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Abstract: We consider the multiperipheral integral equation at vanishing four-momentum trans-
fer in the form given by Chew and de Tar and we remark that the angular integrations
can be interpreted as a convolution of measures defined in a semi-group S contained in
the Lorentz group. We study the geometrical properties and a class of Banach-space re-
presentations of this semi-group. By projection on these representations, we perform a
partial wave analysis of the multiperipheral equation. Under some physically very natural
conditions, we prove that the projection integrals converge, the partial wave amplitudes
are analytic in a half-plane of the complex angular momentum and the kernel of the par-
tial wave equation represents a bounded operator. We give a preliminary discussion of the
inversion problem, i.e., of the construction of the amplitude from its partial wave projec-
tions.

1. Introduction

In this paper we introduce some group theoretical concepts which are useful in
the mathematical treatment of the multiperipheral models.

Since many years, it has been recognized that the equations of multiperipheral
dynamics can be partially diagonalized using their symmetry with respect to the
orthochronous (three- or four-dimensional) Lorentz group and that, by this proce-
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dure, the complex (three- or four-dimensional) angular momentum could be intro-
duced in a consistent way. The physical content of this procedure is already present
in the original papers by ABFST [1-3] and many authors [4—14] have successively
developed the formalism putting in evidence its group-theoretical foundations.

In spite of important similar features, one should distinguish between equations
of the Bethe-Salpeter type [4, 12] for the whole amplitude and multiperipheral equa-
tions for the absorptive part of the amplitude. In the second case, the only one we
shall discuss in the present paper, the symmetry with respect to time inversion is lost
due to the on-shell conditions, but other interesting features appear. We disregard the
symmetry with respect to the space inversion [10] and we deal only with the proper
three- or four-dimensional Lorentz groups or, more specifically, with the correspond-
ing spinor groups SU(1,1) or SL(2C). Only the SL(2C) symmetric case will be treated
in detail, but most of the concepts we shall develop can be adapted to the SU(1,1)
symmetric equations.

It is well known that, if we perform the partial wave analysis of the multiperiph-
eral equations by means of the standard techniques of harmonic analysis, some dif-
ficulties arise due to the fact that only functions suitably decreasing at infinity
(namely at high energy) can be projected on the matrix elements of the irreducible
representations of the symmetry group. For instance, the projection integral on the
representations D! of SU(1,1) converges only if / belongs to a strip of the kind
IRe 7+ 3 1<c, where ¢ is connected with the asymptotic behaviour of the function
to be projected. This strip disappears (¢ becoming negative) if the function is not
suitably decreasing.

If one is only interested in the complex angular-momentum expansion of a given
amplitude, these problems can be overcome formally by means of the methods of
distribution theory [15]. Explicit group-theoretical expansions for functions polyno-
mially bounded in the energy have been constructed in refs. [16—23]. These func-
tions are represented as continuous superpositions of matrix elements of (not neces-
sarily unitary) representations of O(2,1) or O(3,1), the weight function being anal-
ytic in a half-plane of the complex angular momentum, in analogy with the Froissart-
Gribov amplitudes. Some of these expansions can be used for the diagonalization of
multiperipheral equations, but the group-theoretical origin of this fact is obscure
and, as a consequence, a systematic use of these formalisms in the treatment of mul-
tiperipheral models of the most general kind has not yet been clearly formulated.

In dealing with the diagonalization problem, it is convenient to consider two
kinds of multiperipheral equations separately. ;

(a) Equations of the ABFST type [1-3]. The production amplitude is dominated
by the exchange of spin-zero objects. If, for simplicity, we drop the radial variables,
which are not affected by the group-theoretical treatment, we get equations of the
kind

RGe,x") = K(x,x") +JrK(x,x") R(x"x"Ndx", (1.1

where x,x, x" are points on a one-sheet hyperboloid (in three or four dimensions)
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and dx is a Lorentz invariant measure on this hyperboloid. The kernel K and the
resolvent R have the support property (x,, indicates the time component)

Kxx)=RxxY=0, if x, —x <0, (1.2)

which ensures that the integration in eq. (1.1) is actually performed in a compact
region of the hyperboloid.

The partial wave decomposition of this equation is completely understood and
all the convergence difficulties can be avoided in a natural way [6, 13, 14]. In fact,
in this case, one has to project on the harmonic functions on the hyperboloid, instead
of projecting on the matrix elements of the representations of the symmetry group.
If the harmonic functions are propetly chosen, due to the support conditions (1 2),
the projection integrals converge in a half-plane of the complex arigular momentum
and define there an analytic function even if the amplitudes increase as a power of
the energy.

(b) Multiperipheral equations of a more general kind [7, 24, 25]. If we drop again
the radial variables, they take the convolution form

R(@)= K(a) + fK(ara'_l)R(a')da' , (1.3)

where g, @’ are elements of SU(1,1) or of SL(2C) and da is the invariant measure on
the group. We remark that a convolution integral is defined only if the functions
which appear in it have suitable decrease or support properties. Therefore, we expect
that also in this case the support properties of the functions K and R will play an
important role.

The partial wave analysis of eq. (1.3) has been investigated in refs. [7—11], using
the matrix elements of the irreducible representations of SL(2C) [respectively
SU(1,1)] with respect to a particular pseudobasis related to a non-compact subgroup.
It turns out that the projected equation splits into two independent equations and
one of them contains only quantities analytic in a half-plane of the complex angular
momentum and is meaningful also when the amplitudes are polynomially increasing.

In the present paper we clarify the group-theoretical origin of this situation, ex-
ploiting the properties of a semi-group, naturally suggested by the Bali-Chew-Pignotti
(BCP) group theoretical variables [26], which contains the supports of the functions
K(a) and R(a) appearing in eq. (1.3). In this way, we obtain a clear, natural, rigorous
and basis-independent treatment of the partial wave projection of eq. (1.3). In par-
ticular, using suitable normed spaces, we can give a proof of all the desirable conver-
gence properties, a proof which was very difficult in the previously used basis-depen-
dent formalism.

The relevance of the concept of semi-group in this kind of problems is clarified
by the analogy with the classical Laplace transformation which, as well known, trans-
forms a convolution product into an ordinary product *. In fact, a Laplace transform
is analytic in a half-plane when the original function, besides being bounded by an

* Similar considerations are contained in ref. {22].
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exponential, has its support in the real positive half-line, which is indeed a semi-group
contained in the additive group of the real numbers. We remark that the product of
Laplace transforms of this kind is always defined and analytic in a half-plane, in ac-
cord with the fact that the convolution of functions (or distributions) having their
supports in the positive half-line always exists and is associative. In general, the Lap-
lace transform of a function on the real line, is defined (if it exists) in a strip in the
complex plane. The product of two Laplace transforms does not necessarily exist,

as the definition strips may be non-overlapping, in accord with the fact that the con-
volution of two functions on the real line does not necessarily exist.

In order to introduce our notation, we recall briefly the definition of the BCP
variables [26, 7, 25]. We consider a process with two incoming and n+2 outgoing
particles and we label the external four-momenta and the four-momentum transfers
as in fig. 1. We assume for simplicity that all the masses are equal to 7. Then we
have

= 2 ) j =
LE=0; <0, i=01,...,n. (14
We introduce the elements a,, ay, . . . , 4,4 of SL(2C) with the properties
Py =L(a,,,)(m,0,0,0),

Q,= L(anﬂaz(xnﬂ))(0,0,0,\/—tn) , (1.5)
0;=L@)(0.005=1)., i=12,...,n

Qi~1 =L‘(a,-az(xl~))(0,0,0,v—f,-_l) ’ (1.6)
0, =L(a,)(0,0,0,/~7)),

P, =L(a,a,(x, ))(m,0,0,0), (1.7)

where L(a) is the 4 X 4 Lorentz matrix corresponding to the element a of SL(2C)
and a, (x) corresponds to a boost along the z-axis with rapidity x. It follows from
the on-shell conditions that one must take

P i P P, R B
Q, [ Q, Q
Ps Pa

Fig. 1. Four-momenta appearing in a production process.
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sinh X, = (2m)“1\/—tn ,
sinh x, = (2 m)—l\/ZZ,

X1'=X(ti’ti~1)’ i=12,...,n, (1.8)
where

cosh x(4,') = (m*—t—')(4tt') "%

X61)>0. (1.9)

From egs. (1.5)—(1.7), we see that the elements
g =a, (X a, 1=01,...,n, (1.10)

belong to SU(1,1). The BCP variables ¢, g, . - » ¢, &, provide a complete descrip-
tion of the kinematical configuration. In particular, the square of the c.m. energy is
given by

s=2m*(1+L_ (), (1.11)
where
a=a,},a,a,(x.) =2, )88, (X,) - - - £,2,(X,) - (1.12)

The elements which appear in the right-hand side of eq. (1.12) either belong to
SU(1,1) or are of the form a,(x) with x > 0. In sect. 2, we show that the elements of
S1(2C) of these two kinds generate a semi-group. We indicate by S the closure of
this semi-group, which is also a semi-group contained in SL(2C), but not coinciding
with it. The geometric properties of S are discussed in sect. 2.

The multiperipheral models we are considering [25] are based on the assumption
that the squares of the moduli of the production amplitudes are given by

2 -
M2 = 20F, Py Py Pty - -+ Proy) - (1.13)
s

where the sum is extended to all the (n+2)! permutations 7 of the final particles and
F,, has the factorized form

F,= B, 8, )K(t, 8, 11, ) --
.- Rt gt )AC,) - (1.14)

The quantities E, /K\ and A could be (possibly infinite dimensional) matrices and do
not depend on n. The validity of the assumption (1.13), (1.14) is discussed in detail
in ref. [25].

Under these assumptions, by means of a technique developed in ref. [7] (see also
ref. {25]), one can express the total cross section and the r-particle inclusive distribu-
tions in terms of the function
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Rat) = K(tar) + [K(taa ") K (¢ d ot a6 d" + .

, (1.15)
where the kernel K is given by
K(t.a,ty = N6m% 1" [ T(m? 1,¢)]F
X Rt.a,(—x(t,t')a,t')63 (a,(~x(t,t))a) (1.16)
T(a,b,c)=a2+b2+c2~2ab~2bc¥2ac. (1.17)

We have indicated by 63_((1) a measure on SL(2C) concentrated on the subgroup
SU(1,1) and with the property

[ f@@da= [ fea, (1.18)

SL2C) SU(1,1)

where d3g is the invariant measure on SuU(1,1).

If we fix 7 and ', we see that K is a measure on SL(2C) with its support in S.
From eq. (1.15), it follows that R has the same property and satisfies an integral
equation of the kind (1.3), where the variables 7, ¢, " and the corresponding integra-
tions are understood.

If BA(@) is a linear representation of S, namely an operator valued function de-
fined on S with the property

BMab) = BMa)BMb), abeES, (1.19)
and if the projection integrals
BAK) = [BA@K(@)d% (1.20)
S
BAR) = [BM@)R@)d% (1.21)
S
exist, from eqgs. (1.3) and (1.15) we get (the variables z, 7', . . . and the correspond-
ing integrations are always understood)
BAR) = BMK) + BAUK)BMK) + ... (1.22)
BA(R) = BA(K) + BAK)BA(R) (1.23)

which are the corresponding partial wave equations.

In sect. 3, we show that the convolutions which appear in egs. (1.3) and (1.15)
are always well defined, due to the support properties of K(z) and R(z). In the same
section, we discuss also some conditions for the existence of the integrals (1.20) and
(1.21) and for the possibility of writing the projected equations (1.22) and (1.23).

It is clear that a representation of SL(2C) is also a representation of S, but, as we
shall see, not all the representations of S can be extended to representations of the



372 S. Ferrara et al., Multiperipheral dynamics

whole group SL(2C). Therefore, even if the function R(«) is such that all the projec-
tion integrals on the representations of SL(2C) diverge, one can still hope to find re-
presentations BA of S such that the projection integral (1.21) is well defined. The
problem is to find a sufficiently large class of these representations, in such a way
that the quantities B*(R) permit one to reconstruct the original function R(a) uni-
vocally.

In sect. 4 we construct a class of representations BMX, of S, labelled by the inte-
gral or half-integral number M and by the arbitrary complex number A. These re-
presentations of § are contained in the well-known representations DM of SL(20)
which, when restricted to S, become reducible. We remark that the representations
BMA and B—M.—A are not equivalent, so that the projected amplitude has not the
symmetry under the reflection (M,\) - (—M,—N\), which is present in the usual
SL(2C) projection [16, 27] and prevents the projected amplitude from being anal-
ytic in a half-plane of the variable A.

The properties of the representations BMM are further analyzed in sect. 5, where
we introduce a norm in the representation space and we compute the corresponding
norms of the representation operators. In sect. 6 we discuss the convergence prop-
erties of the projection integrals (1.20) and (1.21) and we show that, under certain
conditions which are satisfied in the physically relevant models, the projection in-
tegrals define operator valued functions which are analytic in a half-plane of the
complex variable A, in analogy with the classical one-sided Laplace transform. Also
the convergence of the integrations over the radial variables, which are understood
in the equations written above, is investigated in detail.

In sect. 7, we formulate the problem of finding an inverse formula which gives
the resolvent R in terms of its projections BMNR) We discuss the difficulties of
this problem which will be reconsidered in a forthcoming paper.

2. A semi-group contained in SL(2C)

We shall use for the elements of SL(2C) the following notation

= (%11 ‘%12

‘ (“21 ";2) ’ -
{1 o0

u,(u) = exp (—3ipo,) , (2.3)

a,(§) = exp (350,) , (2.4)

and similar definitions for u, (u), uy(,u), a,($) and ay(§),
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0, = ((1) (1)), o, = (10 Bi), o, = ((1) 0_1) . (2.5)

A

The 4 X 4 matrix L(a), which belongs to SO(3,1) and corresponds to the element
a of SI(2C), is defined in such a way that if

V=V, V.,V Vy (2.6)
is a four-vector, the relation
V=L@V, 2.7

is equivalent to
’ ’ ’ ’ _ +
VeetVio + Vzoy +Vs0,=a(Ve+ Vot Vzoy +Vy0,)a . 2.8)

We remember that the matrix L(a) has the properties

2.9)

ao' ?

3 3
N -
Bzz'{) Laﬂ(a)La'ﬁ(a)gﬁﬁ - ﬁzzz)Lﬁa(a)Lﬁal (a)gﬁﬁ =&

L @>1. (2.10)

where g is the metric tensor.
Now we define the semi-group S which will form the object of our investigations.
Proposition I: The subset S of SL(2C) defined by the inequalities

Ly@>1, Ly@>0, Ly@>0, (2.11)

is a semi-group, i.e., it is closed under multiplication. The interior S° of S is also a
semi-group. It is composed of the points of § such that

Ly@)>1. (2.12)

The product of an element of S and an element of S° belongs to S°. The closure
of §®is S.

Proof: First we have to show that, if @ and b belongs to S, the matrix L(ab) satis-
fies the conditions (2.11). In fact, using the properties (2.9) and (2.10) and the
Schwarz inequality we obtain

Lys(ab)=L 3O(a)L 03®) +L 51 @L 3B +L 3@ L 5(b)
+7 33(zl)L 3 3(b) =L 3 O(a)L 03(b) +L3 B(a)L 33(b)

— 11+ Ly @)? = (Ly3@)T [1+Lo00)% — (L3001

>Loy@L(0)>1, (2.13)
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Lg(@b) = Ly(@Log®) + Ly @)L (b) + L 35@)L 5(b)
+ Ly(@L 5(5) > Ly(@)L b) + L33(@) L 5(b)

— 1+ L@ — L3 @F (L) — Lag®)? — 11

= Las(@)L,,(0)=0. (2.14)
In a similar way we prove that
Loslab) = L 5(@)L45(p) = 0. (2.15)

Therefore ab belongs to S.
From eq. (2.9), we have

Ly @ > Lyy@) ~ 1, Lyy@) ZLyy@) 1, (2.16)

and therefore we see that if eq. (2.12) holds, a is an interior point of S. Conversely,
if L33(a) = 1, it is easy to show that for arbitrarily small negative { the element
aa,($) does not belong to S and therefore ¢ cannot be an interior point of S. If &
belongs to S and b belongs to S°, it follows from eq. (2.13) that ab belongs to S°. In
particular, we see that S° is a semi-group. The last statement of the Proposition fol-
lows from the remark that if @ belongs to S, aa,({) belongs to S° for positive §.

It is useful to define S directly in terms of the matrix elements of a. The condi-
tions are

deta = @)@y = A58y = 1,

- 2 2 2
2L (@) = lay P+ lay, — oy, ~ lay,

>

=2
— 2 2 2 2
2L 5(@) = lay )17~ la,,l° — la, 1" + la, 1" >0,

= 2 2 .

2Ly(a@) = lay P — lay,* +lay ) —lay P>0. (2.17)

It is convenient to collect for later use some inequalities which have been proved
above or can be proved in a similar way.

Proposition 2: If a, b€ S1(2C), we have

LOO(a) = lLaﬁ(a)l , «pf=0,1,23, (2.18)

LOO(ab) >LO3(a)L30(b) . (2.19)
If moreover a, b < S, we have also

L33(ab) > L33(a)L33(b) , (2.20)

Ly (ab) > Lyo(@)L5(b) , (2.21)
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Loy (ab) > L y(@)L 45(b) . (222)

Proposition 3: The semi-group S° coincides with the set of all the elements of
SI(2C) which can be written in the form

a=ga(D)g', gg'€SUUL), ¢>0. (2.23)

Proof: We remember that SU(1,1) is just the subgroup of SL(2C) which contains
all the elements g such that L(g) does not act on the z-coordinate. It follows that

SU(1,1)< S. (2.29)
It is easy to verify directly that
a,(HES®, if ¢>0. 2.25)

It follows that the elements of the form (2.23) belong to S°.
Now we consider an arbitrary element @ of S°. From the condition (2.12) we see
that the Minkowski three-vectors

(L o3(@). L 5(@), L)),
(L 3@, L3;(@), Lyy(@))

(2.26)

are timelike and therefore we can find two elements # and 4’ of SU(1,1) such that

2
ggLaﬁ(h)Lm(a):o, for a=12,

) (2.27)
2L ()L, @=0, for a=12.
=0
It follows that
A‘OO AOI A02 sinh ¢
Ao A A 0
L(hah') = Ay A21 A,y 0 , ¢>0. (2.28)
inh ¢ 0 0 cosh ¢
From the conditions (2.9) and (2.10) we get
A=A =A =A,.=0
2 3
01 02 10 0 (2.29)

A00 =cosh {.

Therefore we have
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hah' =a,(Hu,(0), §>0, (2.30)

and it follows immediately that a has the form (2.23).
It is also easy to show that the semi-group S—1 composed of the inverses of the
elements of S is defined by the inequalities

Ly@=>1, Ly@)<0, Los@)<0. (2.31)
The semi-group SO~ 1 is defined by the extra condition

Ly@>1, (2.32)
and is composed of the elements of the form

ga (D¢, gg£€sULL), §<0. (2.33)

By reduction to the canonical form (2.28), we see that if L5(a) > 1, a belongs
to S° or to SO~ 1. It follows immediately that if L33(a) <—1, a belongs to one of
the two sets (they are not semi-groups)

0 — go—1
uy(ﬂ)S S lly(T(),

o—1 _
uy(ﬂ)S = Souy(rr) . (2.34)
If
IL@I<1, (2.35)
following a procedure analogous to the one used to get eq. (2.28), we can write
Ago 0 Ay, 0
L(hah') 4 0 Cos @ 0 sin @ , hh'e SU(1,1), (2.36)
A20 0 A22 0
0 —sin ¢ 0 cos @ 0<p<m,

and therefore
a=gu,(p)g, &g €SU(LD), 0<y<m. (2.37)

We do not consider in detail the case |L33(@)l= 1.

The following result is interesting, though we shall not use it in the following.

Proposition 4: A semi-group S' contained in SL(2C) and containing S coincides
with SL(2C) or with S. In other words, S is a maximal semi-group contained in
SL(20).

Proof: Assume that there is an element b € S’ but not belonging to S. Then the
open set

pS° N [SL2C) —S]<= S’ (2.38)
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is not empty, as it contains ba,() for small positive ¢. Then we can choose in the
set (2.38) an element @ such that IL 33(@)l # 1. We consider three cases:
(i)ifa €S~1, thenaa~1 = ¢ is an interior point of S'; as the group SL(2C) is

connected, S must coincide with it [28];

(ii) if @ belongs to one of the sets (2.34), we see that S’ must contain uy(n) and
therefore also S—1 = uy(n)Suy(n); therefore we are again in the case (i);

(iiif) if @ satisfies the condition (2.35), from eq. (2.37) we see that uy(cp) is an in-
terior point of §',

It follows that uy(go) € 8’ for any  and in particular for ¢ = 7. Then we can
reason as in the case (ii). We have shown that in all the possible cases we get
S' = SL(2C) and the proposition is proved.

3. The convolution of measures on S

In order to agree with the notation usual in physics, we write a measure on
SL(2C) in the form F(a)dSa, where d®a is the invariant measure suitably normalized
and F(g) is a generalized function. The convolution Fi*Fy*. .. *F, of several
measures is defined by the formula [29]

[IF\*Fy». . *F 1 @)g(@)d%
= fFl(al)Fz(az). . .Fn(an)g(alaz. . .an)d6a1d6a2. .. d% (3.1

n
where g(a) is a continuous function with compact support:
The convolutjon exists and is associative only if certain conditions are satisfied.
If we indicate by supp F; the support of the measure I3, by ¢ the function

¢: [SL(20)]" - SL(20),

oaay,... na,)=aa, ...a,, (3.2)

and by ¢~ 1(K) the inverse image of the set K SL(2C), a sufficient condition is
that the set

n
o7 0 (11 supp Bl = [sL2,001" (33)
i=1
is compact whenever K is compact [29].
A special case of this condition, which is useful for our problem, is the following.
Proposition 5. 1f the measures F; on SL(2C) have the property

supp < ¢;S,  ¢,€8°, 3.9

their convolution exists and is associative.
Proof: We use the condition stated above, remembering that a set in SL(2C) is
compact if and only if it is closed and bounded, namely contained in a set defined
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by Lo(a) < C. Using proposition 3, we put
c;=ga,(E)h;, gph, €SULL), §2>0. (3.5)
If a; belongs to supp F;, we can write

- -1
a; =88, (§)b,81,1 »

b,€S, i=12,...,n, g, =e€. (3.6)
It follows that

a,a,...4, =glaz(él)blaz(éz)b2 co.a§ )b, . 3.7

If the product (3.7) belongs to the compact set K, we have

Loo(ala2 coa)SC (3.8)

and using the inequalities (2.11), (2.18), (2.20) and (2.21), we obtain
Ly(a,(E)ba (8, ) <C, i=12,...,n-1,
Lyya,(¢,)b,)<C. (3.9)

Using the representation property and the inequality (2.11), we get
LOO(bl.)<C(sinh §; sinh Eiﬂ)‘l , i=12,...,n—1,
Log(b,) <C(sinh£,)71. (3.10)

We see that the families of group elements {a;} which satisfy egs. (3.6) and (3.10)
form a compact set in (SL(2C))". Therefore the closed set (3.3) is also compact, as
we wanted to show.

Remark that the proposition we have just proved is sufficient to ensure the exis-
tence of the convolutions which appear in eqs. (1.3) and (1.15), without any assump-
tion on the rate of growth of the measures which appear in these equations.

There is another sufficient condition for the existence of a convolution on S,
which is useful for our purpose. We consider a strictly positive, finite, lower semi-
continuous function p(a) defined on S with the property

p(ab) < p(@) p(b) . (3.11)
Then the measures on S such that the norm
Il = [o@IF@)d, (3.12)
S

is finite form a Banach space M " Remark that, as S is closed, these measures can
also be considered as measures on SL(2C) with supportin S. We have

Proposition 6: The convolution of measures belonging to M, exists and is associa-
tive. Moreover, we have the in¢quality
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A AR AR (3.13)

This means that M p 18 @ complete normed algebra (Banach algebra) with respect to
convolution.

The proof of these results is simple and can be found in ref. [29], remarking that
the fact that S is a semi-group (but not a group) does not introduce new difficulties.

If B(a) is a continuous representation of the semi-group S in a Banach space, and
we put

pa) = IB@)!!, (3.14)

this function has the properties required above. The following results can also be
found in ref. [29].

Proposition 7: 1f the measures F ; belong to M o> the integrals

B(F) = fB(a) F (a)d®a, (3.15)
N
exist as bounded operators and we have
Il EI(FI.)II < IIFI. llp , (3.16)
B(F1 «F,y)= B(Fl)B(FQ) . (3.17)

This proposition is just what we need in order to get the partial wave equations
(1.22) and (1.23).

For the applications to multiperipheral equations of the most general kind [25],
one should consider also the case in which the quantities Fi(a)dba are operator val-
ued measures [30] in a Banach space N.In this case the quantity |F;(a)ld®a stands for
the norm of the operator valued measure [30] and the quantities B(F;) are bounded
operators in a completed tensor product [31, 32] of the representation space and of
the Banach space N.

This generalization of the propositions given above seems to be possible, but a
detailed mathematical analysis should still be performed.

4. Some linear representations of S

In order to find linear representations of S, we consider the restrictions to S of
the well-known irreducible representations of SL(2C). For the theory of these re-
presentations, see refs. [16, 33, 34]. We shall see that the representations of S found
in this way are in general reducible and we shall study the closed invariant sub-
spaces of the representation spaces and the restrictions of the representations to
these subspaces.

Following a procedure coherently developed in ref. [33], we start by considering
representations acting in spaces of infinitely differentiable functions. Hilbert or
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Banach space representations can be built successively, completing these spaces with
respect to suitable norms and extending the operators by continuity.

The representations of SL(2C) we shall consider are labelled by the complex
parameter A and by the integral or half-integral parameter M. Alternatively, one can
use the parameters [16, 33]

n1=)\—M,
n2=h+M. 4.1

Following ref. [33] with slight changes of notation, we consider the spaces FMA
of the infinitely differentiable functions f(z) of the complex variable z such that
also the function

fa =27 ") (4.2)

is infinitely differentiable with respect to z~1. We say that a sequence of functions
[, converges to zero in FMN if £ (2), f;(z) and all their derivatives with respect to z
andZ converge to zero uniformly in any compact set of the complex plane. With
this definition, FM? is a Frechet space.

From the Taylor expansion of f(z) near the origin and from eq. (4.2), we get the
asymptotic expansion

fo) ~ MlEmt 2 dyz 17 F . (4.3)
z— ® 7,k=0
The representation operators DMNq) are defined by

[DMNF1(2) = (a7 +ay) " @7 + 750" 12, s (4.4)
where
~ a2 + ay,
o Tty )

Now we restrict the representations DMX to the semi-group S. When necessary to
avoid confusion, this restriction will be indicated by D‘é” A,

An invariant subspace can be found at once.

Proposition 8: The closed subspace G of FMX composed of the infinitely differ-
entiable functions such that

f2)=0, if lA>1, (4.6)

is invariant with respect to the representations DA
Proof: We have just to show that if ¢ €S and ?zl > 1, from eq. (4.5) it follows
|z} > 1. First we consider the special cases
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a=u,(u), z,=zexp(—iy), “4.7)
z cosh 3§ + sinh 1 £
a= , oz = , 4.8
4(®) ¢ zsinh%£ + cosh 1 (48)
a=a, ), ¢=0, z,=zexp§. 4.9)

We see at once that the required property holds in these three cases. If « € S°, it can
be expressed as a product of elements of the kind considered above (proposition 3)
and the required property still holds. Fora €8, the proof can be completed by a con-
tinuity argument.

We indicate by BM? the restriction of the representation DM to the invariant
subspace G. It is a linear continuous representation of $ which cannot in general be
extended to a linear representation of SL(2C).

Now we limit ourselves to the case in which A—M is not integral and we consider
the operator AMA: FMA — £ =M= defined in ref. [33] by the formula

[4"21)@) = [ @z )™ -2 )" e e (4.10)
where
d*z) =dRez, dImz, . (4.11)

If Re (1] +n,) > 0, the integral (4.10) diverges at z = zy and one has to take its
finite part.

This operator has the intertwining property [33]

A]ll?\fDMk___D~M,-}\A.M}\ . (412)
As shown in ref. [33], for not integral A —M, the operator 4~ M-~} js proportional
to the inverse of AMA, Therefore AM defines an isomorphism of the spaces FMA
and F~M:~X which establishes the equivalence of the representations DM and-
D~M.— X Therefore we have

Proposition 9: The subspace GYf* < FMX, defined as the image under 4=~
of G F~M.—X is closed and invariant under the representation DM of S. The
restriction of D™ to GM* is equivalent to the restriction of DgM2 to G, namely
to B~M.— A,

For the next developments, we need the following results.

Lemma: If f € G, the function AMAf € GI'M’_ M is given for lzI > 1 by the con-
vergent series

[AM)\f] (Z) _ Z~n1_lz_ ~ny—1 2 d].kZAjE -k , (4.13)
7,k=0

where
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i (1 )I(~1,)
G~ T, ~ DTy — )Y
Proof: Since
[AMM)(z) =2

—ny—1 Zy\—ny—1
)T (2T e, @19)

we have just to develop the binomials in the integral into power series and to inte-
grate term by term.
The connection between the invariant subspaces G and G]}{”‘ is clarified by:
Proposition 10: 1f A—M is not integral, the subspaces G and G]f[ A have no common
element except 0, namely

f (—2Y(2)*f(z)d% . (4.14)

—n1—1_—ny—-1
1mi=

Gn GY*= {0} . (4.16)
The subspace
G+G];/D‘, 4.17)

is dense in FMA, but does not coincide with it.

Proof- I feGN G%’“‘, then eqgs. (4.13) and (4.14) hold. Moreover, AMM f € G
and therefore the coefficients djx must be all equal to zero. As the factor in front of
the integral (4.14) is not vanishing, we see that all the moments of f are zero. There-
fore, we have f= 0.

The space G + Gjif A contains all the functions of the form

v=g+A M-  gfeG. (4.18)

It follows that for 1zI > 1, u(z) is given by the convergent expansion (4.13) with the
signs of n| and n, changed. As not all the elements of FMX have this property, the
subspace G + GY* cannot coincide with the whole space FMA,

Finally, we have to prove that the closure of the subspace G + GI}’[ Ais FMA, First
we show that this closure contains all the functions of FMX which have the property

—j-1 _ny-k—1
el g , for lzI=%, (4.19)

u(z)=z

where j and k are arbitrary non-negative integers. We consider an infinitely differen-
tiable function x(z) with the properties

“x(z)=0, for lzl=1,
x(z)=1, for lzI<}, (4.20)

and the sequence of elements of G + GY*
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v,(2) = X(@) @) — [A™" 721 1@) + A1 1), (4.21)

where
Dny —NT(ny — k) 57
()= p? L 2 Y o7

f(zZ)=v TG (n,) oo 3ok o(vz) . 4.22)
The function ¢ € G has the property

fxp(z)dzz =1. (4.23)
From eq. (4.10) we get

[A~M=Ap 1) =" R Ly (4.24)

L= [ (1 — w1 =) payn2als (4.25)

When v increases, this integral converges to one and all its partial derivatives converge
to zero uniformly in every compact set of the w complex plane. From the preceding
formulae we get

—j=1_np—k— _

v, () - u@z) =" 7" 4 xepa Y - ), (4.26)
and it is easy to see that this sequence of functions converges to zero in the topology
of FMX defined above.

In order to complete the proof we have to show that the finite sums of functions
which have the property (4.19) are dense in FMX If h(z) is an arbitrary element of
FMA one can find a sequence of polynomials P (w,w) such that

P (ww) ——h(w) = w2 1y (4.27)

v > oo

uniformly together with all the partial derivatives for lwl < 4. Then the functions

u,(2)=x(Q2) [hz) ~ 2" 2 Pz Y4 p 1 7o)
(4.28)

are finite sums of functions with the property (4.19) and converge towards / in the
topology FMA,

In order to express the operators DMA(a) in terms of the operators BMM(a)
(a €5), we introduce (for A —M not integral) the operator ZMA defined in the dense
subspace G + GY* = FMA by the formula

Zm(g+g1)=g, §€G, g €6 (4.29)

The element g is determined uniquely by the sum g + &1 due to the property (4.16).
It can be shown that the linear operator ZM* js not continuous.
From the definition (4.29) we have
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ANz MMM 1 gy =g, g€G, g €GN, (4.30)
since

AMgegTM=2, 4Mg eGe FMN. (4.31)
From egs. (4.29) and (4.30), we get the identity

[ZMN 4 (MM~ MoA g MM p= o fe G+ G (4.32)

From this equation and eq. (4.12), we obtain

DMNG) f= [BMNa)ZMN + (4N 1B MA@y z M MMM £

a€s, e+, (4.33)

This formula will be used in sect. 7, where we discuss the inverse formula. The
fact that the operator ZMX is not continuous is the origin of the difficulties we shall
encounter.

5. Banach-space extensions, operator norms and analyticity properties

Dealing with the representations DM of SL(2C), it is useful to introduce in the
space FMA the norm [16, 33, 34]

112 = [ 1520 + 12122 Re A g2, (5.1)

With respect to this norm, the operators DMN(q) are bounded and their norms are
given by

IDMMa)ll=exp kk ReAl,  cosh =L a) . (5.2)

They are also isometric if Re A = 0 or if 2 € SU(2). The completion of FMA with
respect to this norm is a Hilbert space.

If we consider the representation BM* of S, one can define norms that are more
convenient than the restriction to G of the norm (5.1) for the purpose of proving
the existenee of the projection integrals. We study in detail only norms of the kind

IF = fif@P wzDp,  f€G, p>1. (5.3)

We remember that for p < 1 this equation does not define a norm.
From eq. (4.5) we get

d% = la,, — alzza|“4 dzza , (5.4)

and therefore, from eq. (4.4)
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iIBMA(a)fNP = f|f(zd);p |a11 _ “12%'2’)(1 ~Red) — 4

X’y(
2117 2%,

It follows immediately that

IBM@)ll=sup  (IBMMa)f £ 171
feG

A%, — 1y

2
)iz, aes. (5.5)

- dy% —ay
=sup (121 1~/<( 27
211 ~ 4%

lzl< 1

2 1
2p(l1—- Re M)—4 .5
)Ia11 — a7l VTP (5.6)

We restrict our considerations to the choice
y(l21%y=[1- 121277 | r>0. (5.7)

Remark that if 7 <0, the expression (5.6) is clearly infinite. The norm (5.6) takes
the form

_ |2 r
Il BM}‘(a)HpV = sup {( 1-
7 < 1 |a11~a122|2~ |a222—a 12

21
X lay, —a ,z120-9 ] =p,,@ . (5.8)
We have put for simplicity

v=ReA+2p~ 1 1. (5.9)
It is easy to evaluate the expression (5.8) in some simple cases:
o) = 1, (5.10)
P,,(@, () =exp (—vx), x>0, (5.11)
Py, (8) = exp I - )t (5.12)

From eq. (5.10) we see that the rotations around the z-axis are always represented
by isometric operators. From eq. (5.12) we see that for 7 = v all the elements of
SU(1,1) are represented by isometric operators. Therefore, taking into account eq.
(5.11), we get

P (@) = exp (—vX) ,
coshx=Ly@), a€S®, v=0, x>0. (5.13)

Another case in which the function (5.8) can be simply evaluated is the case » = 0:

v —
P (@ = (lay |~ a7, a€s, (5.14)
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Eq. (5.13) forv =1 gives

1 1z12

sup [ >
lzi< 1 Iall—alzzl —la2zz~a21|

2]=eXP C

and from eq. (5.8) we get the important inequality
pr+c, U+C(a) < exp (__Xc)prv(a) » c=0.
It is also possible to show that

p, (@004, ®) ~ exp[-nEe, 00, 0<r<v,

E——)cn

0, (@,00a,(®) ~ exp(vB®, (), W<r,

£ o0

where

CI)rv(x) ~ 1, 0<r<v,
x—0

(I)ru(X) ~ Xz(v‘r)')_‘l("*v)r—"(r _ v)z(r—v) (2v — r)2v—r L u<r<w,
x—0

® (0 ~ eV () Pu-nTT, 0<r<,

X —>

@, () =e X1~ e~ 2Xy"r2u,T

X (r — 20)" 2@ — )20 | w<r,

We are using the convention 0° = 1.
If we consider the inequality

p,(@,(0a,(5) < p,,(@,00a (5 + ) 0, (0, (1) ,

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

and we let £ increase indefinitely, from eqs. (5.12) and (5.17) we get the majoriza-

tion

ppa, (00, (®) Sexp [0 - NEID, 00,  v<r<2v.

(5.24)

It is useful to introduce the Banach spaces Gpr, which are the completions of the
space G with respect to the norms (5.3). They can be considered as spaces of func-
tions defined on the circle |zl < 1 (functions which coincide almost everywhere
being considered as equal). The representation operators BMX(g) can be extended
by continuity to the space G, and their norm is still given by eq. (5.8). The action
of the operator BMX(a) on the function f € Gpr is still given by [see eqgs. (4.4) and

4.5)]
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i ez
[B"™@116)= layyz +ay, 12 (Ji “) fe,) - (5.25)

a12Z + 022

We see from this equation that for fixed M, p, r and a, BMMg) is an analytic oper-
ator valued function of the complex parameter A. In conclusion, we have:

Proposition 11: Forp 2 1 and r = 0, we indicate by G , the space of the functions
on the circle IzI <1 which are L? with respect to the measure (1 — 1z12)=Pd2z. The
operators BMMg) defined by eq. (5.25) form a continuous representation of S in
G . These operators form, for fixed values of the other variables, an entire operator
valued function of A and their norm is given by eq. (5.8).

Slightly modifying the notations of sect. 3, we indicate by M, the space of the
measures on S such that the norm

IF, = [, (@ | F@)ld% (5.26)
S

is finite.

We remark that, if F belongs both to M,,, and to M, where v is given by eq.
(5.9) and

v'=Rex+2(p) -1 (5.27)
the projection integral

BMA(F) = st"“(a)p(a)d6 (5.28)

n)
can be considered both as an operator in (7 - and as an operator in G . However,
these two operators, which are in principle dlfferent coincide in the 1ntersect10n
G o N Gp > which is dense both in the space G - and G - Therefore, one of these
operators determines the other uniquely or, in other words they contain the same
information about the measure F.

6. Projection of the multiperipheral equation

In order to apply the techniques developed above to the multiperipheral equations
(1.3) or (1.15), we have to study the norms

1K@, =[5 @ K(tar)ld = i6n?1~!
S

X [T(m? 1,0 f p(a,(x(t, 1) R (1.8t d% . (6.1)
SU(,1)

The last expression has been obtained using eqgs. (1.16) and (1.18).
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If this expression is finite, one can introduce the projected kernel
BMNK () = [BMM @K (rat)d%, (6.2)
S

which, for fixed r and ¢', is a bounded operator in Gpr. Of course, the parameters A,
v and p have to satisfy the relation (5.9).
From eq. (5.16) we get the inequality

lIK(t,t')IIHc’ pre Se€Xp [—ex(@OMK@EON, . c=0. (6.3)

In order to obtain more detailed results, we use some assumptions which have
been proposed and discussed in ref. [25]. Using eqgs. (4.2), (6.3) and (7.1) of that
paper, we see that it is natural to assume

N "NL 2 n 12
IR(t.g,t)1< d(r)d(r’)<i> [ T_(”;—”—l] [1+cosh ], a>0, (64)
4 8m/tt'
where we have used for g the parametrization
g=u,(Wa (G, (), (6.5)

and d(¢) represents a continuous function of ¢ sufficiently fast decreasing for ¢ =+ —oo.
We remark that one can multiply the kernel k by a factor of the form ¥(£)(y(t")) !
without changing the product (1.14) (of course one has to modify also the quanti-
ties A and E). In eq. (6.4), this arbitrary factor has been chosen in the most conve-
nient way.

From egs. (6.1) and (6.4), we get the majorization

1K (@11, < (4m)~2(8m%) 2*d(D)d( )@y
X [T, )P4 3 f (1 + cosh £%%p, (a,(x(t.t)a () sinhdE.  (6.6)

0
From egs. (5.17) and (5.18), we see that this integral converges for

r—v>2atl>=l,
0<r<2v, (6.7)

and for

v>2atl1>21,

WKr. 6.8)
Eq. (6.7) defines a region in fig. 2 which is the union of the regions A and B, while
eq. (6.8) defines the region C.

In the case (6.7), which is the most interesting one, we can use eq. (5.24) and we
get the more explicit majorization ‘
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A
c o
P B
5| -
+
AR
- 99 r-v=2y-h
> >
A
r-v=2a+1
” —
Fig. 2. The region A indicates the values of the parameters » and v which are suitable for the
partial wave projection of the multiperipheral kernel.
’ —6,.—2 ~4a N (el O
K (¢ W, <27%722m)y~*d(H)a(y (i)
+ L _
X [T 6P 43— v = 20— 1) 1o, (x(2,2) ,
IS2e+1<r—-v<v. (6.9)

Summarizing, we have seen that if r and v satisfy the conditions (6.7) or (6.8), the
kernel K(z,¢"), for fixed ¢ and ¢/, belongs to the convolution algebra M, - It follows
that, if we keep all the radial variables fixed, all the convolutions which appear in
eq. (1.15) exist and belong to M,

In order to discuss the existence of the integrals over the radial variables ¢, ¢/, .. .,
we consider the quantities

0 0 L
N, = [ [ ar fdt'lll((t,t')llrzv] , (6,10)
0 4
N, (D)= “nK(t,z')ugudr'] , (6.11)
n ! 0 %
N, @)= U|u<(t,t’)ufudt] . (6.12)

Using this definition, the Schwarz inequality and eq. (3.13), we get the inequality
JIK@t)* Ky K, O e,

! — 1 artr /.t
<N, (DN} N, @), v=>1.

(6.13)
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If this quantity is finite, the integrals
RO = [Kint) s Ktpt)* ..
Cor K, f)de L dE (6.14)
exist *, belong to M, for fixed values of ¢ and t' and satisfy the inequality
RO, e, <N (ONYINT (). (6.15)
Eq. (1.15) can be written in the form

L5 ! m‘ ! -
R(LE) = K(6,6) + 20 RO(1,t') (6.16)
v=1

and we see that, if we assume

N, <1, (6.17)
this series converges in the space M,, and we have the inequality

i ’ 4 —Xar? ¢t
IRE I, < K@, + N (DA =N, ) N, (@) . (6.18)

We remark that this formula permits one to get important information about the
kernel R without computing it explicitly.

In this situation, it is easy to derive rigorously the multiperipheral integral equa-
tion (1.3), which can be written also in the form

R(t,t"Y = K(t,t') + fK(t,t") * R(t", t")de", (6.19)

and the partial wave equations (1.22) and (1.23).
In order to complete our discussion, we have to consider the integrals (6.10)—
(6.12) in more detail. We start from the majorization (6.9), assuming that

d(t) <c(m? +1d)y™, ~+>0. (6.20)

Using also egs. (5.20) and (5.21), we see that the integrals (6.11) and (6.12) converge
in the region defined by the inequalities (6.7) and

v> 60— 2y+2. 6.21)

In order to ensure the convergence of the integral (6.10), we have to add to the con-
ditions (6.7) and (6.21) the inequality

r—v<2y-+. (6.22)

The inequalities (6.7), (6.21) and (6.22) define the region A in fig. 2. If, as we
have done in fig. 2, we assume

* Of course, we have also to assume that the integrand is measurable in a suitable sense [30]; we
shall not discuss here this rather technical assumption.
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Y=2t+%, (6.23)

the condition (6.21) is already implied by the conditions (6.7). We see that the
region A is not empty only if we assume *

Yo+, (6.24)

In order to discuss the condition (6.17), we remark that if N, is finite, from
eqs. (6.3) and (6.10) follows

CEH-:,, NH—C, vtc =0. (6.25)
We see that, if the condition (6.24) holds, N,,, is smaller than one for v sufficiently
large and 7 suitably chosen.

It is useful to summarize the results of this section.

Proposition 12: Under the assumptions (6.4), (6.20) and (6.24), if the param-
eters 7 and v satisfy the inequalities

2o+ 1<r—u<2y—1, (6.26)

=y — 200+
v2r—v>2a+1, (6.27)

v>6a—2y+2,

the kernel K(z,7") belongs to M, and the quantities Ny Npo(£) and N, (¢') are
finite. Moreover, if

Red=v+1-2p71, p>1, (6.28)

the projected kernels BMMK(z,¢')) exist as operators in Gpy- If 7 and v satisfy eq.
(6.26) and are both sufficiently large, we have that N, is smaller than one, the ker-
nel R(z,¢") belongs to M,, and satisfies the integral equation (6.19). Moreover, if
Re A is given by eq. (6.28), the projected kernels BMA(R(z,1")) exist as operators in
Gpr and satisfy the projected integral equation (1.23).

We see that, in the case v > 2a + 1, if we take p = 1 and we choose 7 in a suitable
way, the projected kernels BMA(K(1,t')) can be defined in the half-plane

Re A\ > 2a, (6.29)

while the resolvent projected kernel BMA(R(%,#')) can be defined in another half-
plane of the form

ReA>L =2 20. (6.30)
These results are in agreement with the results of refs. [7—11, 24, 36].
* As shown in ref. [35], one can weaken the condition (6.24) without losing some important

properties of multiperipherism. Many successful models assume that d(r) decreases exponen-
tially with |#}, so that one can put y = +e.
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7. The problem of the inverse formula

In order to complete our analysis, we have to reconstruct the resolvent R(z,t)
starting from its projections BMA(R(¢,1")). More generally, we have to solve the fol-
lowing problem. Assume that the measure F belongs to M,,, and that its projections
BMA(F) are known, for Re X given by eq. (6.28), as operators in G, (the parameters
7 and p are fixed). Is the measure F determined uniquely by BMA(E)? Can F be re-
presented by means of a simple formula (the inverse formula) containing BMN(F)?
In the present paper we shall solve these problems affirmatively only when Fis a
measure with compact support and we shall discuss the difficulties one meets in the
general case.

We start from some well-known results [16, 33, 34] about the harmonic analysis
on SL(2C). We consider the representation operators DMNg) with Re A = 0 as uni-
tary operators acting in the Hilbert space defined by the norm (5.1). 1f g; are c”
functions on SL(2C) with compact support, the operators DMN(y;) are of the Hilbert-
Schmidt type and we can write the Plancherel formula in the form

| ei@Heardte= fo v o))
SL2C)
hod +ie
- (ant)~t 2 [T (00 N2 = N2)dN. (7.1)
M7—w 24,
If we consider a measure F on SL(2C) with compact support and we put
‘pz=‘p3*F; W:‘pl*‘p:;s w1*¢2=w*Fs (72)

from eq. (7.1) we get

f W@ HF(@)d% = [¢ « Fl(e) = ¢, * 9,](e)

SLQ2C) .
=@t 23 [ T [DMNe) DY@ - N)dn (7.3)
M=—u’ix

Remark that the trace exists, because the operator
D) = DN DM (w;) (7.4)

belongs to the trace class and DMA(F) is bounded.

As the functions ¢ of the form ¢; « p3 are dense in the space of the continuous
functions on SL(2C) with compact support, eq. (7.3) determines the measure ¥
uniquely.

Now we assume that the compact support of F is contained in S. Then we can de-
fine for any value of A and M the quantities BMM(F) as continuous operators in G or
as bounded operators in any of the spaces Gp,. From eq. (4.33) we obtain the for-
mula



S. Ferrara et al., Multiperipheral dynamics 393

D/M)\(F)fz [BM)\(F)ZM?\_I_ AMK)—IB—M,AA(F)

X ZM=AgMNf - reGe G (7.5)

As the subspaceG + G is dense in the representation Hilbert space, we see that
the operators BMMF') determine the operators DMA(F) uniquely and therefore they
determine the measure F uniquely. More explicitly, we have using also eq. (4.12),

Proposition 13: If F is a measure with compact support in S and f; isan ortho-
normal basis in the Hilbert space with the property

LEGHGI™, i=12,..., (7.6)

the measure F is uniquely determined by its projections BM. MF) by means of the
formula
. +ioe
[ o HF@da =@ty T [ o

SL(2C) M=—w Y,

X I (1 [DMBMNR)ZM + (ML M)
=1

X B~MAEY Z Mg N py (7.7)

where y is the convolution of two C” functions with compact support on SL(2C).

In the general case ' € M, the formula (7.7) is not even meaningful, as BM ANF)
does not necessarily exist for Re A = 0. In order to solve the general problem, one
should first modify eq. (7.7), in such a way that its right-hand side is meaningful also
forF& M, . and then to prove the validity of the modified formula in this more
general case.

If one applies naively to eq. (7.7) the formal properties of the trace, one gets
[ola Y F@)dba = (2n*)!
© e
X 24 {1 T1 (M) BMNE)ZMN (2 - WD) (7.8)
M= Yy

Then one can try to shift the integration path along the line defined by eq. (6.28).
Unfortunately, as the operator ZM* is unbounded, it is by no means clear that the
trace which appears in eq. (7.8) exists and is an analytic function of A. In particular,
the operator ZMX does not even exist for A — M integral, because the proposition 10,
which allows its definition, is no longer valid in this case. It follows that singularities
at these points are expected.

We remark that the same difficulties arise if one uses some explicit basis, as in ref.
[9]. These problems will be treated in detail elsewhere.
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