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1, - INTRODUCTION, -

The erucial role of short distance behaviour in elementary
particle theory is widely recognized. In the last years the experi-
ments at SLAC on deep inela's»tic electron scattering El), (15), (26),
(153), (130,)] have dramaticaly evidenced the fundamental role pla-
yed by shott-distance behaviour. In this case one is indeed exploring
the behaviour at short distance of a product of two electromagnetic
currents, Deep inelastic neutrino reactions [(30), (125), (39),(134)]
are similarly related to the product of two weak currents, The forth
toming developments at NAL will provide additional stimulus.and
a new bunch of data on a wider range.

The short distance behaviour of an operator product of e, m,
or weak currents is, of course, not only important for deep inelastic
scattering, but also plays an important role in the theoretical descrip
tion of other phenomena (such as for instance non-leptonic decays,

electron pair annihilation, etc). K. Wilson [(159)] has given a deep
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and original discussion of the operator product expansion and of its
applications., Wilson's expansion for the product of two currents has

the form

T () (’“{
W) = G (-9) Oy

In eq. (1.1) cr;_, (x-y) are c-numbers and On(y) are local operators.
The c-numbers are generally singular at short-distance. The expan
sion has been discussed in different theoretical frameworks, such
as perturbation theory [(20), (163), (164), (159), (165)] and in model
field theories. There has been particular discussion of operator ex
pansion in the Thirring model [(154), (103), (159), (160), (117), (50)].
The conclusions stronghly support the conjecture of the existence
of an operator product expansion. In this important paper ﬂ159)]
Wilson expecially emphasized the idea of using the concept of ope-
rator product expansion together with the assumption of scale in-
variance at short distanceés. Scale invariance has been invoked
since many years in elementary particle theory [(106), (108), (118),
(119), (159)]. In the expansion in eq. (1.1) scale invariance allows
for the determination of the degree of singularity of the coefficient
cn/,v(x-y). The determination is based simply on comparison of the
"scale dimensions' of the left-and right-hand-sides in eq. (1.1).

It is then of preliminary importance to know whether the operators
O,, have definite "scale dimensions'", or not. And, in case they have
definite ''scale dimensions' to know their actual values. Field theo
ry investigations on this point have been very intricate, difficult,
and not yet conclusive [(31), (43), (160), (148+151), (44), (91), (161)].
On the other hand the set of operators O, is expected to contain

at least some operator of well difined dimension, such as the cur-

rents (weak and eiectromagnetic, or, more generally, the unitary
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currents), and the siress- energy tensor, The currents have dimensions
3 in mass units and the stress-energy tensor has dimension 4, The
existence (necessary in any local covariant theory) of a stress ten-
sor Q/N of definite dimension 4 has led to the suggestion that the
scaling observed at SLAC is in fact explainable on the basis of the
presence of 9),“; among the operators O, in the right-hand-side of
eq. (1.1) [M.O?_]. The most simple explanhation in terms of a single
tensor of dimension 4, namely 9)“, , seems in conflict with the dif
ferent scaling of neutron and proton data. A more detailed argument
making use: of the universality of the coupling of Opv can however
be developed and provides a more general justification [(120)_] (a
point which has particularly been emphasized by K. Wilson [(162)])0
Once scaling is accepted as it must anyway because of experiment
it can be shown by different arguments that a subset of operators
On must exist, in eq, (1.1), with dimensions d related to their spin
by d=s+2. Among them is the energy-momentum tensor with s=2,
and d=4,

A simple way to demonstrate such a statement is from the
convergence of the Bjorken-Callan-Gross sum rules [{31),(13), (32)].
Following the general ireatment by Bjorken [(13);] one has the sum-

rules

2 . m

‘ om0
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for each n=1,3,5,.... In eq, (1.2) w is the scaling variable, (:J =—q2 /2v s

jx(x,O), jx(tz,oz]l?z‘)

in the usual notations, and Ft(w) is the transverse scaling functions;
Jx is the x-component of the e.m. current and p:(po,o, Q,pz) is the
nucleon niomentum. The positivity of Ft(w)‘ ensures that each mo-
mentum integral f in eq, (1.2) is positive and that the f,'s form a

monotonic decreasing sequence. The relation d=s+2 comes out in
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the following way. In eq. (1,2) the matrix element of [’Qan/gt ,]‘3(_/
carries n+l momenta. The leading term in the commutator is then

contributed by some operator, which we call O

Miees Y+l

has spin s=n+l and dimensions, in mass units, d=n+3, Thus d=s+2,

, Which

that is, one has a particular relation to satisfy between spin and di
mension, The relation would indeed easily be satisfied in a quark
model through the (uncritical) assertion that each local operator
keeps its ''canonical" dimensions, as in free filed theory, where
such operators are constructed aswick products of free fields. But
the situation is not expected to be so simple in renormalized field
theories /(159)]. The problem is indeed a complicated dynamical

one [(31), (43), (160), (148+151), (44), (91), (161)]. From work of Callan,
Coleman and Symanzik (see refs, [(31), (43),(148+151), (44)7) it appers
that, under some assumptions, one obtains renormalized dime nsions
(i.e. not necessarily canonical . dimensions, but at least definite ca
dimensions) in the so-called deep euclidean region and possibly also
in the situation when the four-vector X -‘)}4 vanishes (the tip of

the light-cone). The extension of such arguments to the whole light-
-cone is not yet known., For the operators relevant to an expansion
on the whole light-cone [(21), (22), (29), (95), (23), (71), (81), (82), (100),
(114), (115), (25), (72), (167), (73),(147), (87), (45)] one would have to
prove much more, than just definite dimensions, namely, the relation
d=s+2 (canonical dimensions). The argument showing that the scaling
behaviour results from the configuration space behaviour on the light
cone is well known (see for instance ref, [(95)_!7., In ¢hée Fourier tran

sform
(1.3) S-e‘qxé?l EJ'/‘(K)’ Jv(o)_] P> ol

of the current correlation function one can write the exponent asymp



totically as

g x = vxo- % (W% )

by choosging the rest frame for the nucleon (p=(m,0)) and the z direc
-tion along the vector <_:1> . For ¥ > the integrand at X,~ Xg gives
the dominant contribution, and because of the causal s‘truéture of the
commutator this means that one is indeed exploring.the light-cone,.
For discussion on the relations between the p -?co method with equal
time commutators and the light cone, see for instance refs, [(113),
(2), (102), (112), (45)/. In fact one.is. exploring the whole light cone
and not only its tip. Note however that the positivity conditions play
a fundamental role in that they allow to formulate restrictions on the
operator product expansion, only by making use of its behaviour
near the tip of the light-cone. This shows the power of the equal-
—time—commutatbr:approach [(33,), (46), (13), (34), (47)] and suggests
the predominant role of the stress-energy tensor in the problem of
scaling [{40), (120)]. |

When. the naive quark commutators are assumed [(73), (45),
(87)] both approaches, the one using equal time commutators or
small distance behaviour of operator products, and the one postula-
ting a quark-model light-cone expansion (possible including gluon cou
pling [(11), (24),(73),(87), (45)/ reproduce a full set of testable rela-
tions [(116),(121), (73), (45), (87), (49)/, which show the almost com-
plete identity of such models to the more explicit parton model by
Feynman [(68), (69)] and Bjorken [12),(14)] (see refs. [(52+60), (83),
(136), (137), (171)]). In the parton. model the virtual photon interacts
very rapidly with the constituent as comperaed to the typical interac-
tiontime. among constituénts which can therefore be assimilated to
free particles, The parton model predictions are however more de-

tailed in that they are based an particular parton distributions.



The approach using the algebraic concept of scale invariance was
advocated by Wilson in connection to operator product expansion [(159)]
and soon after adopted in the theory of deep electroproduction[(élﬂ),
(120), (79), (80), (152)]. Previous work on the algebraic notion of dila
tation invariance had been developed earlier on the basis of indepen
dent theoretical speculations [(106),(108),(118),(119),(159)/. The ex-
tension from dilatations to the entire conformal algebra (see refs, [(51),
(89), (126),(127), (158), (74), (75), (104), (90), (105), (37), (107), (109), (38),
(122), (32), (18), (88), (152), (35), (141)]) may be justified on the basis

of a number of reasons (none of them being however compelling):

(i) Lagrangian field theories which are formally invariant
under dilatations are offem invariant also under special conformal
transformations. For instance, a sufficient condition (but not neces-
sary) is the absence of derivative couplings.

(ii) Conformal transformations leave the light-cone invariant,

(iii) The conformal algebra provides for a natural homogenei

zation of the inhomogeneous Poincaré algebra.

The algebraic implications of conformal invariance on the
ligh cone were studied, in ref, [(41)]/, within the formalism using
equal-time commutators. The requirement of covariance under the
infinitesimal generators of SU(2, 2)(the covering group of the confor-
mal group) can directly be imposed on an operator product expansion
on the light-cone [(63),(64),(66)]. To such purpose one has first to
analyze the transformation properties of the infinite set of local ope
rators which provide a basis for the operator expansion [(64)].

It will be interesting to preliminazny illustrate two aspects
of light-cone expansions which finally turn out to be (rather miste-
riously at first sight) connected to conformal invariance, They are:

(a) causality, and, (B) translation invariance on a hermitean basis,



Let us consider the expansion
1.6y AEBG = Z ¢, 0

where cn(x) are c-number functions and O (x) form a complete set,
extending the concepts and definitions of Wilson's work [(159)]. When

we commute with some arbitrary local operator C(y) we obtain

(1.5) [/\(X) Cle) B+ A B, Clyl] = / Con (x)[O‘o C(\(]

One notes that for Y spacelike, that is for y2< 0, each commutator
[On(O),C(y)_] vanishes, So, taking y2< 0, each term on the right
hand side wvanishes, whereas on the left hand side [B(O), C(y)] va-
nishes but not necessarily does so the first term [A(X), C(y)] B(0)

The latter term vanishes if in addition (x-y)2

< 0, which, on the
ligh cone amounts to requiring y2< 2xy. There is no paradox, be-
cause of the infinite summation on the right-hand-side, However it
would be better to have an improved operator product expansion
which formally exhibits the causality properties in each of its terms.
This is the problem we have indicated under (a).

Let us now show what the problem specified under (b) is,
Again let us consider a light cone expansion of the form

..2( o
(r.e) AWBG) = (ien) Z KA O,

The tensors Oo( of are symmeiric iraceless tensors. They can
1. * o n

always be chosen to be hermitean [(159), (25)/. The commutator

[A(x), B(0)] has then the correct support required by causality. On

eq. (1.6) one makes a number of algebraic steps., One first translates



{x) in a power series
04’1. ° @ qn( ) p

around x=0, and finally takes the hermitean conjugate, The expression

by -x, then charges x into -x, expands O

one finds can be compared Wwith the expression one had started from,
eq, (1.6), and one discovers that to obtain consistency the following

infinite set of relations has to be satisfied

m

G
ey O = 2 LIy O, )
od;.. odm

hico (memn)! Xomar Km0 Xom

It is interesting that for n=odd, eq. (1.7) tells that Oo(
1oos &y

sum of derivative operators (which therefore have vanishing forward
matrix elements),

It turns out that the imposition, to the general operator pro
duct expansion on the light-cone, of the requirement of covariance
under infinitesimal special conformal transformations results in a
very stringent set of limitations ﬂ63), (64),(66)]. They essentially

amount to fixing the relative coefficients in the expansion of each

derivative term 99( ces QJ 0 (x) , With respect to the non-
m+1 n %1e-: %y

-derivative term O (x), . The expansion including such restric-
“1 e & "(m

tions is found to exhibit a very compact form in terms of a confluent
hypergeometric function. The interesting circumstance becomes then
apparent, that the two problems we have mentioned under the hea-
dings (a) and (b) above, are in fact automatically solved with the new
form of the operator product expansion, essentially reducing to some
known properties of the confluent hypergeometric function. That is,
the imposition of conformal invariance directly eliminates the two
problems of causality support and translation invariance on a her-
mitean basis (the reverse however is not true), We have already

discussed why the imposition of conformal symmetry on the light cone

seems to be a reasonable requirement, At this stage one is working



within well-defined limitations: (i) one only deals with infinitesimal
conformal transformations, and (ii) the symmetry is supposed to hold
only on the light cone, but not necessarily for the complete theory.

If conformal invariance is predominantly spontaneously, broken, then
the requirement of covariance of the operator product expansion un-
der the conformal group may correspondgly enjoy: of a larger domain
of wvalidity,

A most elegant derivation of a manifestly conformal covariant
operator product expansion can be given by exploiting the isomor-
phism between the conformal algebra and the O(4, 2) orthogonal al-
gebra, The derivation is uniquely and in a straightforward way exten
sible off the light-cone onto the entire space-time. Such expansions,
manifestly conformal covariant over the entire space-time, should
apply to the skeleton theory, in Wilson's sense [(159)], provided it
enjoys of the property of conformal invariance, beyond the postulated
scale invariance, As we have said, simple Lagrangian theories which
are invariant under dilatations turn out, under some general assump
tion to be also invariant under special conformal transformations;
this may justify the hypothesis of askeleton theory which is fully con
formally invariant,

An important result appears to be a general theorem [(63),
(67)], which we call the theorem of spin-dimension correlation, which
exhibits the dynamical content of the relation d=s+2, equivalent to
the requirement of scaling in the Bjorken limit, in terms of a set
of generatized partial conservation equations, By this we mean that

the divergences of those tensors O y I which contribute to the
(& l ----- n .

structure functions in the Bjorken limit, are annihilated by the gene
rator of special conformal transformations KQ\ . Of course, the spe
cial situation provided by the quark model commutators is a parti-

cular case of the above results, which can be regarded as a state-
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ment of the necessary and sufficient conditions for scaling (through
the mechanism of canonical dimension for the relevant set of opera
tors).

The manifestly covariant formulation in a six-dimensional
coordinate space, based on the isomorphism with O(4, 2), is parti-
cularly useful in allowing for a direct and simple construction of va-
cuum expectation values of field products [(67)]. Among these, in
particular, the three-point-functions, which are completely fixed
(except from a constant) [(128), (138), (145)], are directly related to_
the covariant form of the operator product expansion, Precisely,
the two problems, of constructing a conformally covariant operator,
product expansion, and of constructing the general covariant three-
-point-function are essentially equivalent formulations of the same
problem [(128), (65),(66)]. This holds both on the light cone [(128),
(65)] and off the light cone /[(66)]. More generally, conformal co-
variance restricts the form of the n-point function, although only
for n=3 is the restriction capable of a unique prediction (apart from
a constant), The simplest case, n=2, i,e, the correlation function
for two local operators, appears to be subject to very stringent li-
mitations, which take the form of selection rules, That is, the two-
-point function vanishes unless the spins and dimensions are corre-
lated in a precise way, if one assumes only conformal invariance
on the light-cone, and it vanishes quite generally unless the operators
have same spin and dimension, under the stronger assumption of
full conformal covariance, The implications of these results seem
rather powerful, as they point out to sirongly limited possibilities
for a conformally invariant skeleton theory. In addition to these re-
strictions -' one has to recall that the causality limitations for the com
mutator of two local observables imposes rather strict constraints

to a theory invariant under finite conformal transformations. For this
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problem however we refer to a comprehensive investigation by Kastrup

and coll, [(110)]. )
Furthermore, wherever gauge invariance constraints apply to
conformaly covariant vacuum expectation values of products of local ob
servables one generally obtains a stronger set of selection rules [(128)].
It therefore appears that much work has still to be carried out in order

to develop a comprehensive understanding of the structure of a confor-

mally invariant theory,

2. - INTRODUCTION TO THE CONFORMAL GROUP IN SPACE-TIME, -

2.,1.,- The conformal group.-

The conformal group provides for an extension of the Poin-
care group into a higher dimension homogeneous orthogonal group
(see refs, [(51),(89), (126), (127), (133), (158), (92), (74), (75), (104+109),
(90), (18), (37), (70), (38), (122), (123), (32), (88), (152), (35)/). The confor-
mal generators AR (A,B=0,1,...6) satisfy the commutation rela-

tions

e[, Lol= (% o™ & oo~ e Foo oo dhc )

C ith | (e 4 - .
where Eap I8 diagonal with EaA ( , -+). One has JAB JBA gi
ving a total of 15 independent generators. In terms of the IO(3,1) -
generators M/M, » Ba, plus the new generators D and K# one has the

correspondence

o =2 5 6

ol |

2.2) J =
t.) AR, M J \Z\
N

h(B-k) N

I N
2 (K00
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The algebra satisfied by the generators, Eq. (2.1), is the O(4, 2) algebra,

It is isomorphic to the spinor algebra SU(2, 2). Written in terms of M/W,

1:;, , D, and th the commutation relations in Eq.(2,1) become

Poincaré subalgebra

[‘M}w, H?G’]z - (@MMN‘@\@W« *’3}4« MJ') v 5?0"‘ M?i‘)
2.3) [ My, PP} = (@VF? S}“f’ Ey)

[ -./\,‘ P‘l :I =
Lorentz behaviour of D (dilation generator)

(2.4) [M/w }DJ = O (i,e., D is Lorentz scalar)

(2.5) [P Dj = _;/Pf (P.. acts as a step-up operator
1 with respect to D)

Lorentz behaviour of K,, (special conformal generator)

(2.86) [ M,Mv,jQ] o (%j’,‘*kl"‘ g‘?v}g}*)(Kﬁ is a four-vector)
eolp BuKel= -1 (8D~ M)

K -D commutators

/\.
(2.8) [Kw k’v ]
(2.9) [:D) K}‘ 1: ‘ }(;, (K,, acts as a step-down operator

with respect to D).

Linear realizations of the group of conformal transformations
can be obtained in six-dimensions, The transformations are those which
leave invariant a bilinear form with metric (+---, -+), In four dimen-

sions (Minkowski space) the realization is non-linear. One has:

v
(2.10) X}. = 074*' A,. Xy (generators of infinitesimal transf, :
Pu, Muv )
\ A /u ) 7
(2.11) X,= & X A real (dilations: generator D)
reE ;
2
-G-C X
(2.12) X, ,‘ ¢.real (special conformal transformations:

,,_________.,—m
|+chx¢c“'x* ’ generators K ).

’r\
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The:independent parameters are: 4(a’A)A+ 6(/\;)+ 1(a)+ 4(0',‘, )=
= 15, Speclal conformal transformations can be thought as products. of

(inversion) x (translation) x (inversion) :

X, :
Sixat & Xy + C, X
X/‘—> X/‘l N >(/'_’_c - X /‘1: A ~
xz X7 (%2 #5.)° 2+ 2Cx+ cix?

The group has two abelian sugroups : one generated by P/.,, the other by

K, . It has two Poincaré subalgebras :

r

(2.13) ( Hi"\ E ) and ( M/w. K/.‘),

2.2, - From [P,D]:’-;E} one has
(2.14) [P*D]= P[P, L?}’D_]? =2 B*

Suppose thereisadiscrete state of mass m whose normalized ket is lp >,

where p2 = mz. From Eq. (2.14)

< P LPEDlip> = Q.‘<q>li.‘3z(;>>:; a2
<PILP2D] 1p>= <pl 2D - Dl p> = ©

Thus : m? = 0. Discrete massive states are impossible, unless the sym
metry is broken, Continuum massive states caﬁ however exist,

The argument here is similar to that of ordinary quantum me-
chanics showing that the spectrum of p is continuum from [vqﬂ,,p] =
Again ¢ p'l[aq, p]lp'> =0 =i p'lp!»; however ¢p'|qgp - pq |p" > =
= (p"-p" )¢ p'lalp"> =i p'lp" > =id(p'-p") showing that q = 1 D/QP
Indeed

Cp™ ?)'f—..<ﬂP">' HCP"F’)Q SCpt-p™y = 1 S0pp")

2,3.- Representations, -
One uses the method of induced representations- ﬂ'124), (93),
(101)] (Mackey) let us call G anyone of the generators of the stability
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subgroup at x/A =0: G= (M/uv D K).,,,). The remaining generator is

‘P, , which acts like
>

(2.15) [? Cf"‘):(:-{%uﬁo(x)
T luat ( G B 2.
o eva uae[C{ x), J we use Eq. (2.15) P

(900, 6T~ [ o Brqer e B 1= s 10, & <

(2.16) N \ -
G- & G

s
‘Let us calculate G. One has

&= 3 s [BNIR L2760 ]

If G M/,N
M. = M [?M“ ]-é);ux)” P): [f)‘z"v'/w]]"'
(2.17)
= M (3 » 5,4 rv) M/.v (X,,,g-x ?v)
IfG=D

If G =K,
~ - v T H2
S S PN o s AT
One has Lf”'[?"l[?)‘gk]]] 2 [ [ (%?D-'M/’:g)l]zo
Thus :

w—

(2.19) %" K- 1%.2i (3}“ D"H:‘)’;. %o | P ”'J:(QMD- M:")]g
= KfZX(g ‘D‘l‘Mv/»)*-&XXv 2?
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In conclusion 8’ is always a finite linear combination of
generators [(135)].

Let us now examine the representations of the stability sub-
group, Within a representation that behaves irreducibly under Mﬂ
clearly D is a multiple of 4L (from Eq. (2.4). Eq. (2.9) then tells that

K/.. vanishes within the representation, We thus have
(2.20) Lq(o), M/‘*:\ = 2y G°)
(2.21) IC{?(O)"P] = EA ﬁ?(o) where A is a c-number to be

célled scale dimension

(2.22) [, K] = 0

From Eqs. (2.16), (2.17), (2.18) and the above equations

'E)( __ *tf))(
LML=l (g Ml =
'P -\P-X . ’\

x[cf(o) M., ()(v_ )Je = 2/w ?(x)-u(xﬂr-x}.av)‘c?(‘x)

;Px ~ "!l.B( _.,Ex
14 [Cf(o))b]e, = [‘W) C‘>+x?)]f.=

i

Lqw,D]

il

A AORE ><'>\’I-)>‘cf (%)

i Px " b Y Ex 5 .
[“?(");K)aﬁﬁ [ 40, K/,]e — W%(Kfﬂzx (03).¢D+

- + Mrv)f 2XvaR “XZZP,A}-Q—.BK:

={ax (3}»}1& v 2 ,)fﬁ)frx”i’év-w‘x"l)f Yo
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In conclusion : e

(.23) (g0, MpeT = 1[ (%2 02p ) =120 T 900

(2.24) [ c?(x)"D_] \ (A *X§Df> CP(") | ‘ | -

(2. 25) [cf(x)‘ Kr] ; [(D.A Xyt -ZX/.XJ?Q;? -x"Qr )wf.ﬁ;‘\xg’ 5,\?] ¢ )

and of course
2.26) [ g, :_P,J = { I q(x)

Representations with non-vanishing'K,, are of two types : with K},

i3

4

represented by a nihilpotent matrix, or infinite dimensional,

Finite dimensional representations that behave reducibly under
M},\ y can be analysed as before, Mj«v can taken block-diagonal, ina
suitable basis, The D is correspondingly block diagonal by the same

argument used before, and again KlM vanishes in each block, Since
| P - v
(2.27) =

where p is any power also K/l')" vanishes in each block, Eq. (2,27) follows
by iterating Eq. (2.9). Then Kr must be nihilpotent, Such a result is

a lso intuitiye since K » lowers the dimension and the:representation is
finite dimensional, Finite dimensional representations of the stability
subgroup can therefore always be brought into block diagonal form for
M),\\) and D with K/‘ represented by a lower-diagonal matrix, Eq, (2.25)
is then modified by the addition within the square bracket of the nihil-
potent matrix K,.~ . One can always assume that the eigenvalues of D
have been partially ordered into increasing dimensions Al, /l\z, eses
One then sees that the representation contains a finite number of in-
variant subspaces each obtained by keeping all those states with dimen-
sion lower than some Ai. However the representation is not reducible

within such invariant subspaces, as K », does not correspondly assume

a diagonal form, Thus ©ne has at the same time the existence of an
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ordered set of invariant subspaces but not full reducibility of the
representation, Such representations are thus called indecompossi-
ble and they clearly can be extended to infinite dimensions _[(78), (101),
(121), (63]7.

The integration of eqgs. (2.23) and (2.26) for finite transfor
mations is well-known, Egs. (2.24) and (2.25) become, in the integra

ted form, (see for instance ref, [(98)_7).

, LA N
Jurs 2 g 5

| 0. |
Foo)= Tlxe) ,S; Féx.ocf(x) s Xz Bt G
| P

//‘ .
= 149C-A+ K2

dnd O Cx,c) = (+°zc,-.x.+c}-x"

W'Fo'r_. .'\'eusora. gfelds of oulez n 'Hsc nmq{'aices

3 Poxe) tuan out 1o be
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2.4,-Conformal currents, -

2.4.1,- Under an infinitesimal conformal ’_cfansformation specified

by the parameters JGvA the variation of the action integral

= 4‘X X
;[(m..léa L)

for an arbitrary space-time volumeQ takes on the form
o Af‘
c2s)  SI(N) = % dw, (d4 %J

For exact symmetry SI(Q)=0 and the currents Jﬁ ‘are divergen-
celess,
Nother's theorem provides for ,can"onical currents satisfying

eq. (2.28). They are defined from
| -A v v
(2,29) Az (J/A JUJA - 75;‘ tgcf - /Ej”’ éx

In eq. (2,29) we have omitted for brevity summation over the inde-
pendent fields: TlfSCf stands for 7,“/‘ J’fo. whére a runs over the dif

ferent fields; z}.., is the canonical energy-momentum tensor

(2,30) )Z: v = —j/-v"é)*-):ﬂ}*g*’?
and

(2.31) Scr = @G- @)

(2.32)  dxp= XL=X,

2
A TEX)
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Equivalently one can write

(2. 34) ; (ijJwA = %S‘ffjc()}"’"},(gy‘f)cg)(’/:ogéé}_“l'T;A?

Ag=Sg - (H9)dx"= @'w)-q00- [9i) -9 (0] =
= @' = g(xDE @lx)- @(x)

(2.35)

From Eq. (2.29), inserting Eqs. (2.10)-(2.12) and (2.23)-(2.26) one

obtains the canonical conformal currents /g.ee e.g. ref, (122)].;

(2.36) Z/N = - g’/woé) "'TI}\ :)v(f " (translations)

O Ao
(2.37) ‘j‘(rflpv- ’y‘:?fyuxv . 'ﬂ. ? v‘f (homogeneous Lorentz transf, )
X

(2.38) @/.. 2}, (f (dilatations)

(2. 39)35/1 = KX Pg'f /,,~@4[2va+2:;< Z?V]()o
(special conformal transformations)

In Egs. (2.38) and (2.39) L is the dimension matrix, taken to be diagonal,
with eigenvalue ~A # for a-th field.

}A
2.4.2,- As well-known 3 Z;,,“,,F 0 is equivalent to the field equations:
Ry M A AM
(2.40) O Z)M 20,4+ 9 (m.95¢) < - (9] [ +9 T ] o

P ©
and 9 \)‘( is equivalent to Lorentz invariance of the Lagrangian

(2. 41)gf),£ @) IC/W" JC,,/"’ 9)071}, Z/wcp) = 0

The tensor /?:;w is symmetric only for spinless fields, 2}\, = 0,

One has similarly
v AM
) PP =1, 9 (7. Lg)

and
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@) Hoe )
m%)QX 2xy9 @ + (R

where
a0 R, = -2m Lg + & rFZ g

Let us consider a simplest example : a massless spinless field.

One has

na L -12:9)0%)
(2. 46) @"%?
A
(2.47) /K/.‘w = jl' g/«v (Qn\ ?)‘(Q {}?/)” (?H(f)(gv?)
from which

c.ae) Gy = (Ap)(97%)
(2. 49) Qﬂa?BM(c/m (2,9)(9) «d7(%.9)Ly = (9, 30)(/+L)(9’\50)

which indeed vanishes for the canonical value L = -1,

For Kl(“" one has

@.50) 9 )e}w =R, = 20v9)Lg = -0y

Eq. (2.50) shows that the theory is apparently not conforma}].ly invariant,
But this is only due to the partlcular choice of (}{ . We can always
add to K(C) a term 5)‘ Cf which does not modify the commutators of

the conformal charges with the fields and adds to gp‘}a/«w only a
divergence, Q\,CP . Therefore in general (we assume for simplicity

that only fields of spin € 1 are present) we shall redifine Kj«v in the

form
«) p 3
e XL 3 -8 o ol adZ, Tgeg,, T

where (?; are the spinless fields of the theory.
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Eq. (2.43) now becomes

(2.52) 9’1 X}S) = X, DMv{D}u@)f @v
(2.53) @v = —QWVLtf + 2,."1(""2/:\, 9+ s .Z ‘f.‘+jo.'

@,Y , as defined in Eq. (2.53), now vanishes for canonical kinetic energy

terms, Thus

(2. 54) @v‘”ﬁa‘ﬁ ‘F\ g°6 Z

where ,,Q' is the rest of the lagrangian (that is excluding the kinetic
energy terms of canonical form). For theories where L' does not con-
tain derivatives one has ® »= 0 and Eq. (2.52) tells that scale invariance,
rar'ob@l = 0, implies the entire conformal invariance 3 X « = 0,
The known renormalizable field theory models are of this kmd,

The relation between scale invariance and absence of dimen-

sioned constants canbeundénstood in.the following way. Eq. (2.42) tnd

tells us that

¥ @)__4o[j+n—9cg-~?“ Lgcf’"”é; ¢ =

_ L IL (DA
-4l v [-2 ch (-02£ 7) ]

Now if (f has dimesnions (in energy units) - L, ycp has dimesnions

(2.55)

-L+1 and the term in bracket ameunts justto 4 ,,E, by Euler's theorem,
if §,isindeed a h'omogeneous function of degree 4 in ¢ and QASO. 1o
In the following we shall consider a more general form of the
condition ®, = 0 required to have conformal invariance following from
scale invariance, We shall only require that & =9, F(?a) where
F(¢®) depends on the fields in the theory [(88)]. If this conditions is
verified one can again redifin.evi{(cv) as K(cv) "y F. Eq. (2.32)

becomes
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©) ©)
(2. 56) gr}ﬁw = dx, DPcD/, +3, F

so that again

(2.57) 9*(%,5"_g[v F): 2x 9" D@

2.4,.3. - We shall assume here that the condition @\, = gpF holds and

proceed to show that the conformal currents can be redefined as : ij ,
a symmetric energy momentum tensor, in place of 'G v %j[‘" =
= ¥
Yg/n.j)"xj g’v:@)—x gj;\u s andk v ng)/m-}.x Mf‘vf
In a conformdlly invariant theory such currents are conserved, and

give rise to the same charges P/A P M}w , D, and K/, . The result ex-
tends the well-known result of Belinfante [('9),'(10)] and Mdller [(13')]

for the Lorentz subgroup, For a more general discussion see Callan,

Coleman and Jackiw [(32)]. We sketch here the proof, Let us define :

@ smPyrpa= =it 2,94 (3,073, 9,)(¢ P = - Hyp g

(2.59) %Ef/‘)\':al. (H’f[,v]fH CV?J +H\'E/4fj)

One has

H

‘ = t
(2.60) g[rﬂ" 3 K“,azm Hljl'v,-] VEJ’/‘l gf—&’l"-‘ v

We now define

| _ AP
(2.61) @/N = ’C/‘v +2 g Loy v

From Eqs. (2.41) and (2. 58)

| %y, -
(2. 62) ’Z/w- ’Z,, _gf’(‘ /w‘j’)“‘ HfLrV]
Now from Eqs, (2.61) and (2, 59)

6\1-@\’/» t/u‘tg (%Cf}«]v g[fv]/*) =
= o

(2.63)
:'ﬁv”Tvy* 2f Hp Tpv)



23.

because of Eq. (2.862).
Furthermore Eqs, (2.61) and (2, 40) tell us that

(2. 64) Dﬁ@)w = 9”)53(% Copiv =©
and

(2. 65)Sd3 @f ‘j*+jd3 Qfgfg ] ”?j‘* %2 g)l—tﬂf E“

This well-known proof has been given here in some detail because the

32

the fs f = - =x 0,, , and

,0, r proofs for _\:‘&F,‘v X"g/“f xjg/“‘” @/4 X 0., an
X}ﬂ = xvfﬁ}. + x M/“P follow identical lines, One has, briefly, for

M porg

(2. 66) ‘){j“’f = X, QJ*K’.OXYQ/‘V @‘f Xp )w +9 (ngc/\;

fgvf"") - évrf"g_f’}w

ro : - (2
xv*fo-xf)C}v+kw z},vcf- Cﬁ/‘(’D" %ng)(?+

+ F9)) =300 Gopp =% Gopv)

(2.67) J‘( -{-9 (xv %Wl’“f Js(go“jm) z (%/«Spgv 3/"“91’)
©)

(c?'z.* F’(af)) JﬂL/Wf ? Xgo-ﬂ,,f
2.6 Xigpyup™ *e gtﬂ“ﬂ‘«'”’“qﬁ"ﬂf + 2 (8p 900 -
" v Gop) (974 Fe) )
It follows that
2.69) WM, =
since Y X

= Q , and also that

[Laplw f
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(2. 70) MV 350‘3)( ‘}(‘0\’ = Sd%‘\)‘(ov = jO\x g X Sd3 (}(OVP
P P P

For @, = x"@)/,w one similarly obtains

. RBP4
/‘-X/C\, +9 (x g_f/w _g\"/‘vﬂxzjw*' T /“ch.#

CC) | L4
SONCGLDIEL G REE RN CR I

(2.71)

after having inserted the relation

Viz QP z-am Lgeaim 2o g + et

Thus

(2. 72) Qfdjﬂz- :}4 D€ D= jopx D

Quite similarly for ){rv, after a slightly lengthi - calculation, one

finds

. <) V¢
(2.73) )f/.w = )iav + 9 )/CG‘/J«.:
where

=0, 5
(2. 74) Y[c;,\]v' 2x’x, gﬁ‘/“f?x gﬁ_ﬂv (4}@» ff) (% )

The conclusion that has been reached in thus the following

charges can be defined in terms of the stress-energy tensor 0

(2. 75) :P}‘ = _(Olzx eoj,, M v:_(dgx (XI, @ov‘ ’(vgo/\)
(2.76) D = So\gx xﬁ@"/‘ KI.:: Sd:q (Zar/, x‘r@or" x2Q

In a lagrangian field theory G/N is defined from Eq. (2.61)

s $ z |
(2.61) @/W- (;jw""’) gtffj[v @"/“‘

v

)
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where

(2.36) ‘?f}q =7 G B TW, Y,
(2.59) g’[rrlv:: 5’ ( Hffl“ﬁ + Hf‘f"fq* HV Ef‘f"j )

(2.58) Hf[}““l = - nj_, Z;NL() "‘é" (3?/43"’“ @fvgﬂ)(‘?z*{:‘(‘f)}

n
When 0 vanishes all conformal currents

s
O v £
GunVle =56 -x 8, D=0 K.=x Drx
P g 5 5 G QG Ko x e
:a ‘0 MM

are conserved (i, e, I = 0, ppv = 0 always hold and further-

more QPQ‘J = 0, 3 )( » = 0) as can directly be seen by inspection

from Eq. (2.59). The charges in Eq. (2.59) then satisfy the algebra of :

the conformal charges in Eqgs. (2.3)-(2.9).

3.- BROKEN CONFORMAL SYMMETRY. -

3.1.- Broken conformal symmetry and the energy
momentum tensor, -
In the presence of symmetry breaking the algebra satisfied by

the conformal charges

.1 T o Oop (3 M, (0= (d% (%000 (01- %,0, 0)

3.2) (1) = {43 x"@{)‘\(x\ I<fm - Sa&i‘zx (:zx/hx*- gf“«")@ag

is no larger the conformal algebra. We shall be interested in finding

out such algebra under same specific assumption on the nature of the
symmetry breaking. In Eqgs., (3.1) and (3. 2) Q}N is the energy-momentum
tensor defined in such a way that Pﬂ and M/hv in Eq. (3.1) are the
Poincaré generators. Such definition is of course not unique -- a well-

known circumstance. To further restrict the class of possible energy-
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-momentum tensors we add the requirement that in the limit when
0(x) = QAA(X) vanishes one has exact conformal symmetry, The pro-
blem of investigating how 9'}“, (x) is defined in a broken symmetry
is of principal interest, and will be investigated first in the follo-
wing sections,

We shall assume that 0(x) can be taken ['(80)j as a sum

of local scalars uj(x) which satisfy the equations

(3.3) [ugm,b(on = IAIU\I(O)

(3.3'") ‘_MSIO), kr(o)'l = O

Eqgs. (3. 3) tell us that uj(x) transforms as a finite dimensional re-
presentation of the stability subgroup generated by M 4., D, and
K),‘ and has scale dimension AJ-.,

As we have just said)the first problem will be to investiga-
te the definition of O/w, in a broken symmetry, We shall follow here
the treatment by G. Sartori and one of the authors [(76)_]. One first
notices that one can arbitrarily add to O/“) , defined s‘uch‘that'l}‘
and M/M, in eq. (3.1) are the Poincaré generators$, a tensor of the
form 'BP G[}’,/‘ /vJsuch that, besides being antisymmetric in
f/~ as indicated by the lrackets. one has

(3.4) QPC& Tp, p1v ~ ggﬁfﬂ)‘
and
G‘{""

Csp 1T pv)

(3.5)

Cgt.f,ﬂ o g '[?.v')/‘:‘

Furthermore we can consistently require that
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P
(3.6) o C(; )4'“30 verhew @-2‘ PN
g,

Eqgs. (3.4),(3.5) and (3.6) are necessary and sufficient to guarantee
A
that the new tensor © defined as
j.«,\l
e Y

(3.7) @/W:@V-#/c)

is symmetric,b,y virtue of eq. (3.4), and generates some charges

j?%' Lopdw

P and Mj«o whic}; by eq. (3.5), coincide with PﬁandM y + Note
5\

in addltlon that @ 5 =0 for 8°, =0 because of eq. (3.6). In fact one

?}‘“ Eﬁ 9 %’L& c;]l.e

has

and

Mo M= SR G g g™ % G nE

“%[f‘o'j»;f % Tvelp k N SQPK <%t")®j/““% Lpol v )

and such a difference vanishes only and only if eq, (3.5) is valid,
We note that only eq. (3.5) must be assumed: indeed eq. (3.4) follows
if eq. (3.5) holds,

A
For D-D one obtains

ﬁ -D= SCPK {9?<‘)‘>\%Cﬁ°3"\> - %C:\,O] ﬁ}

which vanishes whenever

AT
=7 F[m

(3.8) %— Cp,67

a condition which clearly is independent from egs. (3.4) and (3, 5).

Similarly



a2 A - £ -
((;; K/‘ = Sd3x{9f[(2x/\xm I K’L)C& [f.035\]' 2 (x %’E/‘P]:
Y by 6--0 R 4
-+ )(/A C&EA"—B - X %t'\a"j}")} = 2 ‘59\3)( (""}g l;,f"l}

AAT ) = (> F -
x, F

fa Ec’,o]) - F[-x‘o][)«,é\J * Lyl } =

= 2 So\3x {- F[,x,o“_u‘_}.\,ﬂ M ﬂlﬂ"] }

A
where we have inserted eqs, (3.8) and (3.5), To have K, =K _ one

VY

has to require

R =R +3"F
(3.9) Ef‘s']tiﬁjcl E_Br] Y_‘T._f""&r

and viceversa, We note that eq, (3.8) follows from egs, (3.9) and
(3.5). The latter equations, together with the condition in eq. (3. 6),
can be shown to admit non trivial solutions for G[F f‘]” in explicit

examples, which shall not be described here,

3.2.- Equal time commutators among the conformal
charges, -

We want to compute the commutators among the charges
Pf\’ D, M/\" s K/~ . When the symmetry is exact the commutators
are those of SO(4,2). For broken symmetry the commutators among
P/\ and M/w remain of course unchanged, while we expect the other
commutators to be modified by terms depending on the breaking (we
are excluding spontanéous breaking) [(142,), (143), (96+98), (166), (61),
(48)]. A first class of commutators to be evaluated is that of the
commutators of D and K/A with the Lorentz generators E}“ and M/w .

We can calculate them. from eqgs, (3,2), since we know how P

/n
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and M/N act on Q/Lw (that is 9/ preserves its transformation pro-
perties under the Lorentz group). For instance,

E? ’b}“ “Sdzx X" EP @@v‘l- - Sd "?m@;“ﬂ o

D,

=t ol s (70, Ve i [ 8,780y =

’i?"ﬁ gf—’)% (" 9,)= ;]j‘” “%)‘agdzx @:\a

One can calculate quite similarly the commutators of D with M/W s
and K/u with D and M}W . Collecting the results one has:
. ; T )i
P =3 - S 3. 6
(3.10) [../4:1)] Vb g/w dx &,
T ! - 5
(3.11) [va,b]" ' jd x (-3»»@ o fj}m»xv YO .

(3.12) [?v) ‘<f\1:" ¢ ‘3/_“,D+2; ”'94 50!‘%( X, @ f

(3.13) [H?‘?s K/'] - i(gv" Kf‘ %f)*k“') --Q:So\}z (ﬁwxj, ",‘f}go"(w) ’%@fl’

One sees that when G';-) 0 one reobtains the commutators of the
symmetric limit,

It is interesting to remark theiloss of tensor character for
D and KI’” (D is now no longer a scalar and K/‘ is no longer a four-
-vector). At the same time, quite symmetrically, 1?}\ , for instan-
ce, does not behave any longer as a quantity of scale dimension +1
(in energy), as shown from eq. (3.10). Clearly the loss of tensor cha
racter of D and K, is connected-to the fact that they are no longer

l~

conserved generators , For instance eq. (3.10) gives
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[H,D) =i H- % & f

L dD _
f-=>o one has it 0

40 94D .., . Tu Dl =
J‘;“ = 6——:-& b [H)Dlzjdieao-fa [H‘D]‘-’ H"* \LH"D] =8

We now calculate the commutators of D, and K - with themselves, For

and for 0

this calculation we cannot just commute the expressions in eqs(3.2)
with each other since we do not know how © g behaves under D
and_Kk when the symmetries is broken, The procedure to be follo
wed here is taken from ref, [(41)_7 and [(76)]. It is convenient to
introduce a linear differential operator Afwhich acts on an operator

F(x) as follows

(3.14) Z.\rF(*O = dFe [F(B‘)? ]
o\x,,

The operator Arhars been so defined such as to differentiate only

with respect to the explicit coordinate dependence, One easily derives
(3.15) A/*'D = :'L)/‘

| (3.16) f 2 C Mf}‘ ﬁf E)

From egs. (3.15), (3.16), (3.11) and (3.12) one obtains

Z_\ ED }/{’} 2 (Hf)‘fa(’}“ SO{?X X © :X(x))
and, after integrating,

A
3.17) | D (¥o) V(Q(Yé)]r i l(f (%) 'HC},(»:,.,)«» ‘(33»0 &;\3“84@’\ (x)
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In eq. (3.17) Cf is a constant of integration, satisfying

(3.18) A/« CF =

It has dimensions -1 in length (these are simply physical dimensions)

similarly from (3. 16), (3.13) and (3.17) one gets
Af [‘VCAMG‘] =2 50\%( 8‘90 (lexﬁ" f@}"ﬁ‘x ) 35-0 (ZX X 5),‘9 )j
A
0, I+ 2 ng*j’ ngrvcf)

which upon integration gives
(3.19) [k(f(xo))lq‘.(xo)].r?igd x2 (x + % fajm)g (x)+2. N 9

where N oS satisfies

(3.20) Af’\/j"' = 8)4@ %c‘;.ﬁ Cf

and has physical dimensions +2,

We shall next take advantage of the Jacobi identities invol-
ving one Poincaré generator together with K/” (x,) and either D(x,)
or K/”(x ). Such Jacobi identities are expected to hold even in the
broken symmetry because at least one of the three charges are time
independent and the equal time limit can be unambiguously definmed,

By deriving eq. (3.17) with respect to x, (which is like using the

/A
S&J (e, k}‘ o)]-2 X, [66),Dxa)] §

=1 4500 pop (g3 0,00 -19,, [, (0 ()

olx,

Jacobi identity with P, ) one has
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and after using the transformation properties of 8(x) under D(x)

and Kfu(xo) one obtains

DC,tx) = {13 -3 . X M =i - 2A X, -
o &dx%%(‘l‘é\dxrw"g* AT

"3)8‘3)*)% UIJ.(K).. zxﬁ@(:x)+%rago (xl@(x)) _(( =0

which gives

__9 C/« (Xea) N
X o

(8.21)

From the Jacobi identity between Mg, , D(xo), and K/" (xo), after
insertion of eqgs, (3.17), (3.11) and (3.13), and some algebrdic steps

one similarly obtains

(3.22) [ T‘((,g-)cj.]"*;(%rwcg‘ 8\»(: CG‘)

We shall now follow a standard procedure in similar cases and wri

te, on the basis of the egs. (3.21) and (3. 22),
(3. 23) = JobXx t,. ()
CIA J- O/..

where the local quantity t}w (x) satisfies

(3.24) 9\) ty, (x)=0
v

It does not explicitly depend on x. (that is, one has the -equation
&f t/uw =0) and has physical dimensions -2,

‘ One next takes the time derivative of eq. (3.19) and makes
use of the transformation properties of 8(x) with respect to I;u (xo),

obtaining after some algebra the result

(3.25) é N/‘“

X,
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The next step is to take the Jacobi.identity among M oy KM (xo),

and K\)(Xo)’ and make use of eqs. (3.19) and (3.11). One obtains in

this way the result
(3.26) [Nf«‘, ;W]” ‘(% v G C%f N 8@"’? \13}* 9 T Nf")
Eqgs. (3.25) and (3.26) allows us to put N fo*in the form

where the local operator n (x) is divergenceless in g

'C‘Sw
(3.28) g”t”m%?w (¥} = O

From egs. (3.20) and (3.23) one has moreover

(3.29) ’“Qgr (D= xg for - waof * Sops

where SO}«“ does not contain any explicit dependence on x (i.,e. it
‘satisfies: A/‘\Sofw =0). From egs, (3.28), (3.29) and (3. 24) we obtain
(3.30) = -

Cls Sre pe “’"“f -t {<

We can introduce, following the well-known procedure by Mdller Z(131),7
and Belinfante 1{9),(10}7 (note how the formal situation is here very
similar although the physical contect is different) a symmetric t3 (x)

fo
such that
(3.31) ji}k t og;.(x)
- 5
(3.32) Nf"" - SO‘%K le{::ﬁ'(x) - K & 0p (x) ]

The new tensor t?w(x) is defined as (in strict analogy to the  discus

sion of the preceeding chapter)
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and it satisfies the equations
~P {: 3 _
(3.33) o po (=0
together with the symmetry condition
&5 po OO e e ©)

The physical dimensions of ts « (X) are clearly -1, We also nbte
that, when 93‘ = 0, tsfﬁ_(x) has to vanish,

We havei'thus completed the presentation of the formal con-
sequences of the particular breaking scheme on the equal time com-
mutation relations among conformal charges. We have in fact obtained
the commutators in egs. (3.10):(3.13), by an obvious reasoning, and
by rather more sophisticated arguments we have derived the remai-
ning commutators in eqs. (3.17) and (3.19), with C P and qu— given
through egs. (3.31) and (3.32) in terms of a tensor field tfo‘ (x),
which is symmetric, divergenceless, of physical dimensions -1, and
vanishes when g i‘-a 0.

We can further refere our argument by showing that such
field cannot exist in any reasonable model. The argument runs as
follows, Assume, for simplicity and provisorely, that the theory has
only one independent mass parameter m such that 92—90 is equivalent

to m= 0; and that for m -»0 one has

Anol < <o

-l _t(g)S

(3.35) nmn

where o is a real positive number, The operator ti?\)’ is symmetric,

conserved and is expected to transform covariantly under conformal
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transformations, It must than either be a c-number or have scale

dimensions -4. Only in such case is indeed the equation 'Br t/i?\z

eq. (3.33), covariant under special conformal transformations, This

S
:0,

is a very special case of a general theorem [263), (67)] (the theorem
(0)s
Fal
be a derivative of a covariant operator must be excluded since it

of spin-dimension correlation). Note that the possibility that t

would require for the latter scale dimensions }» ~1, in contrast to

the positivity requirement on L.ehman's spectral function. From
(0)s
/.u
only escape is then that t(SJf be a c-number: but then to have

eq. (3.35) we see that the dimensions of t are -2+« P 2, The

[D(xo), K/L (xo)] well-defined it would have to vanish (one assumes

() (%)

Cjb< o). In conclusion eq. (3. 35) cannot be satisfied andt
must vanish,

Finally, we have to remove the condition of a single mass
parameter, If there are N independent mass-parameters m; one
assumes that for mi->0 a finite limit exists for some product

)—1 (s)

f(ml, ... t}“ (x), where f(ml, .. .mN) is some function of

N
the N-masses, The argument then goes as before, So one can con-
clude, rather generally, that the commutators are those in egs.

(3.10)+(3.13) together with

.38 [ DO, K Gl ] = 1S 00) = :gr,@;oss,‘ 20 (x)
(3.39) [kf(xo)) K, ()] =2 Sd% o (x, Sho™ X, 4vs) ©C€)

In terms of the commutators [@/,M, s Qf"’" _7 the validity of these
equations (3,10)+(3.13) and (3.38)=(3.39) is equivalent to a set of
conditions on the Schninger terms. Included in such a set of conditions
is the well-known condition by Schninger for relativistic covariance

ﬂ146)7. We shall not here further duscuss such a subject. Additional
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discussion can be found in ref, [?40_)] We want here to mention ano-
ther interesting consequence of the commutators (3, 10)-—(3 13) and
(3. 38) (3.39), It is easily seen that the charges P g Mjk D,
and K satisfy the unmodified commutation relations even for bro-
ken symmetry, In fact they generate a non-symmetry group, which
may be useful for instance in classification of states., The hamilto-

nian, of course, does not commute with the full set of generators.

4. - RESTRICTIONS FROM CONFORMAL COVARIANCE ON EQUAL-=-
TIME COMMUTATORS. -

4,1.-Outline of the problem,-

In this chapter we shall be interested in deriving the restric
tions that conformal covariance implies on equal-time commutators
of local fields. We assume that the equal-time commutator of two
local fields A(x) and B(y) is a temperate distribution with support
at x=y. This in fact follows from locality and the general hypothe-
sis that the commutator be a temperate distribution on any space-
-like surface and fhat the equal time limit exists, It will be con-
venient to introduce a timelike four-vector n/,, of fixed components
in any frame and to write the equal-time-commutator (briefly: etc)

in the form

N
ket T
w1 § [ Geoy)) (AR BT ]= - Z S AR M) 90.9,8 0o1)
Vo= 5?;.?: S(x)s S0

T T
where S (A,B,n,y) are linear conbinations of local operators

and depend on A and B. The coefficients in such linear
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combinations are homogeneous of degree -1 inn L 5 as evident from
’b
(4.1). Also '_S *1..Tk is completely symmetric and the relations
i’f.

t = 0 hold for each i, such that 32. only acts on a compo-

i
nent: transverse to nf. We shall sometime abbreviate S'E""c“"

into S (k). The conformal charges will-be taken in the form

(4.2) ?}\‘«’ SG}\%\ S(’Y\X)MFQ ey Mjm) j&*‘('g '“X)’n (/4 by =Xy S’;«&}

(4.3) D = jOﬁ( c”'hx)“’?yx@ fﬁﬂ‘ &;A:jﬁf)!jé g(’nx)mf(zyxa‘ “X J’!“)

A local field Ar(X)’ where r denotes a set of spinor or tensor indices,
that transforms covariantly under the algebra satisfies the relations

(see § 2)

(.9) LB AL =1 A, ()

5?15

f[(x,3V~xVDf)£%~‘ ’2/,)% ]A (x)

i (La= X9, 14, (x)

it

(4.5) LH/MA,,,M]
(4.6) [D, A, )]

i

3 X | | | S . ppes S
(4.7) [kr/ﬂ)ig,‘m{x}j =\ {(Q»Qﬂixﬂmz)f/ﬂxfgf%x"“"gﬁ)& + 2 ;«(ﬁ(,{}:f)a JAS()

Of course P/\ and M}w , being the generators of the Lorentz group,
are conserved; and eqgs. (4.4) and (4.5) are just the expressions of
Lorentz covariance of the field Ar(x)". Thus some of our calculations,
in so far as eqgs. (4.3), (4.6)/and (4.7), are not used have only to do
with the usual Lorentz covariance, and not at all with the conformal
group in itself. However it would be rather difficult to treatthe con-
sequences of covariance under D and K/“‘ , without having first sum

marized, at least, the consequences of covariance under P and M e *
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The restrictions which follow from egs. (4.4)}+(4.7) are, strictly, a
number of relations to be satisfied by the Schwinger terms in the com
mutator [@}‘9, Ar]3 in our potations of eq.4,1), they are restrictions
on S‘?"“"{""(G/,w ,Ap.,n,x). Additional restrictions follow however
from use of the Jacobi identities among two local operators Ar(x)
and Br(x) and a generator 1}“ > M v’ D, or K}m . Such restrictions
‘directly limit the forms for S”‘-"*W(Ar,Bs, n, x), However one must
stress that, whereas such additional restrictions are rigorous when

the Jacobi identity involves or M

Py o

dent (and therefore can be easily translated to the limiting value

which are time indepen-

x0=yo), when dealing with D and K}Athe consequences hold only

for exact symmetry. As we have said, before dealing with the de-
rivation of the implications of conformal symmetry we must summa-
rize some general properties of etc.and in particular discuss the
more general consequences of Lorentz invariance alone., We shall

follow here the treatment in ref, ﬂ40);7, where a consistent notation

and derivation is developed,

4.2,-Summary of general propegties of equal time
c ommutatvors. -
We shall first deal with the so-called property of integra-
bility for Schwingeriterms; It will be convenient to introduce the

time ordered product along n
¢

(4.8) [, (AMBE))= Onx) ARG « & (rx) £ (o) A (x)
from which

wo & TLANBEG) = xF LA Be] )
dn |
A
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Therefore for k< N one has

N 7.
A gd‘}( K," er - (A()(’)B(o}) = 2 ils .Q(A, B‘m‘O) P

——

(4.10) °"1 £=0
(ol 0, 9, $x)
giving
M M .o WAL
(4.11) S & (Algjmlo)'::“d—’;‘— Sdi (\X )--(U( )T:n (A(K)B(Q))
S
ﬁtu}‘in-ﬂ
One next makes use of the symmetry of S and obtains
P Ren )

win ST AR M) = 9‘......_... 75 (A,B m,x)

dmﬂ .

(k)

where the symbol Z is defined apart from an additive polynomial

in n/A of degree k-1, If will be convenient to choose such polyno-

(k)

mial as homogeneous of degree k-1 inn so that Z is homoge-

,.’
neous of degree k-1. Note that covariance of T (A( ) B(0)) is equiva
lent to absence of all S(k)

Under the exchange Aé»B one obviously has:
LAG) ,Bc)] = - [Be), A0)]

This property implies the relation
T,..T v P o S of
S J(A.B‘m’x)'f(’—l) S ¢ JCE)A)M.,,)»::
N
(4.13) - k'fJ T
=-Z ( )g,t,-.z,a, ST (BA M)
K= j+i

Eq. (4, 13) fixes in S(J) the term of parity‘(—l)J under Ae¢»B in
i+ i+
terms of S(J 1), S(J 2), etc. In particular (for j=N)



40.

+4 T Ty

. N |
MCA\B;MJX);‘G') 5 (BlAﬁfn’x)

4.14) S

For the derivation of eq. (4.3)(see ref,[(41)]).
An additional, quite obvious, relation follows directly from
eq.(4.1). We introduce the abbreviation for any vector Vf‘
M-V

(4.15) V}‘“ = \lr = Ma /n/a

and call g}_w the symbol

LN

(4.18) @/m =

MMy .
S L SR T N
O™ e = 97 97 T g

One then has for the ''transverse' derivatives

(o) .
(4.17) S (’Q?A j‘ﬁ)m,x) =0

¥ A
: R ?\" 'Z‘(..T,'..’CK ’
(4,18) S (QFAJ%)M‘X) = l f. g S (A‘g)fh‘x)

Kk =i

P

(the notation "C\."?:-.. Twmeans that the index T, is omitted from the
sequence .. T ).

Finally we have a very important theorem which follows
from PCT. We shall limit ourselves here' in enunciating the theorem,

without reporting the proof:

PCT theorem on equal-time-commutators. - In the expansion in eq,

(4,1) for an equal time commutator, the only singularities in n/“ of

AP o
each S v

are poles at n2=0.

The theorem results in powerful restrictions on the nature
of the Schwinger terms, It is particularly useful when applied in
conjunction with the other general properties of etc, in particular

with the condition of homogeneity, As.a consequence, we mention the



41,

e T
following 'even-odd rule for Schwinger terms', Let us call Spqes Py
Vieee vy (briefly S;,{ l) the k-th Schwinger term for the commuta-
tor /Zx (x,0), B v (0)_7; Sl_{ is a sum of local operators,

- fla-a/"j vlo.a 1 J,l
Such operators all have the total number of tensor indices even or

odd. The case ""even' occurs for j+kt+l=odd, the case "odd'" for j+k+l=
=even, Example: An equal time commutators of two scalar object

can only give vectors, third rank tensors, etc, plus Schwinger terms,

4.3.- Restrictions from Lorentz covariance on equal-
-time commutators. -

From eqs. (4.2), (4.4), (4.5) one derives formally [(41ﬂ
(o) .
(4199 w§S (@f«‘; An,mix) = =1 9¢ A, (x)

and
(4. 20) S [ s” (@; , Ay mx) - SV(QZ; Ay, X)) -i (ZN)Q A,e, (x)

Egs. (4.19) and (4.20) are two independent limitations on the Schwin-
ger terims and they express the content of eqs. (4,4) and (4.5) for
any energy-momentum tensor which is symmetric, divergenceless,
and related through egs. (4,2) to the generators 13“ and M/A\,

as for instance the Belinfante-Mdller *Qﬂ\)). Qne finds from egs,

(such

(4.19) and (4.20) that the commutator of 900 with any local operator

has the form

S
v / i ¢ 3 'Q.MG .
(4.21) S (Xo-Yo) [Q,o(x)) A.C¢)]=- %A"CY} £0e-) - (.{, {As (4 )33-5&-&3%-#’“
° /a

For the interesting case of [19 ] one obtains in particular

00’ 900
the well-known theorem ofSchwinger [1146)7. One also redbtains

the results of Boulware and Deser [(17)] about the ect
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[b/“ (x), 0 o (0):/. Here one has to make use of eq, (4.13) and of
the local conservation of 9/.,‘\7 . Additional restrictions are implied
by the Jacobi identities for Ar(x), Bs(x), and either ij or Mj‘"’
One obtains

“¢ e Thes Ui,

(A%Bs.m’() S (/A q.-h mx)

O S
(4.22)

4 ‘S’mh"m (A'L)’(;)/«BS‘M)X)

from the Jacobi identity with P/“ » and by a slightly more complica-
tes algebra [{41)], the relation:

/C&,t\ )[ S/“tfru.'t'w(,QVA%,E:“,“&&) - 5 (aﬁA%,%S‘M‘K)] ]
I . Ay T e, v
om T[S M (ABym ) T STT((ZTA), B,

ym, x) - Src” ’t“(/\% “}W ,3' m, :m))

One sees from eq. (4.23) that the Schwinger terms of order k+1 in

¥, T. T

a commutator involving a derivative are related to those of order

k without derivative, When eq, (4.23) is taken together Wi'gl eqs. (4.17) ...
and (4,18) one obtains a complete determination of S ~ k+1( é)“A, B, n, x)
in terms of S'cl“' k(A, B;n,x). In fact it can be shown [(144)7

that one can write the following compact expression, equivalent to

the set of eqgs. (4.17),(4.18) and (4. 13)

- bt 'v"'{“:' ‘
1 S’C’;.."“C?K(,a’vAjnﬁifn&M) L Ck‘"“l)g o
A

| VT e T T
.,Q,wm] g™ < %(:A “%’K)
J

?K

--5

+
. 4 Ou.
ol P

LY

The result containedineq, (4.24) was first derived bya different method

Kl 5,5),(‘42)7. The implications of Lorentz covarianceon etc have also been
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discussed by Brown, Gross and Jackiw [(27), (28), (99), (85b), (86‘)_7.
Eq. (4.24) can be given a rather simple form in terms of Z(k), see
eq. (4.12), One finds
k) v () v
(1.2 \KZ (3ABmx)=m L (ABmx)+D (m)

where P (n) is a homogeneous, but otherwise unspecified, polyno-

mial of degree k-1 in

4,4.,- Restrictions on equal=time commutators ensu-
ring from conformal symmetry.-

The equations

(4.26) [D, Az(‘)] 2 M».- KJSII)A.‘(&)
o K, Ay @2 1 L1065 - 2 30 V4200 (2, ), A0

espress the assumption that Ar(x) transforms according to an irre-

ducible representation of the conformal algebra with k , =0, finite di-

»r
mensional with respect to the little group, as reviewed in chapter 2,

We recall that

(4. 28) D = dex S(’Y\x)mfxw@fo-.

(4.29) K/‘ = 50\43‘. S(’hx)'\'\R (Q‘XIA&G‘ Pr' x?. @f,,;)

One immediately obtains:
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r D'AQ(G)l :SC&AK (’Y\x)’“ Kw [‘Qﬂ)a‘"‘ (X) Aq, (-”’)j
= T K g (@W £ %';»M@)B @mf%%ﬁg(k)

fe
e - p Sw( @;Fﬁ"f, A'M @)

and after using eq. (4,26) one can write:
[«nd N
(0.30 m5S (Q/Ag.'/\mm,x) = =4, Ay (%)

With K, one proceeds by similar steps, One has

g
o i The ]
EK .Ao-,,(a)] S % ikn\‘?SO\,drx tS G- (@f’c",/‘i%,@)i’x «©
S Ty Che (@f[*j L, © LJ. Q’h 9@“: § (x )

- . G - T T,
= - Qe § {Q 9/41:0 ‘3 T, o (@{:d}i‘f\'z, 0) - 8.‘:‘,‘:1«5 <@ff‘!Aa'0)~§'

Then one compares with eq; (4.27), obtaining

TTa . ok |
(4. 31) 8 ?S (‘Sb}.qf%’%m‘x)zz@,mmes 2('@.1”"& tAQ\max)

The main results are thus eqgs, (4.30) and (4.31), They express
limitations on the Schwinger terms of _[('-'3 e Al

The restrictions obtainable from the Jacobi identities, to be
derived in the following, are valid only if the symmetry is exact,
as we have already explained, In fact D and Kl"’ are not in general
independent of time and the Jacobi identity among A,., By and D or
K /Acannot be justified a priori,

Using eq. (4.1) and the Jacobi identity with D, together with
eq. (4.6) we find "

$enx[A 0B ()] D= Z 1“[ 5™ (AB0), D]
3, P $00 = §lm{[A (0, [B.2), D]+ [[A, ), D] Bc00) ]2
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s T () ST (A B 6) - X
S Q. Th (ng'L,Bsgo).] Q»—m.\-;’@n S (X) =
- 2 [(rle) ST (A Bs 0) + ( (k) -
ST (A0, By 0) 194,20, §00)
The result one obtains is therefore

.. T
(LS T (AnBemx), DT = (Bt ls) S (A Bamin)
+ i (k) SATTR(D, Ag, Bs,m, x)

Eqgs. (4.1), (4.7) and the Jacobi identity with K/bgive us

Sy [[A (0, B)] K, 7= Z i [S™™(ABs,0), I, ].
DV $0) = {0 LA, T80, K. 1T+ [ [Auin K, T,
,Bs(a)]} = § ML, X ST (A5, 0) +(2x,x" x°g £
. S (9o hn Bs,0) -2i k£ STT((Z, A), Bs,0)]
Sudu 80 = T i a4y (kn), SV (A By 0) ™ (k)

A VBT

(k+§ 23,\ %Az % @ )S (g;cAl\?;s.o)m(kﬂ) Sz\z..’tu((; \.A)" ‘Bs.o)j

One can thus write

N )\‘>‘3, ...'Cw.
L) (245,95 1,97 87T (9 AnBamx)
(4.33) :EA 8’1"...'(?& (Am%q‘ m, X)-&w‘ SAT‘MTK ((E)\?A)z ,Bs\'mx)
L S™ ™ (ABsmix) l'('j

(4.32)

}
P2 ok+ K+I
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We shall now look for simpler expressions in place of eqgs. (4.32)
and (4. 33). We take eq. (4,24) for the value k+1 and multiply by

g ¥ T We obtain "

. I P, o
x‘ 5 N The (‘g A'z. 2 o) (5“), ? % &,, W (A’t.,\ 35‘0)

J~
p ‘ T %]
b e ST (ABs 0) 4 4k S O (ArBs o)

2 T The .
= “(As,Bs, 0)

Using now eq. (4.31) together with the above equation one derives,

T.The

(4.34) (&«%ﬂﬁws)ﬁm (A'z, Bso) =1 [S (Ants, 2), D]

The result states nothing else than the obvious consequence that
5?‘“’?"‘” must transform covariantly with respect to D and it has
scale dimensions ‘1A+1B+k+3' Since all operators have negative sca
le dimensions (in a scale invariant theory) it follows that the highest
order of the Schwinger terms in a commutator of fields of definite
scale dimensions is fixed. Now, to simplify eq. (4,33), we write

its left-hand side as

_,‘ i(k?.”f'z.) ES)&Q T (af "a('?;\ -5 }O’) 8,\ A"Z.

+ 13 Cera) SPE™Te (g B 0)

x M Th--Ti

‘(aﬂA@, BS‘ 0)}

We than use eq. (4.23) to calculate the term within square brackets

in the above equation, which becomes

‘/3.2\[_ S AT Tm(/\'z, @“ o) M;a,x] S/\’m (K(:Q fn\ )
e Sr\’t‘.-,’t‘k CA':'.) (.z/»mﬁ\)ﬁ‘,a) ,

On the other hand, using eq, (4.24), one has

(4.35)
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)41.‘. Tle.

(4.36) = }3-28”31“ b (3.A: Boo) 3= ¥ ST (AyBe0)

eqgs. (4.33),(4.35) and (4. 36) give
K“ [S'm T (AL\BS 0) Kﬁz (28, k+4) °
(a.31) SHT TK(Az Bs0)t 10 SAm T ((Z)A)n, Bs,0) -

-1 S AL (ZBY,0)+ [ ™ (A Bs,0) M) ]

; T B
The left-hand-side of eq. (4.37) vanishes provided § “(Ar,B‘g,O)
is a superposition of local operators transforming according to finite
dimensional representations with K,;O of'the conformal group.
Ty T
1. N =
(A, B, 0),K, 7=0

(N being the order of the last Sehwinger term in eq. (4.1)), From

Also, one gets from eq. (4,37) the result /S

eq, (4.13) one has

-en LS W(AL\BS 0)+ € ‘) (b (Bs Az.ﬁ’), I § ]
' E‘g e T .7
= <= 2 ( ) (D-ew-%w S K(A?‘Bs.")f, k"] )M

R Telkewy

(4.38)

whose left-hand-side can be written, using Fgs, (4.37) and (4. 13)

in the form

] [+ 4+ 0,24, 'I‘Br—r i ad Mi: § ;[S'\ 'c‘"m(/\z‘%s‘o) -
(4.39) (")kskmwm(@s Az} 1-TI QA"ea)g:‘cgs,‘-f 3(2}‘)'% >
AELET Z ()T S Y A0

"‘ 2 Ve I
The notation is usual in lie algebras: ad M ,, S stands for [§, M, J.

When we compare eq. (4.39) to eq. (4.38) we find

N Ls AT Ty (AZ.,.BS‘O)”<}‘] = 3,(. N+3++4s) 3}\”4
e My §2 ST (A, B 0)

(4.40)
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In deriving eq. (4.40) we have used the equation

"C‘. TN(Az ) C i)N'M EPR Y] CBS‘A‘Q O)

Eq. (4.40) can be written, recalling eq. (4.34), as

=195 LSA™ ™14, B 0), kK"1= 2i{g) adD+
rad M § S A @B (A, Be o)

which is satisfied identically, The only independent restriction one

(4.41)

obtains, for k=N-1, from the result in eq, (4.37) is

s SN~ o~ N= SERNIE k
ES’E‘ Ty ‘(AI\B?_;\Q)'- (“‘) lg‘( Gp ‘(EglAzxo)' ’(/u-}:

(4.42) AT Tpyey

N
rest St g (S
=2 U&.‘eﬁs)gpfg’?‘ SS T (gt'"«kzt, gs- ! ZI“A)s ‘gm J 5 (l{{k‘%s ‘Q)

It is interesting to note that eq. (4.37) is identically satisfied if one
takes for .A the operator nygf,a- and if in the commutator [_5 v ,B_7
the value of N is =1,

5.- MANISFESTLY CONFORMAL COVARIANT STRUCTURE OF SPA
CE-TIME, -

5.1.- As well known [109) (122)_[ the conformal algebra on space-

-time is isomorphic to the orthogonal O(4,2) algebra. We recall that

the 15 generators of O(4,2), which are arranged into a skew-symme

tric tensor JAB’ -are given by

(5.1) \'];“= VS’ ; n\;/: ! ( ) J@f é ) Jeg*])

in terms of the generators of the conformal algebra,
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In fact, from the commutation rules of the conformal algebra

it follows

(5.2) LJ/\B‘ACD]: \\(SAD ‘)Rcﬁ'ﬁec_d/\m’ @Aadﬁtbﬁﬁm J;\c )

and VN (+---,-+) A=0,1,2,3,5,6

O(4,2) is a rank three algebra, with Casimir Operators
Cr= I Jas
(5.3) C“JI. = 2CpEF < AwJ J
J CU Cdst

The irreducible representations of the algebra are specified by the
eigenvalues of these operators,
It is a simple task to prove that the action of the conformal
group on the Minkowsky space is equivalent to the action of O(4, 2)
on the homogeneous space O(4,2/I0(3,1) @ D, Let us consider an
arbitrary point P in the six-dimensional pseudo-orthogonal space
-, B ) - .
0(4,2), Px= ('Q ATEp NlB)’ and choose as independent variables
: 2 A
- | o oy 2 =
(5.4) Xp= .‘z”l )K-’QS-""’“, Anol i3 C’VL " Ma)
A transformation /\GO(4,2), acting as %A= /\AB'*\B, induces on

the new variables the following transformations [(143ﬁ

/, = L VX, +Q ”
(5.5) K K Poincareé transformations
= £ X
(5.6) s N / dilatations
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.
X+ €, (X% /)

x' =z
r 2
bt 2acex+ 2 (x%M/i?)

(5.7) special conformal transformations

K'= k (140cxt & (xm/e2))

We then see that, in order to recover the conformal transformations
laws in space-time, the point X & M4 (M4=Minkovvski space) has
to be identified with the set Xpz lg fq/‘hgk:} P arbitrary, on the cone
" ®=o.
Let us now consider operator-valued spinor functions LP?P(J ('vl)

defined on the cone ’le=0. They transform according to

. _AB N a8 s Ape
- Sqf{%("{,)z-ti J;\?a)ﬁé ’\Pzﬁ("\)wﬂi (LA%g{dﬁ S{«& )th(wi)

(_LAE = ("l%DA"TlA:)“))

where S Z“I W43 is the matrix of an irreducible representation of the
spinor group SU(2, 2), locélly isomorphic to O(4, 2). We assume that

these functions are homogeneous of degree A(x) i. e,
» AN =g D)
(5.9) NLAQA’\‘P{‘,(& ("l) = q’\(JQ\,u, (Ml) ( " 3’\” ki)“il. )

The function

() - Note that in general, for fflzfo, ’YLA 3 =k§—— +2l"v12 S0

A ek 3,%2
eq, (5.10) holds only for ‘YL2=0. This is due to the fact that only
the hypersurface ’YLZ =0 is invariant under dilatations on the six-

~-dimensional space:

Ma %f\'?A'
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o R
(5. 10) ’\\){Ns(x*) = K H}(’q)

is then defined on space-time. However [(122)_2 the operator ’W{‘dk (x)

is non-local in the sense that

(5.11) L'\{) (x) :f ( rf"b'ﬂ' )’\Pws

where ﬂ/‘=86}«+85[ﬂ' From (5,11) one easily sees that the new ope

rator-valued function

: :
-ixT - ~-»|>('lr)“s
5.12) O ()= (—6 ’\‘/) (x) = K ( x}/C”L)
{3 14 iy s
transforms according to a representation of the conformal algebra on
space-time induced from a representation of the stability algebra

0SS A . .,
at x=0 /-";Ai k/‘ with matrices

6.13) 2Z,,= S/*v A=S,-AL) K= S¢u- Sep

5.2.-Irreducible representations-in space-time, -

In this section we are interested in investigating the struc-
ture of a particular family of irreducible representations of conformal
algebra on space-time [1132),(94), (62), (84}, (77), (111), (139), (36), (140),
(156)_7. We classify those representations which contain infinite to-
wers of irreducible representations of SL(2,C) of the type [—gl—, 5—12—],
i, e. tensor representations,

The study of this particular class of representation is ex-
pecially motivated by the fact that they are relevant in operator pro
duct expansions, a problem that will be deeply investigated in the

next sections.
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5.3.-Structure of representations and connections

with O(4,2) covariant tensors, -

The classification of the irreducible representations is achie

ved by making use of the following two basic Lemmas:/(67)/:

Lemma 1) - Every irreducible (infinite-dimensional) representation
of conformal algebra which contains a ladder of Lorentz tensors of

order nt+k, k=0,1,2,.. (i.e, irreducible SL(2,C) representations of
n+k n+k
2 7 2

tensor (—fl—; _{1_‘) of given dimension 1n’ annihilated by k,\,i.eu by

2 2
an irreducible representation of SL(2,C)®D. The last assertion fol-

the type ( )) is uniquely specified by an irreducible Lorentz

lows from the structure of the stability algebra,
The proof of Lemma 1) follows from the fact that the Casi-

mir Operators (5.3) are given in such representations by
CI = 2 Em (\2,\\“ '4‘.) = Q.m (ﬂ“\"t’c:{.)
(5.14) Cg=0

Cx = mnta) Lz f(€-40]

as can be obtained by evaluating their eigenvalues on the lowest or-
der tensor (—2IL , ;1*) annihilated by K;\(X), Therefore these repre-
sentations are specified by two numbers n, 1n where n is a non-ne-

gative integer and ln assumes any value (with the exception 1,=2+n).

Lemma 2), - Every irreducible representation of the conformal al-

gebra, which according to the previous Lemma is uniquely specified

(%) - For example, the Casimir CI, in terms of conformal generators

turns out to be C =M ,, M/ +2RK-2D%+8D,
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by a Lorentz tensor of order n (annihilated by K)\) and its dimen-
sion 1l , can be uniquely enlarged (1n7f2+n), to a tensor representation
of O(4, 2) acting on O(4, 2)/10(3, 1) &D.

The tensor 'q/Al. . 'An('r\) are specified [(66),(67)/ by the

following properties
(5.15a) They are homogeneous of degree -1ln
(5.15b) They are irreducible, i.e, symmetric and traceless

(5. 15¢) They satisfy two sets of supplementary conditions

A - Aq - )
N ’\‘YA‘,. A(,:O 0 and Q ('{/A...Af:“ 0 (generalized Lorentz

condition),

It is possible to prove that these properties for the tensor "L‘/A

llccAn

are equivalent to the following ones

(5.16a) The tensors are irreducible with respect to the orbital part

of the algebra O(4, 2).

(5.15b) They are irreducible with respect to the spin part of the
algebra O(4, 2).

(5.16c) They are irreducible with respect to the whole algebra

i,e, I'S is a constant on these representations,

Proof:

(%), transforming

. An

as a tensor under O(4,2) transformations, defined on the cone '712=0,

Let us consider an operator 'I‘JA
1- .

of degree of homogeneity ,\n==4ln, i.e. satisfying

(5.17) 'YLA %A ’\‘/A(‘_AM('YL) m‘f’\mwA\mA‘mCﬂ)

It is easy to show that the orbital quadratic Casimir reduces on the

cone to
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(5.18) LA@, LAY Q'v\"”éﬁ (4+m49,)

(the other two Casimir operators vanish for orbital representations)

and therefore

(5.19) Lms Lw’\{/ = 24, (L.~4) '\PM_,A'&"X)

The equivalence between (5.15a) and (5.16a) is thus proved. The sta
tements (5.15b) and (5.16b) are obviously equivalent.
In order to prove the equivalence between (5.15¢c) and (5, 16¢)

we observe that

AR Al AR AR
(5.20) J‘&&m L7l * STSt2l S,
where

=1 - (m)
(5.21) (SAR’\V>A\'(.T\AL_ LE_'_ (%AA. 2 ?BA\%&M’* )

A A. AmB A And

Making use of the two supplementary conditions (5.15c) we have

(L-sy),, (= <m VPG R

(5.22)

9«{)\ () Q.Z “3‘“«{' 2l ==, )

Moreover we have(x)[(67)_7

(x) - Note that Sg¢ has vanishing eigenvalue on the highest order Lo-

"rentz tensor contained in the representation.



TeK = m

gﬁ& SA&: 2 (m o+ 4 )

.2 : AB o €13 < EF
(5.23) Cancnar S STS -

8 < » N
Sa. Sp S< Sy 7 3m(me3)
Let us now prove Lemma 2): remembering (see (5.12)) that
Alﬂ- Alﬁ

(524)0 (K) '“( N‘XT) ’\-PA (m)

and noting that

g(.“«'“ Voo o

Az
(5.25) 5{‘ L LAB.- = "em (’Q\\" 4‘)

A7 -

i

|
(5.26) 3 Sme, )

A
(5.27) SAE: L - 'S/uv L,{q

where x =1,

v 2
i}.“w)/w Sﬁ + T K -<S@§~+ 4\“355

“'-2.5.645 Lés‘f“ﬁ"‘ K + K’ 63

e e ST et B

we get, in terms of the generators transformed by e

P ”""WJ:%JM IK

(5. 28) -55.\. 4 wa.@.

N~

/4.v
(5.29)
VA o

[

/«:\l

= L/av* X\;ﬂ -

-ixT ..., eiXT\

= A (B4 + ss" -

(a4

L.}N-?Sé,s L&’gwf-nx%—’k‘ G)

~ A

Sp” SpAHTKTy | Ses= Sest kT

r~ v T
K K +2X (%,\qsés* S/,A"'Q‘X/J('“ x ﬂ/.‘

e

{sﬁ\WV/ O;;::. @“W)\

3

55.
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-~y

A
X,\"" K,\"‘ 20 L, Xy~ 2K KT 4 X Ty

= A~ %

2
SH
v"

(5.29)

U‘?
P

65 baﬁ"”‘g’" -+ ("{‘"“)?m

Using translation invariance it follows that

-—N*' A
b ae O'.(*ZM NER 4)«%1%}““ 4 T K

K (Cr) = A (£a=d) 4 m (mr2)

(5.30)

where we used the properties

LS@& ) =Q

(5.31) v#fm

(5.32) (k ) () = O
9‘ o -l
Eq. (5.32) is a consequence of the first supplementary condition (5, 15¢c).
In order to complete the proof of Lemma 2) the mapping

between covariant tensors '\-l/ (“?.,) and irreducible representa-
A.. A

tions of conformal algebra on space-time of the type discussed in
Chapter 2 and Lemma 1) must be exhibited.

We show that, if 1n=2+n, the components of the tensor

, XM ( X0 \
. e Q) (9
(5.33) A A (’VI ( AWM

are completely specified in terms of the divergences of the highest
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order tensor O o (x) [('66), (67)_7. As elx:ﬁ =1 for x=0, it is suf-
n

> e

ficient: to evaluate the components

Oo( g.o-)x <x. . . where (J=0,1,...n) and xx.. stands for 5 or 6,
1 J
This problem can be completely solved by using the two supplemen-
tary conditions (5.15c).

To obtain the components of O (0) we first observe

A,...A
that: 1 n

(5.34) (Sss 0) =i CSSA:O

Al Am ﬁ:« A"-'AA"NA«\G- 36”‘; OA"'Z“"'A‘”\‘s )

and using the first supplementary condition at x=0 (we omit the index

0) we get
(5.35) O

Eq. (5. 34) becomes

SA o .. Am” G’AZ-"AM

-

(5.36) (56§O)A.-..A.¢/= 2 (35;@:(36/;;) OA'"E?“A"‘G

12y

so
A1
< Z ( ~3 O
(565 O)nz.---(KAm*.AM bt %5'4:‘ %6“) Sustig A s K- An
(5.37) ™ '
= -y . )
;Kzﬁ- (cggm‘ SGA. QWWK‘AH‘-.A:--AMG
In Ak+1, ...An indices 5 can be changed into 6 or viceversa because

of condition (5.35), We get:
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(5.38) ( Sveg OL‘”%G”G: ““(’“*K) O

oyt B.. 6

and, defining L =1 565’

5.3 (LO) = () O

-t 6 .- G ol - e G G

So all Lorentz tensors are eigenstates of the dimension,

Remembering eq. (5.21) we have:

m
(5. 40) (—EPO)A(--AM: '.‘z {(%bA*%gA,)OA.”}Q. Ao pr -
) A A (OA.--';\\;-»AmG—‘- OA.-'Z‘.-..AJ)]

M
8
(5. 41) (\T‘ O "2(4 (A : % %I"’""O ApAre . Anb )-:

'-'Q(@*'“")OA p,,“(, .= (%SA Qgﬂ A Aﬂgbk.OGA.'A'--AM}]

(5. 42) U T O)r = 1[(%«\4) 0 -

oy, %kAkﬂ A ol . dkAkh -AmG

- + - ’
‘_% " (ésﬁ. S(,A )OG\IL.»{KAW..;\!-AM J :3;(3%{) O

‘(z,_O(\c 6..6
(Aun. . An=6.6)
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(x)

Using (5.42) and the second supplementary condition at x=0 we get

4 . 6 59 m2 6.3\
(we recall that Q%A“ T<. (9157 —.E%A“%“ :(x )ré';;/"‘” (8/\ ‘3,\)3»@.
<+ ‘Q”U’\ %'lL)

) _ o =0
(5.43) iD/‘OQ(Q_,,Q(KGM(,% (l*k ’e”‘) OU{L~- A, 6--6

2K &€m

Eq. (5.43) can be easily solved by iteration and we obtain

-k [(La=2-m) P -
2 ( d

(5.44) =
5. 44 0 (%) }“_"‘}‘KO

o). - Aot 6 -G A ('em“ﬁ"‘"ﬂ"‘ i)

&

which solves the problem and completes the proof of Lemma 2),
We observe that for correlated dimensions ln=l+n formula

(5.44) simplifies to

(x) = (2 ‘9—) —g g ()lh"/wC (x)

(5. 45) o, .o
=i
..ol 6.. 6 r(:e_,i*K) M

5.4.- "Canonical dimensions' .-

We note that the above procedure immeaningless for 1n=2+n,
i.e, in the case of '"canonical dimensions'., In this case, in fact, the
second supplementary condition (5.15c) cannot be imposed unless

the tensor O (x) is conserved; but, in this case, it becomes
“1. . -K n

(x) - The generalized Lorentz condition ‘}A‘)/AA A (ol)zo can be

A 20 :
! gg )'\!/AA A ("l)—O which is manifestly de-

fined on the cone'YL 0.

rewritten as (L
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oA

on identity: it simply tells us that the conservation law 2 Oo( (X'; =
. . Ama

is a conformal invariant equation, However the components Oo( e xx
Vo W pre o
are still indetermined and the previously one-to-one correspondence
is no longer possible,
In the case 1 =2+n, but for nonconserved 4 tensors O (x)
n ' b(‘,-.dm
the second supplementary condition is no longer valid. Moreover as
a consequence of a theorem proved in ref, [Z 63 )/ both tensors

o
(x), 9O,

IR 1(x) are annihilated by Ko at x=0,
Al eee .

O
Kl. o & d\n
t;e, there is a degeneragy of the eigenspace corresponding to K, =0.
This pathology has a well defined counter;')a‘rt with manifestly co-
i e . fact, give: dt s
variant tensors, In fact, given the non conserved tensor ’\*/Al' ‘ 'An(”o
one can always define:

~ - A
(5.46) ’\*’A“Ngm - qﬁ\- A.,\(,'U " é‘ rfXA;D ’qﬁa.. AL .-Am('\ )

, . ) A .
which is conserved, since the tensor'B \'}’AA 'g}ls conser
1. . o n“

ap. A
ved ag it does not carry "canonical dimensions', This ensures that
the tensor defined in (5.46) is irreducible under O(4,2) transforma-
tions (according to eq, (5.15a)+(5,16c)). We still observe that the ten

sor ',)A’\‘/AAI. A —1(»«1) is a genuine 6=-tensor, in the sense that it
satisfies both supplementary conditions, so that its components can
be evaluated with the method exploited above,

The conformally covariant Maxwell equation [(109)] is a

simple example of the method scketched above, It reads as
5.a1) S A= J ()

\ D .
(note that D(;: ey U4+4(lu?_l\ )‘5:'2*13 defined on the cone only for 15,=1).

Using eq. (5,12) we get in space-time

0
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LLA, 0+ (QFN-B“WZ)E;A&(X) =
= D‘t/z\v(")’aw)ﬂ/x‘,,(x) = Ju (0

(5. 48)

where we used (5,43) to derive A5(x):——‘11f aﬂAf\ (x).

This is the Maxwell equation in a general gauge, In particular
the Lorentz condition a\) A, (x)=0 cannot be imposed as an opera-
tor equation, as it is not conformal invariant., Finally eq. (5.47) de-

fines J5(x) as in
s - \y
(5.49) Jg(®= ; D*Q/\v(")

so Jc(x) is a genuine six-vector in accordance to the wave equation,

6. - CONFORMAL INVARIANT VACUUM EXPECTATION VALUES, -
It is important to investigate the consequences of conformal
symmetry on vacuum expectation values (V,E,V,) of operator pro-
ducts (n-point functions),
It is in this connection that the use of the manifestly cova
riant formalism appears as extremely powerful, It will be convenient

however to also exploit the corresponding space-time formulation,

6.1.- Two-point functions, -

Let us start with the simplest case of the two-point function.
Consider the V,E,V, of two (conformal) scalar fields of dimension

1A , 1B respectively

6.1) <o Al IBCIoy = T ()

(Eq. (6.1) obviously follows from invariance under O(4, 2) transforma
tions). With the previously derived parametrization of the six-dimen

sional cone 'YLZ=O (where '{lA = (‘X/‘ ,k ) the homogeneity conditions
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Ao Fn')= = 4y By

(6.2)
WA, B = = Ly F O

are consistent only if 1A=1B (remember that ’V\ﬁl‘ = ——%?kk'(x-x’)z).

We thus obtain the unique solution

9

F\”i r\ - CAP (.'Yl ) a‘zﬂ”&g

(6.3) )
= © Lot Ao

or on space-time

£ ,
B Cm0)®) =y, { ij; J ke
Lot il

(6.4)

= O

The generalization of the selection rule (6.3) to the two-point func-
tion of two irreducible tensor fields is given by the following: "V.E.V,

selection rule': The V.E. V.

.5 <ol (@ ()io>= I (7,7')

- Arn D*l- "m AtwAm ﬁw-am

is non-vanishing if and only if 1,=1_, and n=m, where -1, -1_ are
A B A; "B
the degrees of homogeneity of the two tensor fields. Proof:

The scalar function

\ A i 31} L9V rm“b

L0 M VAR

is homogeneous of degree—lA+m, '1B+n" in k and k' respectively, so

(6.6) is consistent only for [(65\)]

(6. 6) ﬁ(’vﬂl)

(6.7) JQA 3> -
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The scalar (6.6) is the contribution to the V,E,V. (6.5) of the cova-

riant
n e
©.8) Mp Y01 Tom ()

which, by itself, satisfies the trace and transversality condition (5. 15¢)

with fixed homogeneity degree for 1,,1, related by (6.7). The whole

B
set of allowed covariants is obtained from (6.8) by performing one

of the following operations

1) Permutations:of N and “qf '
2) substitution of an arbitray number of couples ('\, 'v\") with gAB
3) substitution of an equal number of (fIL,'VL) and ('Q",'VL') couples

with a corresponding number of symbols gap

This concludes the proof: in fact, we can transform into

space-time, using eq. (5.12):
AL[—»A’M « B\*'Rw
~IXN

‘ﬂ .
(6. 9)<0|O’(")0"")‘0> kK e(aw) (e, ) <ol Y (m)d()iod

ofy. .ofr, @l‘ P"‘\ LR P"“f’“‘ A\-»AN\ B!“B'ﬁ\

On the other hand the transformation (6.9) on the coordinates gives

in general (see Chapter 5)
[N AI"'A“‘\

-\x - e e =
) Ty R

so that the covariants defined above, satisfying the supplementary,
traceless and symmetry conditions) do not contribute to (6.9) unless
n=m; in fact, consider as example the leading light-cone contribu-

tion to the V. E.V. (6.5), which comes out from the covariant

"l’A\" NL‘AM,QQ\‘ vl“mx F\.(N\.n‘)
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Using homogeneity arguments O(4, 2) covariance implies 1A lp=n-m
(and then F'( 'fU'Yl )y~ 'vl.'q) lp- ™y which turns out to be consistent
with eq. (6.7) only for m=n and then 1A=1]B'

It is interesting to derive the above theorem directly‘in spa
ce-time, In fact the V.E.V, (6.9) is nothing but the contribution of

the identity operator to the operator product expansion

)

O 00O (0= P o T+ ...
(6.10) 7 ol ‘..‘{;,m Oti--cton By o

where the dots standfor local operators: which do not contribute to the
V.E.V. Commuting both sides with the generator of special confor-

mal transformation K)\ we obtain the equation

(6 11)(2XX "’;“x QQ X)\w-:‘?l)( Z ) F::;“C:,:\ F‘NF‘;::’ @

where

la Gyt anres
. &
! 2
(6.12) (X) = C:, ™~ \,,\;m p /bm “"j + less singular terms in x
o\ Qm? {lmf.\ :

(the strengih of the singularity being fixed by dilatation covariance).

2 eq.(6.11) gives a set of homogeneous relations

Order by order in x
between differently singular terms in (6,12) which turn out to be
consistent only if 1A-1B=0 and n-m=0, However, in the light-cone li-

2

mit x%w, 0, retaining only the most singular term in (6.12), eq.

(6.11) gives the less stringent condition

6.13) L= 4Lp = m-rm

This is due to the fact that conformal invariance on the light-cone

is less restrictive than full conformal invariance, The light-cone
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limit can also be obtained in the six-dimensional formalism. Let us

consider, as an example, the simple case

A -2,
6.14) <0l \m)C()1O> =G, AN + s L1

In the limit 'tl._vl' =»0 both terms on the right-hand-side satisfy the
transversality condition, the first one identically, the second one

to an order O(ﬁ\v‘q') with respect to (6,14)., On space-time we have

{
.19 <ol Qu0 C) 19> = < Ger, [@-_—;‘,L‘]
Q(-x‘)z—-ba
Note that this terms verifies (6.13) i.e. lA-lB=1.

However full conformal invariance would implicies c,=0

2
and the vanishing of (6.15).

For completeness we write down the full conformal invariant

two-point function for n=1,2: ""Current correlation function"
£+
‘ 3

(6.16) <0lJ/A(x)J;(0) lob>= ¢ éx"‘) JCX/,K\;"

hid

X8

}
&
"Gravitational" correlation fumction

<o}@(x)@ Layler = c( ) [‘} KukyKp e = xz(xj«xarffvg

(6.17)

+J(VX¢—8 %o dve X9 r)+ X (3 3%' 3"{9 P Q/w?’fr')j

Note that the Ward-identities are automatically satisfied for 1J=3,
19=4.

6.2.- Three point functions. -
We now consider the general case of n-point functions (sca

lar fields for semplicity)
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(6.18) 20| A ). An(ny o> = P (.. M)

n{n-1)
2

where F_ depends on the scalar products 4‘1“”“'&'”“?‘;”"’ ")m

Moreover Fn verifies the n-constraints

.l A v R ) L ; :1 o @
(6. 19) 9 . FO (’)" ”?l'l..) - qmwlq‘f‘n) - m“é[}: x,‘“ (’) “{Th‘” - 'q"ﬁ‘l "lm)
At v

n(n-1) _n___n(n—3)
2 2
As a consequence, the three point function is completely determi-

(%)

so that it only depends on independent variables.

ned and it turns out to be

"é-ii (é; b »J@-z."“ ‘8:4‘;2, )
B (e, 1150120 = Ciag (11, ’

=b («? Lol N -
) W\Hat Lay-0) ,)@Zm‘,}“)

or, on space-time, | "%(ﬂg‘t&{é%)

w————a“

ZO‘ANX!)F\'@(’(?)A%(K%\@> = C""l‘:‘-’* [ (xt“”’("l)z‘

| “zwAf ‘éﬁ,{'&z} [ i A (”?Afi?'\f‘g‘h)
[ (x?xs)”‘J R ACEES 5".’

(6.20)

% <'€4m+ IZ""&_ “é“’ 1)

(6.21)

(%) - Applications of the conformal invariant solution of the vertex
function have been given by: A, M, Poliakof [{138)] in the frame
work of the physics of phase transitions to obtain boostrap equa
tions. for the critical indices; and by A. A, Migdal [{128)] in
the context of field theory.
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Let us now consider the two interesting cases of the vector-scalar-
(x)

-scalar and tensor-scalar-scalar vertex ', Using the same techniques

scketched above one obtains

"Electromagnetic vertex'

L (4 'f“-e -y +i
- " { /1( gria™te )
<0| Jﬁ(x)/\(y)b(o))@ = Gag &\(“"‘““_8)%] .

.22 s (444w ' b (0t 4y-0pm) i
3 ety

"gravitational vertex"

. L (fo+daCot®)
20\ B, (NAYEID= Cemf ‘

T .
J by (*@A*"e&"d’ﬁ T

o

(6.23) [.L]",_CQ@*@&“-QM‘%)’ [ K

x'l

2@

4 , [ 22, W=
: [x“( ), 04)* (1) - X (xey) ((x-j}&+ v (e, )4 Xd ("‘3@ ]

the Ward identities associated to the vertices (6.22), (6.23) give

the following selection rule
(6.24)<0l ] (aAly)Bla)10Y= 0 = ¢olQ, (N ALy)Be2) loy
/I\ L4

unless 1A = 1B'

(x) - Consequences of exact conformal symmetry on the vector and
axial-vector vertex functions have been investigated by E. J.

Schreier [{145)].



68.

Eq. (6.24) is a particular case of the general selection rule valid
(%)
O
c/\lo ® & 0(

for conservéd irreducible 4-tensors (x) (and then 1n= '

n
=2+n)

(8.25) (O‘ Oo‘/ Q((X)A (‘"5]/ B CO) ‘O> =0 unless 'EA:’ZB

7.~ OPERATOR PRODUCTS AND CONFORMAL INVARIANCE ON
THE LIGHT-CONE, -

7.1.-Operator product expansions on the light-cone, -

We want to discuss the behaviour under conformal transfor
mations of the operator expansion of the product of two local opera-
tors A(x), B(x') in the light-cone limit (x—x')z——éo, The possible rele
vance of conformal symmetry on this limit has already been discussed
in the introduction., We again stress that the hypersurface (x—x')2=0
is invariant under the action of the conformal group on space-time,
The operator expansion previously discussed in the introduction can
be regarded, from an algebraic point of view, as a decomposition
of a direct product of two tensors A and B into irreducible tensor
representations [(64), (65}]. The classifications and the properties
[(67):'] of these representations have been discussed in chapter 5. Inparti

cular, the contribution of the identical representation to the operator

() - The selection rule (6.25) in the particular case n=1, has been

derived independently by A, A. Migdal,
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product has been examined in chapter 6,
The light-cone limit, (x—x')2;—> 0, of the product A(x)B(x')

corresponds to the (conformally) covariant limit

Al B (') for aromls o (alwq‘:-., v b (x-x )1)

We assume. A(x), B(x') to be conformal scalars, i.e. of definite di-

mensions 1A’ 1B and satisfying

[A"(O)l k\]:: E B (m)’ Kk:] ® O

The most general decomposition into irreducible tensor operators is

of the form
M) Ag ; ”ﬂ

(7.1) A(‘"’L)B(n’ Z E ("’\"‘g}) (.1 ’\%‘ A1)

¢ 5,
b =3 (Lat4s = Lot )
.2) Em(n9)= Cn(men)
with C,, constant and -1, being the homogenelty degree of ’\JJA (%v).
The general structure of D(n)A '77‘,,

M @
~en )AM Ao -35 ﬂ\ Arnoriy f\m g i W tn ™)

1A
(7.3)D (w\rr\)-' NL l' ) (‘Q.”\)Cmm

(n, m) - . .
where Cnm are constants and D (ML,’W‘ ) is a differential opera-
tor defined on the cones N’\ 2’=’\\'=O, finite for "&l 'v’a =0, These con-
(n, m), (.M ") be ho-

mogeneous in k/k'. (in the parametrization introduced in chapter 5),

ditions are equivalent to the requirement that D

Covariance of the expansion under the group of dilatations ’*ZA*@A’?A
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on the six-dimensional cones 2=‘¥1'2=O implies (7.2) and fixes the

(n, m)

1 .
homogeneity degree of D (Wg‘,"%') to be h=——~(1A -1 +1n+n). It is

shown in the next section that D(n’m)('”t, %') is uniquely determined,

and for «V\ '=0 it reduces to Z:(GG):?

M) \ , fw
(7.4) :DL (M= @947 (2 ;;z }

where by (’UE'} ')h we mean the application of i\lg '"h times, when h

+

is integer, and its analytical continuation for non-integer h (as speci
fied later), By simple algebraic steps one can recognize that the
nt+l tensor covariants in eq. (7.3) are all proportional and therefore

one can consistently take
SRLT ~4 (£a= &g +4utn)

.5 D (A MY = "Qm ”\% (-2 )

+
to define the application of ("ll.'}') 1/2(15-1 B, n) \{,
Aq..

we write
\ K \@ "y 4‘ P
Iy - e w i e Y i el P
(7.6) M 0 k\( ‘éml* (] 0 ) at  (X-x')z0

One has the following property, vahd for @ integer

o
M) = P (£ p) 2, ‘;(:?,AZLL =) Txe o \x-x'} Y. 0)
N} (K‘) T (L) T2 FLwt])

o Tl gy o (32 )

(7.7)

[ e

(4 M)

where F isthe confluent hypergeometric function /{31)] and
f ! 1 7J ds f Y-S el ol \Y] ¢
[(x-x") D ] stands for (x-x')""...(x-x') J:‘,‘%m 9‘3{,].

Eq. (7.7) defines ('q-@'-)é{5 also for ﬁnon—integer. Making use



71.

of egs. (7.5) and (7.7), eq (7.1) can be rewritten as 4
g1 Qﬁﬁ@’“fﬂw@«n} as, A Am
AlOBIR) = ‘ﬁ:" J("'X‘j] X X
(x-%*)2s0

(7.8) | A~
F (% (fafatLutm); £ 0¥ N, -, (01
where
o (x") (k\‘em ( l) A 4R X®
(7-9) l\g;.‘.;mg ) ’\K.,,.:\’m ) A :(xf‘e =) "57)

We note that in the limit (x—x')z..,o one can consistently put

e
(7.10)
%l"" “I&Ru(:?}

where the crosses xxx,., stand for indices 5 or 6. In fact such
components of "T*’correspond to less dominant contributions, of or- |
der -/'(x-x')zjn"‘] with respect to the leading singularity of the parti
cular tensor representation E67

Making use of the funda.mental integral representation [4:7

Mee) Calmt ez
.1 Fa® er2ls du u (}““) I
‘”‘(@,‘)PCQW«%§§ <

of the identity

-t Mo T R
(7.12) @ o Vé} £, =

and of the definition
; V' ) (x)
(7.13) «Pﬁ; A (x') (_*’e' O A.w&m

one has’
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5@{«*

D 2.
0~ é:; tambal Pxb
A - - & - A » Aiw :
A (?\} i.%'* {E@} - é’:%:‘” [;:X:W‘X\ )%\‘} af’ﬂ ""V . { - ;& M pﬁ ’
.(7. 14) N : * o . ﬁ ] ’{ékﬁ i \;W } { 3
% ‘ E(g{(?ﬁ*?%"& A1RY »{%ﬂ}f me ) (X.wa‘) ( Gkl “‘} O}ﬁ (x ‘)

Taking x'=0 and inserting eq. (7.11) one finds

“Xﬁt‘w %Am Fm C,«? » ;» (3 e 1) @ﬁ\“ &i‘:{} -

" B o %
L e () N AT R O |
(7.15) AP SN T dk}i LU =30 L ( (1 &)

(a)(c-n)"0 Ay Aen
s Gt
= &A x"“"“ m}««w%f«m g}m W (; \A} gN Lux)
- N2 o Ao Ao

From the property (6.10) we are able to write

(7. 1s)xA xﬁ‘ *'\% (wa)= (xmuw { % am} w Qamz (.?“%) xux%{f} {ux)

Hoo Arn O J of s ol ot

and we finally obtain the light-cone expansion formula \‘:641- 63:{

@‘;& ALY i&f? %”q“
giots Zee (2gh T

xam..>9 “'&r@ xww L3
(7.16)

‘E" ""wv@ Ll } @‘*m ) O (o)

A - - ol

where C;?B are unknown constants,
It is interesting to observe that the result (7.16) could be

obtained by application of the Jacobi identities of conformal algebra

th i . o e,
on the expansion % } ) (Eiﬂ{‘“ &5@%& '"“*Qm}{% .
e g ] 3 o~ f}‘% %% "wm @
(7.17) AxRto) = £ ‘U} 2. C C.. (e
& Ay “ o ¢ e
APART W L ey

xa‘lw%@ 0 e
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where the families of hermitean operators

LN . —
(.18 O (&) = [ {@ {0 ; ’E (i) |
Wiw « Yoo OO fmm %«wz» e

together contribute a complete set for expansion on the light-cone,
Each family (i, e,, fixed n) transforms irreducibly under the cbn'fog‘_

mal algebra in space-time EﬁS)f O(nn) ol (0) is the lowest dimen
. - wlo . o n —
sion operator, in the representation, for which K X=0' Note than P,

and K)‘ are dimension-rising and-lowering operators respective‘ly&
within each irreducible representation. Commuting both sides of
eq. (7.17) with the generators of special conformal transformation
K)\ one gets:

°_?_. ) ' (Lat Lot - {n)
AT Z (] ~

oA
e 4 “&»t‘ﬂa—xem 0(”% kX ‘7<‘ e oly O(ME"

2 &5 L gom- LTl AR (S

(7- 18') a ﬁm (;‘ A

?3- /L(QA% ﬁi;}“ﬁ"mmgmﬁgi A2 ol A '
0(0) ‘) Zcm XK [O (o) &(,\} Cr)

s, \— o o
vkvm hzo

where:
4 % L}
MMNN
N 0) - = (o= prpett e S O (2)
‘ [Ob(f:c(':nw)) ) (M W)CQ;‘QM‘ A ‘2@2(! %&?{MA ij@'c{%g’('w-ﬂ.ﬂfm“ﬁ

M- m Aa=f

(7. 19)-(%%)(%% SQ ) - 9 () (o)

i on\ De“ oo ‘(MH Hova-t “(w*tdfws Ot';-&ﬁm?‘w\“%-%}
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Le T e
gfsz—m)m S(q O'\s (o) - 3 Om ‘(o\

(7.
%06& 0(\% LY 79 § O(MH “whrw w )‘°<6 0(1,.«},\9(”“ o(,ﬁﬂ e
From the structure of the commutator given by eq. (7.18) it is mani
fest. - that the leading terms on the light-cone, which are proportio-

nal to x)\, arise from those terms in the commutator (7.19) which

are proportional to g ol . Their symmetrization with respect to

the io(ﬁ indices gives

O 21 %% CO)

| S a
(7.20) = 2 (%‘*’V\) ( ,Qm“@-rmwi} é'oc’()\ o - .uz\(, olan

{7

Inserting eq, (7.20) in the commutator (7.18) we obtain

€y

' % i g (m i"ﬁ Y
- [AtoB o) K= 2 L )/L (Lt Ot )5 A

Yz WA

- ody % e
- (.‘Qpit’"'ﬂ“' eA*e%w::‘ &eﬂ“) XA)( OW\-—dmi:}ﬂ) -

(7.21)
°" M A= |

l ?Wa* dide g“ v ot
bt 2_ Cmm L('ﬂﬁﬂ)x)\a:i QO (o)

ms.o h( ) M} ) - o

where b(n, m)=(m-n) (ln+m)
Eq. (7.21), by comparing~ equal power in x, gives rise to

the recurrence relation

AR o ‘ . ﬁ‘;i&
b’z( QA’ Oyt Lo Y % = Copove € (Ltontic)

(7.22) (M\m»\eu-;

giving the solution

)
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AR ) (.i_!‘ Untstlotm) 4ic) T(lnim)  po
(7.23) Cm\wr-x, = ' ’ , Lmm

{4 (8ot )T Lt

Eq. (7.23) brings about, by Taylor expansion, the confluent hypergeo

metric function

ey) AR
(7.24) r( (,“eﬂeft};%‘ &mbs Azw;*m; xcg)zz C’ﬂg"‘ﬂ“‘f‘% C "é}
by ke Compr

7.2.~Properties of the light-cone expansion. -

The light-cone expansion (7.16) is covariant under the
whole conformal algebra of space-time, It is manifestly covariant
under homogeneous Lorentz transformations and dilations., Covariance
under special conformal transformations has been checked above,

It is particularly interesting to exploit how the property of transla
tion covariance is verified,

Assume A(x), B(x), O(n)
Ohq---olp

miticity of the basis tensors guarantees the correct causality sup-

(x) to be hermitean (the her

port for the commutator of [A(x), B(Oﬂ). Then, translating eq. (7.16)

by -x, changing x-into -x and taking the hermetian conjugate we obtain

&0 ) hearutm-On] po o

olnn,

BOAL) = Z (2 Cnlet) K2

- F L0l tiem); Ly -29)

L L
However, using the Kummer transformation LSS)J

.26 R (aie2) = \F: (e-ay cj~2) £

(7.25)

o

we have
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‘F({(&"%’fem-fm);@Mm'}-x. )O - o(ﬂ\(x) —_
(7.27)
= Fl Ut Lon); Lamxd) O ()

Thus one recovers the expansion (7,16) with th? 1{1)1:erchange A& B,
i

provided C§B=(-1)HCEA (hermiticity property). We note that for

A=B it follows that Cf}A=0 for n odd, which is nothing but the well

known property that 4pﬂ&(x),A(0)]lp) ig an even function in x,

‘/(’Le,o‘ ﬂ-—em)
A(X)A(OJ - Z Con (:._. ) )(of‘.,. xO(q:

xt=y o Mzivan
b (1=Loitn) ( X ¢
+ ) LG,
(x)

where Iy(z) is a modified Bessel function .

In this case eq. (7.16) simplifies to

(7.28)

As a final point we remark that, when 1/2 (1A~1B+n+1n)= -h
(h non-negative integer) the contribution of the corresponding repre

sentation to the expansion is [{7)]

| b (e {hyrm—/em) (..@m%*rﬂ«i}
(7.29) (’,’) ~, ,(ML,;V (x.’,})O (o)

KoK oom oy

(ln+n-1)
X

h (

only a finite number of terms in the representation contributes to

where L «Q) is a Laguerre polynomial of order h, so that

the expansion,

(x) - |F, (a:2aiz) = I"’(a+2 (zl/zaez/2 a-1/2¢ )[(4)/
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7.3.- Causality on the light-cone, -

A remarkable property of the conformal covariant expansion
given by eq. (7.16) is its deep connection to the causality requirement,
This requirement amounts to the vanishing of the commutator
E—\(X)B(O), G(yz_7 (for only local operator G(y)) for y2< 0 and (X—y)2< 0;

2

in particular, for x°= 0 the commutator vanishes for y2< 2xy.

Writing the conformal covariant expansion in the integral

form
» L’ (@pﬁ*ﬂ@'ﬁ‘ M~~€m )
A B = Z C (‘;a) X% XM
Xty
(7.30) ° ,Q;q Pt fyta)er ‘/L(ﬂs"(’&*'ém%}-% "
Ja!u U (1-u) Q{ (;f:{&)

each irreducible component satisfies the causality property provided
(7.31) \.O (“"‘) C(;{}] (}AK-« = ynduxy Lo

But y2< 2uxy holds for 0& ug # if both y2( 0 and y2< 2x-.y

and viceversa, These considerations imply that causality does
not impose any constraint on the sum appearing in (7,27) as it is
indepéndently satisfied by each contributing irreducible representa-

tion,
In eq, (7.27) the functions

R i, (Lo €ot Lostm) =L by (La-0at Lavim) -1
(7. 32) ﬁj(q): Ul,i?'(' AT } Q—M)z "

are nothing but the Clebsh-Gordon coefficients for the decomposi-

tion of the product of two irreducible representations into irreduci-
AB

ble components on a continuous basis, whereas the coefficients C +k
n,n

(see eq, (7. 23))refer to a discrete basis, The relation between the

two sets turns out to be
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Q&«@: %Q hien | (M@@mﬂg}) CM

Eo g4} } "ﬂ’f%

(7.33) duw ?N}"’ et -
k- o k-QW\4nm) C:a"y\‘ 3

It is particularly interesting to deduce the analogue of eq. (7.22) on

the continuous basis. In this case, instead of the expansion (7.17)

we have Sy

with the same procedure in the discrete basis commuting with K)\

we have

(- }[A(x Bio), Ky ) = {2000 <@ 0, +2€aX0) AIB(:)
- 3 N el

e o

4 AR
oy e " oft W og\ ) iu.&}
(7.35) F I Ko Koo K o X° 2 9. % x s )S kw? e d

e

=
+ Xf\* K%MS dugmzv\) (2 X,%9 = x° 3.&) O \Qi}:‘
@

(affer- insertion of the r.h.s. of eq. (7. 34)

3’2‘; &P trnm (., }
2

- Kyt D0mdn” 2%’ Z, AD | @»,fM ux)

3 A el tretens

Z?

AW V(; %M‘g\@%%& & Lwl ?ﬁ){a{g“

Qd\?\

(('})" | J&Ka )
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l

(7.35) 4 Qlutm) X, )O(uxl-»ﬁx‘ Z =9 x'“ mx ”‘! hu uf Lu)@ (M}

4}

where we have used the property

-9 x_-x XV(ZWO)&W‘{(SM”QMXA ...,x“"“

(7.36)

Q (Mﬂw- M*"Z%m “f‘. K" 0 (ux

AN

compearing the most dominant terms for x2-.)o in eq. (7.35) we obtain

(QA—%*QM—&M) S‘du, ;ABlu) O (uzd +9, jdu f A‘B“} (x9) 0 (w,x )

(7.37)

= 2(%"\)50!&&&.1—? (V&)O (‘M)"‘"Ljdu u.-f (u)(xg O lwx&

and x9=ud—g— . Integration by parts yields to

Y ( SN L
(‘(’A-eghf’m&m) Jdu. £ u) O,(, wﬂ -9 jdu — (uf(u))o

(7.38) O (HK) 9 u *’“)So'u.£ (u) “O(M) gjdu @-{u?.f(“?j Owa}

°(l ot 01?&-"{%

and compearing the integrands of both sides we finally obtain the dif

ferential equation

(7.39) u(_l-u)dé'gﬁi\x '}_ (L6240 )11 (a-ém—m)] £
R,

which is exactly the analogous of eq. (7.22) on the continuous basis.
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Its general solution is given exactly by eq. (7 32) apart from a mol—

tiplicative constant, We also remark that 1the causahty condltlon turns

out to be a support property of the Clebsh-Gordon coefficients fﬁ (u)[(64)]<,
Eq. (7.83) gives in fact the coefficients C"ﬁfl as momenta,

integrated over a compact support, of the functions fr‘?B(vu). In the

continuous basis it also turns out to be ‘straightféinwahd to obtain

the most singular contribution on the light-cone to the product of -

two arbitrary tensor operators, irreducible under the conformal

algebra, One obtains, exactly as before |

W

Arid

A B
J o] =
(1.40) W=y Pre-Pmg neo

\l ){ 94%&3 49 o Mactdng )

CB-

ﬁ r [. '-;’v' - - ‘ 0
X " G mimgmy ol 03)U (o]
“,"x xp‘ ;M X ' (ﬂ 4 3 A; m ) o o

7,4,- Connection with three-point functions, -

Finally we want to point out the relation between the confor
mally covariant light-cone expansion previously derived éhd the re-
sults on three-point functions described in chapter 6 [{128), (65)].

Using the conformally invariant solution for the three-point
function as given by eq. (7.21) we obtain, in the light-coneflimit_

xz-‘-» 0

> -
ol CipACaBialdz ¢
(7.41) X% =0

( )'/) WA“"@EB @q:,)

f(;@af’@,. €, "i'((_)%ﬂ"‘”e?-“”e@)
) froxg)
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On the other hand we can express the product A(x)B(0), for xz'...z,p 0,
using equation (7.30), and obtain for the left-hand side of eq. (7, 41)

¥ %(?A*&a@}* QLQ@ *’“('«W? (4@ S Q;@@ )
.42) LRSS = )

X Ll (-w)" ol Cty)Cluniicy
Q

where we have used the selection-rules on two-point-functions de-

rived in chapter 6 and (eq, (6. 4))

R AR g e

et TR

(Q:I - MM)‘}”\ B (t‘.ﬁ“ Do Ko zf)

Inserting eq. (6.43) in eq. (6.42), we note that the integral appearing

(6. 43) <0} C:(\j) C (ux Yoy

in (6, 42) is just the Riemann-Liouville integral representation of

the quantity ”[(WS ), (128)/

) -
(6. 44) (:i f ‘/1(‘@&“&3“{?&} ' * *‘“‘;ﬁ;«m(.@f.'“gw(?a)
| 3'@. |

WRHBIR

NERESS
We also remark that one can calculate the contribution of a given

tensor representation of the conformal algebra, contained in the pro-

duct A(x)B(0), to the off-mass-shell vertex function. One has:

(6. 45) \/:.Wéﬁ xopl = = ol ADORGYDY

ons (e M (gt tam)i R e )

In eq. (6.45) jp pis a scalar state (or spin averaged) and the sub-

script n applies to the given representation,
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8. - CONSEQUENCES .OF EXACT CONFORMAL SYMMETRY ON OPE-
RATOR PRODUCT EXPANSIONS. -

8,1.- Operator expansions on spac e-time, -

In this chapter we study the consequences ‘of the application
of strict conformal symmetry on operator products [{66)]. Note that
this requirement is more stringent than conformal invariance on
the light-cone, In fact, as one can easily verify, the application of
the;generators of the special conformal transformations, K, , gives
rise to a set of equations which relate leading terms to the non-lea-
ding ones on the light-cone,

| This implies, in particular, that exact conformal symmetry
gives the complete structure of the contribution of each irreducible
representation to the operator product expansion, at each order of
xz, adding, in a well-definite way, a whole (infinite) set of less do-
minant lowers of x2 to the dominant singularity on the light-cone,

Moreover we would like to stress that full conformal inva-
riance on operator expansions, even if it is a very stringent assump
tion, ecould be useful in the investigation of the properties of the
so called skeleton theories. Motivated by the previous discussion
we now consider the manifestly covariant expansion (7.1) of the pre
vious section, but not limiting to w%w'«»0. We immediately see
that the expansion has the general structure given by eq. (7.3) of
the previous section, provided we modify the definition of the "or-
bital'' operator which appears on Eq. (7.4). In fact we observe that

the operator
. ' N 11 \\9‘ ' R ...@;...
R AR A (MRS )+ 2ty ) g

is not defined on the cone “1'2=0 for M-my '{0.
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However, as

ot § { ) 0 Q
P om - Lglet
oo D= & Oy alen2) S

}W@ ’&Mlll

we have that the new opera:tdr
e § Y -
(8.3) D(m‘q‘}m UR e~ »‘33”9“;’[:3‘6@"’“”él"f}‘)

is a differential operator, defined on the cone Wa"z=0 for &3.'}‘!"7‘0
and which essentially reduces to ﬂq@' for '739'!1‘=0. It is also evident
that, apart a multiplicative constant, this is the unique operator de
fined onafzé;;'2=0 and of homogeneity degree k/k', Note that it can also

be written in a form which is manifestly defined on the cone M 1220

\ }

- B ¢ BD
(8.4) D("’HW‘W (’ﬁ"‘l\)"""{ 13 !mm:s[‘-&il‘

where we recall that L' -1(’){A B %BO A)

Then we have, 1nsteed of eq. (7 4)
(v ) 4

(7.5) ::D {v} v} = J,) (%h"'é%)

where h is the same as defined in the previous section. We now men

tion two preliminary Lemmas

I) The n+l covariants defined in eq. (7.3) are all proportional:

In fact from the supplementary conditons

W o o @m‘%"mm(”‘“

& W‘?ﬁﬂkw ﬁm Sy

one deduces that
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A "v ' A h-! ’
6.6 oA ) (’m)f (V)= 902 hetn) D ()Y, )
v-Am
In fact we have for, m=1

"Dy o, 1= D‘m‘) A4 2 () A -209) 94
(8.7) *2"\‘\‘(‘*\" )}W. AM ""'lA'(‘ 'em)\.‘/ M )

The proof can be extended to m=2, Moreover, assuming its validity
for arbitrary m, with simple but tedious algebra, it can be proven

for m+1,

II) One has:

J
)@m) Ce«;'a) :6
(8. 8)> )= Q.: J"” (]’ (L-1)7

where
P(Im“'ﬂl)
- (0, - - eyl E ————
Lk anel (L) * () (el (b (u-1)
Proof:

For h=1,2 one has
[
Dlym')= Q”‘L)[ ﬂ;ﬂ:'-f?—‘ ..2@111~9‘)_:[ -
(8.9) | |
= QT"&“)[ 'Eﬁ\;g.:;‘;.- o(m2')]
-
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e ([ A 29 ][ 190e_ona]-

(8.10)
4 i \ In) L’Y\“’b ”j(,
= f-0, w,;\\{ LRSI AT ]
Q )i Ve L L Ut} (1 &4"‘)

which again coincides with (8,8) for h=2, We have used the relations

Q—“L) (l“{)“’:) z”” ”@m 5\)‘,M (‘Emvé«wm%’g@q)
ean (V)()= ') (19
O, ()0 = 2002) D + (1) 0

From the Newton bynomial formula for the n-th power ‘it is possible,
by a rather lenghtly but trivial calculation, to show that eq. (8.8)

is also wvalid for the power n+l1,.

In terms of the variables (x}&, k), and using the property
given by eq. (7.7), it turns out that

1, ww%} 2o v (b)) Tl '
D (enl= Ui@ ) T Z Crleh) [t o)

P} X1 1 7@@ J(xux')‘?)jf
B 2] R (34 e

Eq. (8.12) certainly holds for h integer, but it can be analitically

(8.12)

continued to non integer h,
Using the known integral representation for the 1F1 function,
eq. (8.12) can be rewritten in the more compact form

\' et Qme&
")}q K f««“‘ ) & - ]

W) @' (,gm;.. (:’f-gi’ ) m'uc»m)

0%

]
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Eq. (8.13) is meant as a formal differential expression with all deri
vatives located at the right and acting to the right, Using eq. (8.13)

the general conformal covariant expansion turns out to be

Al Bid) = % [U‘ ;a)\«} % [ arbot-m-d) N&j

(8.14) e,'!(gﬂ...&@g o)1 b (05 Oat M)«-i M(M) [“ °(f‘ Uﬁ& () j i

(& -u) e §
XA‘..ﬁm b k)
where ) Uex ang P =t W.{/ (™) Ar--Am

Ane - o

From the results of section 5 (see eq. (5.44)) the covariant product

appearing in (5, 14) becomes

" 2@ 0 R} Ll Jd
Av- & T* f@m "’“‘*3\}
(8. 15)

N F{""? ' ’ Sl ex)
()f)(!),.(?(-)“) J ,,,Q}f O ﬁf&w”‘f’ﬂ%wf

Finally, taking x'=0, from eq. (8.10) one obtains i
2 1y g Ut meta) anf, 4G
A(xtﬁfoygﬁ- Z (*h) }l D C h&% &
we o WX ~“ 3
(8.186) 3,& (QA'(Q*QM

{-u) > ,\/u”)(“”‘[ (q, «m-«.ulm( DMWKQ-»(&)Q}(W

AQ»NAM
where i 8 2 oy
Xaz ftnse d Tier3] 4 G- G

and the tensor OA A (x) has components given by eq. (5. 44).
1By ,
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8.2.- Properties of the strictly conformal covariant
operator expansion,

The expansion (8,14) is covariant uﬂder thé f/ull‘cc;nforrnal'
algebra of space-time, as it is evident from its derivation., The x;esul
ting expansion, given by eq. (8.14) is partic’ula'rly interesting since
it reduces automatically to the light-cone expansion (7.18) for x2=0,
where the F function takes the wvalue. Fl_ (1n—1;0)=1, and one can

A . ol '

1 n ‘ok ! n '
write x . ‘\{JA . = (x-x") el (x-x") O ,1“. n-(X }a
Non leading terms in x2

in power series of x2.

can sunply; be obtained by expending F;

We now come to on interesting selection rule, which one
obtains by noting that eq. (8,14) is in general unacceptable for lné2+n,
i,e. for "canonical dimensions' of the non-scalar representations.

This is a consequence of the results given in chapter 6.

In fact, we recall that, for 1 =2+n, the components ‘V ol ii;’\ (x=5 or 6)
of the covariant tensors appearing in eq. {8.14) are not gete?mined
from the supplementary conditions. So they remain as non-physical
components and they must not be present in the expansion, However,

(x)

it can be shown, using arguments of translation invariance’ ', that

these componentscancel out in the particular case 1A=11B_.., In this case

the expansion turns out to be, for 1n==2+n

(x) - The expansions for A(x)B(0) and B(x)A(0) can be correlated by
a sequence of translation of -x, reflection x -x and hermitean
conjugation., Then 1A€) 1B‘ However non leading terms propor-
tional to divergences have under such sequevnce of operators
behaviour opposite to that of the terns proportional to x+9. They

must therefore contain a factor (lA 1B)
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Aaxd
A(Xli’\(a‘p- Z(é) ij du&&&(tm)j {e ,

-yl oy ‘(’b\: a0 ’ "
OF;‘(;M*‘; %D“("M))x" ¥ Ocrfcwg%h

We observe that, in this exceptional case, the terms containing diver

;.n) , (0) add up as 1ndependent contributions
al e n (‘56)

inthe operator product expansion. These terms correspond in fact

(8.17)

gences of the tensor O

to irreducible representations in eq. (8.14), originatéd by the tensor
8 %m(%,:.,.(“,hmh has dimension 1 =4+n), according to the discussion
of chapter 6. Their contribution to the expansion (8,14) is obtained
by inserting in eq. (8.15) the lower order tensor components, as
evaluated in eq. (5.45) for 1=4, We observe that these terms are not
obviously present for representations starting with conserved tensors

(as it happens in the non-interacting th-=ory).

8.3.-Connection with the three-point function, -
We remark that the V,E, V, selection rule (6.5) and the se-
lection rule on three-point functions (6.25) tell us that there is a
strict connection between the three -point function and the contri-
bution of a given tensor representation to the operator product expan
(66) (n) ')

sion (8.14). In fact, multiplying both sides of eq, (8.14) for Oo(
I"*®™n

and taking the vacuum expectation value, we have on the left-hand-

-side

©.18) <ol O:‘"s’i')'A(*)g(") jo>

and on the right-hand-side, as a consequence of the V,E, V, selection
rule, an integral involving the two-point function ¢ ()} @'“(xwg) Qm(x.) oy
b(\- 4’“ r)lv'PM
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We note in particular that the selection-rule given above for an opera
tor expansion corresponding to canonical dimensions is a consequence
of the previous discussion. For example, for conserved four-tensors
the three-point function (8,18) vanishes unless lA“lB

Finally we show, as in sect. 7, howiithe covariant expansion
given by eq. (8.14) can be derived from the three-point function. As

a consequence of the V,E,V, selection rule we limit ourselves to the

scalar contribution to the expansion (8,14) and we write at x'=0

{’ +{4) g% Lyl )t
480 = () 20 [ u

| Q‘US,,,L%.mm«ewmwi F (2 J wliu) ) 0 (o

o4

(8.18')

On the other hand (see for instance eq. (7.21))

. ‘L{:‘ t&\ .;;} (’@”‘wﬁy&} ) '/L('i‘}"gf%
4n YRV IO 2 | —
womanar=e, i SR
we use the identity ES)]

(€, +0gCa) b ( &*@“&) ["(4:)

| -
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(e tete)-t L (etlela)t 8 “u
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we next note that

<ol fiahax)c(«g}m < L) ["“‘f»’:}

N N [ _} Lett
Mle) (Qe~t) (g-xJ°

2,

so that /)v
A T ) rrc <0l Ct4)DC@lo>
(8.22) [(3-“K)J - L2 P(_Qé‘ﬁ‘%} {‘“‘Véﬁg‘;“i'{"&#}

The contribution in eq, (5.19) thus comes from the operator product

expansion
U (Rt Ra Q.J by (@t Co-a}er ux-d
gdu w \3”‘“’*) ) € 3; &

D) (,4 )4@ e D) () «-:)fggq w’a(%&*&,{»s

(8.23) P(_{ 144y ) by

(g et Borbalt e d JF e gl ) Cee)

which coincides with (8,18),

As a last step we point out some consequences of exact confor
mal symmetry which could be useful in future developments [(6727. The
arguments of this section clearly establish that the unknown coefficient
CSB ‘which gives the contribution of the nth-order tensor to the pro-
duct of two operators(which we take for semplicity to be scalars) is

directly related to the unknown coefficient CnAB which normalizes

ffﬂﬁif}
8.2 <0lQ, () ANBE Y = ¢y Foex,)

0t e efom,

the vertex function
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and whose functional form is completely determined from conformal
invariance, This result is a consequence of the general selection rule
on two-point functions derived in sect, 5, The selection rule iells us
that the operator product expansion looks like an orthogonal expansion
(with respect to vacuum expectation values). In fact, going for sem-

plicity to the light-cone limit, x2=¥0, we write

f& ggi’?ﬁv ”;Vg ‘f"k“&”ﬂ ;Q} A$ WD{ da{%’ (m; 5
(8.25) 6{% {Q’Q}’ @»(‘}} ~ (zg.b) 6 %*f;& 5‘%%‘gﬁg§0 (m&&,
ﬁ‘:‘%”’“’:}@ v Ny oo,

(the weight functions fﬁ‘B(u) are given by eq. (7. 32)). Multiplying both
(m) (y) and taking the V,.E,V., we get

1 ﬁ b s Latn-€a )
<ol @g,. e WA’(x)m{a)m)»(x } cﬁd} X% ¥

(8.26) X2=> o

sides for Q@

3 &
AR E R I
S -im-? (u) 4@§O {x_“ O (uxdiod
ﬁ‘”ﬂ Aem ol
with the right-hand-side vanishing unless m=n and 1m;=1n (orthogona

lity property).

If we call Cnn the factor normalizing the two-point function
F i1 Y4t )
{m) () ¢ .,
(8.27) <ol OP ;‘1’} @ C )&} 7=C, g [ﬁ'f“‘{fﬁ‘”

ﬁ * M" ﬁivvww‘m

be (4t -es.«méi <

T .4 o "y
- Cx\ﬁ)w ®r Xao X ’*‘Qh»&"i“} . [Yy-ux)
F£-TRT # LN , Q /3‘ ./}M Q{w,,d”‘

&?"'mb o

we obtain
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o AT
8.29)  Cpavn® C,. Con

As we have already pointed out in the introduction additional results
obtain whenever gauge invariance properties apply to the theory. In

(n)

general, if the tensors O (x) are conserved, or partially con

served, one can take advah';a.tg.e 'of the Ward identities assoeiated to
the vertex function in eq. (8.24), and use them ingonjunétion with
the relations (8.28) and (8.29), which follow from conformal invarian
ce alone, A particularly interesting situation arises with local cur
rents associated with symmetry groups, such as the currents ;l:f
associates to the SU(3)xSU(3) generators, or the energy momentum
tensor associated to the space-time syiametry. For instance, for

jd‘ the coefficient, C in (8.24), in front of the vertex function

1 AA°
for A=B, otherwise it vanishes) is proportional to the (unitary) char

ge QA of the field A(x) and to the factor ¢ normalizing the pro

pagator of the A-field. Eq. (8.29) then tells Atﬁ the interesting fact
that the coefficient CA , giving in the operator product expansion
for A(x)A(0) the contrlbutmn from the local operatorj“ (x) (toge-
ther with its associated irreducible representation of the conformal
algebra) is proportional to the charge Q, and to the ratio CAA/Cll’
of the normalization factors for the AA propagator and the current-
-current propagator respectively, and therefore it cannot vanish
unless QA =0. We have limited ourselveles only to the light-cone 1i
mit, by starting from eq. (8.25), but clearly, with some more com
plication, one could as well have started from eq. (8.16), obtaining

the same results,
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