unphysical components with
physical ones. More generally, we call unphysical components those components
which cannot be expressed in terms of the physical ones (and which cannot be put
equal to zero). The above discussion implies that each conformally covariant
formulation on space-time, which involves conserved tensors with [, = 2 - n,
must be such that it does not couple physical components (¥, --,) to unphysical
ones (¥, ...qzz...» X = 5 or 6).

We finally conclude this section by observing that, for /, = 2 + n the covariant
tensor

4

¢A1"'A""1(7}) = 6‘491‘4‘41,_”4"_1(7}):’ (4.7)

whose components on space-time are given in (4.5), is a genuine tensor with all
components physical, according to the previous discussion. It is a covariant
irreducible tensor, which has to be considered independently. This reflects the fact
that, in space-time ONI...an_l(x) = B“Oaa]_...am(x) is a tensor annihilated by K, at
x =0.

5. DECOMPOSITION OF AN OPERATOR PRODUCT INTO IRREDUCIBLE COMPONENTS

In this section we summarize some physical applications of the present inves-
tigation.

Wilson [5] suggested that a product of two local operators A(x) B(x") (which is
not a well-defined object when x = x’ and is furthermore expected to be singular
for light-like distances) can be expanded as an infinite sum of local operators.
Moreover, the (c-number) coefficients of such expansion are responsible for the
singular behavior for (x — x')* — 0. Such singular behavior is determined, in the
limit, from dilatation symmetry. In Ref. (47) it was suggested that additional
information on the expansion could be obtained by assuming the more restrictive
covariance under the full conformal algebra. The assumption is motivated by the
fact that, for a wide class of interacting lagrangian field theories, conformal
symmetry is a consequence of dilatation symmetry. We can think of the product
of two local operators as a (infinite) sum of irreducible representations of the
conformal algebra, i.e., as sum of towers of operators which transform irreducibility
under this algebra. These towers, according to our previous discussions, are each
specified by a Lorentz irreducible tensor O,,...o (x) with dimension 7, and anni-
hilated by K .
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If we consider the operator product expansion of two (conformal) scalars,

A(n), B(y"), in a supposedly existing skeleton theory, using exact conformal
covariance we have [49]

A Ba) =Y Y Edn - o) DOO4 by oy W9 ), (5.0)

75 n=0
where
] n('rl . 7]:) - (7) ) 7]/)—1/2(lA+lB—'r,~).
(n v = —kk'(x — x")?) are singular c-numbers; —1,, —1p, —1, are the

homogeneity degrees of the operators 4, B, ¥, , respectively; =, = I —n is
the “twist” of the particular representation (i.e., the difference between the
dimension and the order of the highest Lorentz representation contained in the
conformal tensor ’PZ’_,,An(n)) and it determines the strength of the light cone
singularity for 5 + " — 0.

For greater generality we have included sums over the twists and over the tensor
orders, since, for 5 - n’ % 0, many representations could be relevant. An additional
sum over the representations which have the same twist and order may also appear
and is not explicitly written in (5.1).

The “orbital” operator D9 (n, ")41*4= behaves as a differential operator with
respeet to the %’ coordinate, is defined on 7% == 9?2 = 0, and is completely deter-
mined up to a factor by conformal covariance to be the formal power (see Ref. (49))

[7] . n’DGI . 27) . ar(]l + 7], . a’)]%lB—lA"ln—". (5.2)

This operator can be shown to exist for integer powers. It can be easily continued
analytically to any power by means of the following identity:

P A (el S ) e (oY 1L I(~h+J) T, —1
D, ') = nh—n““d)z( ) T TR T —1+9

J=0

X (=Ygl (h=— la— 5 vl'n+n)'

5 (5.3)

Using the coordinates x, = k1, , k = 55 + 7 on the cone %* == 0 and the
identities

D, ) =25 [@ — 6 — ¥y a0 — D — (255) o]

@:-k%ﬁ,ﬁm

(09 = (&) P r—pi b = w3+ ) (5.5)
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(where —/is the homogeneity degree of the function on which — - &' is applied),
we are able to rewrite (5.1) as

© 1 (1/2) (1 g+1p+n—1y,)
A(X) Bx) = Y, ((T::x—y)

1
CﬁB f du /2 Catgtt,n)—1
n=0 0

X (1 _ u)(l/2)(lg—-l,4+ln—n)—1 eu(ac——m')~8'

X oF; (ln, —1; — (i;——)i)z u(l — u) D’)} X W (X)),

(5.6)
where x4 == k~Ip4 and

Vg a)(5) = (€70) 400 a ()

(see 3.13). We have omitted the sum over the twists for simplicity. Details on the
derivation of (5.6) from (5.3-5) are given in appendix A. Expansion (5.6) is mani-
festly covariant under the conformal algebra on space-time. The representations
appearing in (5.6) are exactly the tensor representations constructed by means of
the isomorphism exploited in Section 3. Moreover, according to Section 4 we have
to separately discuss the contribution of tensors with /, = 2 + n to the expansion
(5.6).

In that case we have that, in general, the n-tensor representations cannot appear.
This is due to the fact that conformal covariance necessarily couples together
physical components @ul"'dn(k) to nonphysical ones Oy, oa, e (X) (x = 5 or 6).

As we have seen before, we call the latter nonphysical as they cannot be
expressed in terms of the physical components. Moreover, for nonconserved
tensors, 0“1"'an_1(x) = 0*Oua-a,_ (%) 7 0, we recall that the tensors 820, Ay, (X)
are acceptable, as they do not have unphysical components, and they are expected

to appear in the expansion. They have twist /, — n = 4 and therefore contribute
to (5.6) with a term like

1/2(1 4+15)—2
[___1__._] At+lp 4B J’l du 10472 (lA—lB)+n+1(l . u)(l/Z)(lB—lA)+1 eu(ﬂﬂ—w')~a"
(x — x')? " J,

— x'\2 -
X oFy (n + 3; — (F55) ut —w O0) xt oo xW, (, (5T

where

'}",_41. ..An(x) = (eiw.ﬂO)Al.. “Ap_g (k)
and
1

A _ Ak .
Oa1"'°‘n—-1—7a6"‘6(x) =2 P(z —+ k) 0

e 80 () (5.8)

[ RRRC TR B 3
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according to (4.5). In free-field theory this term is always absent, as the n-tensors
are conserved in space-time.

It can, however, be shown that, for canonical dimensions /, = 2 - n, an
exceptional case occurs. This is the case I, = Iz . In this case the nonphysical
components do not appear in expansion (5.6), i.e., the covariant expansion contains
those conformal tensors whose only nonvanishing components are O, ..., (0).
The existence of this exceptional case is due to the fact that the coefficients of the
nonphysical components Oy, -a,_aa---(0) (x = 5 or 6) appear in the expansion with
a multiplicative factor which is an integer power of (I, — I3). Such a factor can
easily be understood from consistency with translation invariance. It is the same
factor which cancels out the divergences for I, = I and I, % 2 + n. So, for
I, = Iy, the contributions of the n-tensor representation of conformal algebra
split into two independent contributions to the operator product expansion:

14-1

e A(x'>n~[-(7§—x—,)-2~] c. f dt (L — wyrere)

X oFy (l’l +1; — (x_;iv_:_)z u(l — u) D') A ... xAMIIAI--.An(x')
+ [(T_JW] 142 Cn/ J-l du un+1(l . u)”"‘leu(w—m’)-a’
0

R "" 2
X oFy (n + 35— (—X“TL) ul —u) D,)
% xAl een xA”—l 8BWBA1...A7L_1(X/)’ (5.9)
where

Loeee xA"'PAl...An(x’) = (X — X)) (X = X) Oy (X)),

A Ay_q1 5B
xM o x4t p TBAl--»An_l(x’)
n-1

- JZ: (n ; 1) I"(21+ 7 [— 3 — 22 (x — %) = (x — x)¥

X 8, .0, 0,050 ('), (5.10)

Hy & g

However, in the light-cone limit we always regain the expansion derived in
Ref. (48).
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At x’ = 0 we have

1 )(1/2) (Lg+lg+n—1,)

A(x) BOW ~ (=

1
5 C;{;B J‘ du u(l/z)(lA~ZB+l,,+n)—1
0

x*—0
X (1 — ) tartein =ty g ()

1\ @9 Garipin—t,) (5.11)
~ (L) Camn .. o

X FGUs — g+ 1, +n); I, + n; x - 9) 0,,....,(0),

which is causal and conformal covariant in this limit. We also note that in this
expansion no troubles arise for /, = 2 + n. This is clearly due to the fact that the
nonphysical components are present in nonleading light-cone singularities or,
similarly, possible divergences in the expansion, for /, — 2 -+ n, are carried by
nonleading terms for x2 — 0. Algebraically this is due to the fact that conformal
invariance on the light-cone is less stringent than strict conformal invariance.
Conformal covariance on the light-cone only requires the Clebsh-Gordon
coefficients to satisfy an iterative formula; but, when strict conformal covariance
is imposed, the same coefficients must satisfy a larger set of equations, which
couple them to the coefficients of nonleading singularities, and, in particular,
to possible nonphysical components. This is reflected in the fact that forl, = 2 4 n
some equations become incompatible and the spin-n representation drops out.

Finally, it is interesting to observe that expansion (5.6) can also be understood
from the strict conformal invariant three-point function [49, 54]

0] C(») A(x) B(0) | 0>
1 (1/2) (1 4+15-1¢) 1 1/2) Go+ig—1g) 1 (1/2) Gp—14—1p)
= Case () (5+) (—_( = ;)—2—)

5 (5.12)

The following integral representation holds:

@/2) Gotlg—1y4) 1/2) (le+14—15)
(5+) (=)

) (y — xp
P(lc) 1 (1/2) Qot+la—15) -1
% d 2) Uo+ia—1p
IY<IC+IA”“IB)I1(IC'_'_ZB_‘]A) fo v
2 2

X {1 — u)(1/2)(lc+lB—l,4)—-1 [Tfll—u;{)_%—]lc [1 %?L(SH@—]—ZC 5.13)

(Riemann-Liouville fractional integral).
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It may be interesting to note that (5.13) contains I, , Iz only through the

difference I, — I, as it must for the g-number part of A(x) B(0).
We expand in power series

(1 + _iczi(_l__'_.u_)_)mlc — i _1_ F(IC_%___@ (—x2) [u(l — W] [____l_r

(y — ux)? ikt I'de) (y — ux)?
(5.14)
and use the property
1 1he
QO I*Cx) C(») 10y ~ " 5
[ x =) I (5.15)

=4

o Do+ W) Tl — 1 + ) [ 1 ]’c+”
I'le) I'(lc — 1) (y—xpl -

We see that the contribution from (5.13) to (5.12) comes from the operator
product expansion

(1/2) (1 g+ig—1c)

1
A(x) B(O) — ()12) fo du u(l/z) (lc—i—lA—lB)—l(l - u)(1/2)(lc+lB—ZA)-1 euac~8
2
% oFy (lc — 1 — xT u(l — ) D) C(0) (5.16)

(we recall the selection rule of conformal invariance on the two point function),
and (5.16) is nothing but (5.6) at x' = 0 for the scalar representation.

6. CONSTRAINTS OF CONFORMAL ALGEBRA ON n-POINT FUNCTIONS

Let us consider the n-point correlation function
0 | Ay(xy) =~ Au(x) [ 0, 6.1

where the fields 4,(x;) belong to representations with K, = 0, i.e., [K, , 4;(0)] =0
and we suppose for simplicity that they are spinless.

To deduce the constraints from conformal algebra on (6.1) it is convenient
to make use of the manifestly covariant notation in terms of the coordinates 7, .
We therefore consider the expression

0 [ Ay(n0) -+ Au(na) | 0. 62

From O(4, 2) covariance it turns out that (6.2) can only depend on 4n(n — 1)
scalar products

<0 l Al(n]) An(nn) I O> = F(”/]]_ : T2 505 7]%—-1 ) "7n), (63)
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where
Mi* Ny = —skkix; — x5)%.

In addition, using the homogeneity conditions

7]
N %" Ai(n) = —LA(n,), 6.4)

where /; are the scale dimensions of the local operators A;(x;), we obtain that the
n-point function depends on 4n(n — 1) —n = in(n — 3) independent variables
for n < 6.

This shows, in particular, that for » = 2 the solution is overdetermined and
in fact one has

1 b .
OLAD BDI0 = Cs [ o] i Li=1s 65)
=0 if Iy%1.
Writing

01 4@ By 10> = F( - %), (6.6)

one has the homogeneity conditions
04 ') = —LF(y - '), 6.7)
N4, F(y - ) = —LF(n - ), (6.8)

which are consistent only for 7, = I, .
Selection rule (6.5) can be generalized for two irreducible tensor fields. The
result is the following general selection rule for vacuum expectation values.

THEOREM. The vacuum expectation value
<0 WAr«-A,,(ﬁ) @Bl---Bm(n') [0> = FAl—--A,,Bl—an(ﬂ: ”’]' (6~9)

is nonvanishing only if 1, = Iy and n = m.
To prove the above theorem we note first that the scalar function

14, B

F(’Y) . ’)’]I) == ’Y]’Al /] n i 'Y)B”FAI...A“Bl...Bm(’Y], 7]’) (6.10)

is a homogeneous function of degree —I, - m, —lg 4 nin k and k' respectively.
Therefore, Eq. (6.10) is a consistent expression only if

IA _—IB =m —n. (6.11)
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The scalar F(n - ') is the contribution to the vacuum expectation value of
Eq. (6.9) from the covariant

Ny a5y, (0 * ) AT, (6.12)

The covariant (6.12) satisfies the trace and transversality conditions, with fixed
degree of homogeneity related by Eq. (6.11). From (6.12) one can now obtain the
whole set of allowed covariants through repeated application of the following
operations:

(1) permuting n and 7’;
(i) substituting one or more couples (3, 7") with a g z-symbol;
(i) substituting an equal number of couples (y,7) and (v, 7’) with a
corresponding number of g, z-symbols.

One can convert to space-time by the procedures described before and obtain
0] Oyye0,(X) Op,...0,(x) | 0>
= KM BT (I (O [ W, () By, ()0, (6.13)
where the operator e—** acts as
(e—im)f::'-:oin ﬁAl ﬁA,, = k"X — X)g, = (X — X)y, » (6.14)
so that the covariants defined above, symmetric and satisfying the supplementary
conditions, do not contribute to (6.13) unless # = m. Let us indeed consider, for
example, the leading light-cone contribution to the vacuum expectation value (6.9)
which arises from the covariant
Nay " Mam ML ().
The O(4, 2) covariance implies [, — Iz == n — m and for consistency with Eq. (6.11)
one must have m = nand [, = I;.
The theorem can also be derived directly in space-time by simply remarking that

the vacuum-expectation value in Eq. (6.13) is nothing else than the contribution of
the c-number term to the operator product expansion

Ouyovr(X) Opyois (0) = Fopovog s (X) T+ 0y (6.15)

where the dots stand for local operators which do not centribute to the vacuum
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expectation value, unless there is spontaneous breaking. The tensor Fy .oy, (%)
has to satisfy the equation

o 0 0 ._vy1(n)
(2x,\x e X g+ 2l — 2 ) Faoonps, () = 0, (6.16)
which is easily obtained by commuting both sides of Eq. (6.15) with K, . For
Fy ..o p,--p, (%) We have

1, (1 g+1g+m+n) /2

Fiveap (%) = CXqy """ Xy Xg, -+ X (?) (6.17)

-+ less singular terms in x2.

Equation (6.16) can be considered at each order in x? and it leads to a set of
homogeneous relations between differently singular terms in the expansion (6.17).
The relations are consistent for [, — Iz = 0 and m — n = 0. If, however, one
only retains the light-cone dominating terms in expansion (6.17) one regains the
less stringent condition I, — I = n — m.

-Conversely, one can work out the light-cone relation, I, — I = n — m, directly
from the six-dimensional formalism.

Let us consider for example the scalar-vector case

01 04m) CY 10> = Crnaly - 0V + Can'(n - ')~ (6.18)

Both terms on the right-hand side of Eq. (6.18) satisfy in the limit % - %’ — 0 the
transversality condition. On space-time we have
la

010, C(') | 05— Cyfx — x), (T;_l—x);) . 619
Equation (6.11) is satisfied in the limit. Full conformal invariance would imply
C, = 0, and therefore the vanishing of the vacuum expectation value.

The derivation based on the operator product expansion, Eq. (6.15), brings into
evidence the failure of the selection rule for the vacuum expectation values given
in the theorem in cases when spontaneous breaking is present. Possible local
scalar operators on the right-hand side of Eq. (6.15) may contribute to the vacuum
expectation value and thus invalidate the selection rule. However, the physical
situation must be discussed carefully. It is obvious that if, in a scale invariant
theory, an operator u(x) has vacuum expectation value different from zero, it can
only have dimension zero. In fact its vacuum expectation value can only be a
numerical constant. The presence in a conformally invariant theory of a dimen-
sioned operator u(x) with nonzero vacuum expectation value thus necessarily
implies spontaneous breaking. However in the physical situation conformal
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invariance applies at most to the so-called skeleton theory, in Wilson’s sense.
Therefore, in order to prove spontaneous breaking of the conformal invariance
of the skeleton theory one would have to show that a scalar operator exists whose
vacuum expectation value remains nonvanishing in the skeleton limit, that is, when
all symmetry breaking parameters vanish. More specifically, suppose for example,
following Wilson, that the symmetry breaking in the hamiltonian is ew -+ €5l +
€glls -+ €glty , Where w is an SU; x SU, scalar and u; belongs to (3,3) + (3, 3) of
SU; x SU, . The vacuum expectation values <0 | %, | 0> in the limit when €3, €5, €
vanish might depend on ¢ and vanish with e. If however, when all parameters e, €,
€, € vanish, <0] ; | 0) does not vanish, then one has spontaneous breaking of
the scale invariance of the skeleton theory.

For n = 3 the solution for the conformally covariant vacuum expectation value
is completely determined. One has [54, 55]

1 1/2) (L 4—lp+ic)
(x — 22 ]

[ 1 (1/2) (lg—14+1¢) 1 (1/2) (L q+1p—1¢)
(z — y)? ] [ ]

<01 4() B(y) C@) | 0> = Case |

=¥ (6.20)

For n = 4 the solution can be expressed in terms of an arbitrary function of two
suitable variables of dimension zero.

The construction can be done as follows. Consider the (4 X 3)/2 = 6 inde-
pendent scalar products

M " M2 M " Ma>» N2 " Ms > M " Ma> N2 " Na> N3 " MNa- (6-21)

It can be easily verified that there exist only two independent quantities which are
homogeneous of zero degree in the variables k; . A possible choice is

(" m2)(M3 - mg) (1 a)(ns - 7732 = ¢

(m - )My * M) = (M 12)(Ms * 1) = (6.22)

By choosing four of the six scalar products in (6.21) we can write

<0 | A1(")1) As(2) Ag(m3) A [ 0> = Ay - M2 5eees N3 * M)

= (91 " m2)*(01 * 15)%(n * (2~ 05)° f (, €).
6.23)
The constraints of Eq. (6.4) on the other hand give

a =3 + A — A3 — AY; B =13 4+ A — 2 — A);
Y= A =40+ A+ A — A,
where A; = —I;.

(6.24)
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In space-time we obtain directly
0| A(x) B(y) C(z) D(t) | 0y

1 1/2) (L 4+lg—lc—1p) 1 ](1/2)(zA+zC—zB-zD)
—[(x—y)z] [(x—z)2

ool

G=C— 1 (0P ap
A= i s

1 (1/2) (gtic+ip—ty)
% =]
(y — 2)?

(6.25)

Let us next discuss the n-point functions in conjunction with Wilson’s expansion.
Dealing with an exact conformally covariant theory, we insert into Eq. (6.5) a
conformally covariant Wilson expansion (of course, on the whole space-time, not
limited to the neighborhood of the light-cone). Only the contribution from the
c-number is retained if all local operators contributing to the expansion have
vanishing vacuum expectation values. In other words, if we write in brief notation

AR B(y) = 5 €% (x = 3, 1) O, (), (6.26)

only the term with O = I (identity operator) contributes to (6.5). Note also that the
identity operator is contained in (6.26) only if I, = I, .

Passing now to the three-point function, if we insert a Wilson’s expansion into
(6.20) we get for the left-hand side the expression

% o (v —y, _3%) 0102, () C) | 0. (6.27)

k2

From the selection rule proved in this section for vacuum expectation values we
have

0108, (3 C@z)|0y =0,

unless » = 0 and /, = /,, that is essentially unless O = C. Therefore the
expression in (6.27) becomes

C(x—55) ©IC) CE) 10, (6.28)

where C(x — y, 9/dy) is the differential operator associated to O = C. The final
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expression (6.28) is nothing else than a different algebraic way of writing the
right-hand side of Eq. (6.20), as proved in Ref. (56).

Finally, let us consider the interesting case of n = 4, that is the vacuum expec-
tation value of four local operators (again we assume them to be scalars for
simplicity).

In the four-point function <0 | A(x) B(y) C(z) D(¢) | 0> we have different ways
of inserting Wilson’s type expansions. The analogy with the different ways of
performing partial wave expansions (in s, u, or ¢ channel) is quite suggestive.
To stress this analogy we speak of an s-channel decomposition when we insert
expansions for A(x) B(y) and C(z) D(¢); of a t-channel decomposition when we
expand A(x) D(t) and B(») C(z); and of a u-channel decomposition when we
expand A(x) C(z) and B(y) D(t). The s-channel decomposition can be symbolized
diagrammatically as

B\ v /D

Z..: / / . n\ (6.29)
A

C

and it is obtained by first inserting an expansion for A(x) B(y) giving

0] A(x) B(y) C(z) D() | 0>

=%l (= % 55) 01080, (5) CA DO 105, (630)

The wvertex <0 | O (¥) C(z) D(t) | 0> can be represented, again inserting a

gy,

Wilson expansion and using the selection rule for vacuum expectation values, as
01 02.,(») C@) D) | 0>
= 2 (2 — £, ) Ol Oy (D) O 10> (63D

Finally, one has an expansion of the form

, o
©146) B) €Y DO 10) = X, Clir (x — 7 55) €5 (- = 1 7)

X 01 Oyya(¥) Op,y..5.(2) | 0. (6.32)
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Note that the two differential operators commute, as they act on different variables.
It is now apparent that in diagram (6.2) the vertex

B

\,
p ,n

A

stands precisely for the conformally covariant vertex <0 | ABOL:’,’,_% | 0>, and
similarly for nDC, while the line » stands for the two-point function
<0 | 0,,,1...,,‘"031...3” [ 0>. The causality requirement in the theory leads to the
(crossing) relations

8\ o P
L Cior (x = 1 55) €l (2 = 1,52) €01 O (3) Oy 8) 1 05

n

S 7} 0
= L Clor (¥ =2 55) Cooan (7 = 1) <01 O O (1) 0

P 0 0
= X Coinor (x = tr7) Chon (7 = 2 ) 01 Oupoat) Oy (2) ] 0
(6.33)

which equate the result of the s-channel, u-channel, and #-channel expansions.
We observe finally that the conformally covariant four-point function is not fully
determined from conformal invariance. In fact the coefficients which appear in the
sum at each » are undetermined.

Finally, we would like to comment on the role of possible Ward identities
associated to conservation or partial conservation of local tensors (for instance 6, ,
or the internal symmetry currents j,*) within a conformal invariant theory. In this
connection it is relevant to observe that a three-point function, such as
<0 [ ju(x) A(y) B(z) | 0, with j, satisfying a conservation equation 94, = 0, has
to satisfy a number of constraints, from conformal covariance and local conser-
vation, which exceed the number of possible parameters. Conformal invariance
in general gives the vertex <0 | Oy, (x) A(») B(z) | 0) in terms of a single
covariant. The conservation equation 3"‘10&1...% = 0 imposes additional constraints
which tell us that the vertex vanishes unless {4y = lg. The strength of such a
constraint is quite evident. Its use in conjunction with the set of relations that
conformal invariance implies among vacuum expectation values appears as very
promising.
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7. CONCLUSIONS

The present work mainly deals with the conformal covariant formulation of
operator product expansion. In such a context an operator product expansion can
formally be regarded as the decomposition of the operator product into a direct
sum of irreducible tensor representations of the conformal algebra. One is therefore
led to a study of the representations which are relevant for the expansion and to
their classification. The discussion can be most conveniently carried out in
conformally covariant notation by exploiting the isomorphism of the conformal
algebra with the orthogonal algebra O(4, 2). We have thus studied in detail such
an isomorphism and its implications for the infinite dimensional operator represen-
tations of the conformal algebra which provide a basis for the operator product
expansion. We have noted, in particular, the peculiar structure of those represen-
tations which are associated to tensors of canonical dimensions, i.e., those tensors
which on the light cone are responsible for the observed scaling in deep inelastic
electroproduction. The isomorphism described above with the O(4, 2) algebra,
also applies, of course, for such representations, but it exhibits well-defined
pathologies, which have to do with a degeneracy appearing in the representations
of the stability subalgebra of the conformal algebra.

We have stressed the natural relationship between the conformally covariant
form of the operator product expansion and the conformally covariant three-point
function. Essentially, the relationship arises from an orthogonality property of the
conformally covariant two-point functions, which appears as a very powerful
selection rule, strongly restricting any conformally covariant solution. When
spontaneous breaking occurs the selection rule is violated in a definite way.
Excluding spontaneous breaking, it is important to consider the simultaneous
validity of conformal covariance and of Ward identities following from local
conservation (or partial conservation) relations. For a n-point function the causality
restrictions of the theory imply sets of equalities, resembling crossing relations,
to be satisfied by the coefficients of the irreducible representations which contribute
to the expansions.

APPENDIX

In this appendix we show the existence and uniqueness of (5.6). We consider the
operator

B Cn

AnD
D) = £ Lipleo = 16y ) O =29+ )] (AD

This operator is obviously the only differential operator defined over %2 = 0,
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regular forn - " = 0 and homogeneous of degree one in k/k’. Equation (5.3) can be
derived by induction. In fact, we have for & = 1, 2,

D, 1) = (1 — 1) [ DL o, )

) ) (A.2)
= -1y [LDL 54,
that coincides with (5.3) for 2 = 1, and
~n_ (- 7') O Con][@ ) 06 .o
D*(n, 9') = (1 — L)? [—ﬁ—— —2(n -0 )] [TT —2(n-0 )]
. ’ . al 7
= (=1 =1, — PR DD g oy
(@ -7 O
LN A (= (A-3)
which again coincides with (5.3) for 4 = 2.
To derive (A.3) we have made use of the following relations
A= L= =1) (I~ Iy —n+ 1), (A4)
(-2 n) = (- 7)n ), (A.5)
Oe't ) O¢" =20 - &) O’ + (0 - ) Oe% (A.6)

We will now make use of the Newton binomial expansion for the formal n-th power
and write

) = (1 — Ly 3 (") o) 26 - 07 O A7
D (n, ') = ( )Jgﬂ(]) ) A7

Using relations (A.4)~(A.6), it is possible by a rather lengthy but trivial calcu-
lation to show that Eq. (A.7) also holds for # <+ 1. This completes the proof of the
assertion, since Eq. (A.7) is nothing but Eq. (5.3) of the text.

Similarly it is possible to show the validity of Eq. (5.5). We are now faced with
the problem of the uniqueness of the expansion. The conformal covariance on
DmWAv=da(y 5"y implies

n
D(n)Al"'An — Z ann“il ves nAn—kn’An~k+1 e n’An[D(n, 7]’)]7"‘*'7". (A'S)

=0
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We want to show that it is possible to essentially restrict the sum, in (A.8) to k =0,
since all terms for different k are proportional to each other.
In order to do this we first show the identity

7“D™(n, ') Ypoa () = 2m[1 — (I, + m — D] 92D(y, 5)™™* ¥y a, ().
(A9

Equation (A.9) is a consequence of the two supplementary conditions. In fact we
have, for m = 1,

74D, 1) Py, ()
=A{IDCp, ) 7™ 4 20 - ) — 20 ) O 291 — L)} P a ()
= 29"k — 1) Wapoooa,(0). (A.10)

By simple but tedious algebra, Eq. (A.9) can be proved for m = 2 and assuming
its validity for arbitrary m, it can be proved for m -+ 1, too. This completes the
proof of our last statement.

Added in proof. Recent work related to the results of the present paper is: G. Mack and K.
Symanzik, Comm. Math. Phys. 27 (1972), 247; S. Ferrara, R. Gatto, A. F. Grillo, and G. Parisi,
Phys. Lett. 38B (1972), 333; and G. Mack and I. Todorov, Phys. Rev. (to be published). A con-
venient algorithm, the shadow operator formalism, is also available to deal with such problems
(8. Ferrara, R. Gatto, A. F. Grillo, and G. Parisi, Lett. Nuovo Cimento 4 (1972), 115).
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