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Summary. — A non group-theoretical approach to the conspiracy problem,
based on analyticity, crossing symmetry and factorization, is presented.
The solutions to all the physically interesting cases are given. A clas-
sification of Regge-pole families is deduced.

1. — Introduction,

During the last few years the properties of the scattering amplitudes near
t =0 have been extensively studied in the framework of the Regge-pole model
following two different ways: the group-theoretical approach and the analytic
approach.

The first one is based on the invariance of the scattering amplitude under
the group O, ; or 0, in the pairwise equal-mass configuration. Infact TOLLER (*'3)
reggeized expansions of amplitudes in terms of the representations of the
group O, ,; the simpler compact group 0, was used later by FREEDMAN and
WANG (%) and by Domoxos (5). The Reggeization of these expansions shows
that a Toller pole, that is a pole in the « four-dimensional angular-momentum
plane », leads to an infinite family of Regge poles, with definite relations between
the trajectories and the residue functions at # = 0. The families of Regge poles

(") M. Torrer: Nuovo Cimento, 37, 631 (1965); University of Rome reports n. 76
(1965) and n. 84 (1966) (unpublished).

(®*) A. ScrarriNo and M. TorLER: Jowrn. Math. Phys., T, 1670 (1967).

(®*) M. ToLLER: Nuovo Cimento, 53 A, 671 (1968); 54 A, 295 (1968).

(*) D. Z. FREEDMAN and J. M. Waxa: Phys. Rev., 160, 1560 (1967).

(®) G. Domokos: Phys. Leit., 24 B, 293 (1967); 19, 137 (1967).
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so generated are characterized, apart from the internal quantum numbers,
by a Toller quantum number M, which, for boson trajectories, can take all the
integer values.

Since this formalism applies rigorously only at the point #=0 and for
equal-mass scattering, more general formalisms have been developed in order
to overcome these limitations (¢7). The most general work in this direction
has been done by CosENza, ScrarrINo and ToLLER (*°) by a generalization
of the Lorentz-group formalism and the introduction of quite strong assump-
tions. This formalism permitted them to construct a large class of families
of conspiring Regge trajectories, which satisfy the factorization constraints
for an arbitrary number of two-body reactions involving particles with arbi-
trary masses and spins. The contribution of one of these families of trajectories
satisfies all the constraints which can be derived from the analytic properties
of the amplitude.

The analytic approach on the other hand is based on the usual assumptions
of the S-matrix theory, which, adapted to the Regge-pole theory, permit us
to understand the properties of the scattering amplitude near ¢= 0 for any
mass configuration. The assumptions made in the analytic approach are the
following: a) analyticity; b) simplicity; ¢) crossing symmetry and; d) factoriza-
tion. Some comment to these properties of the scattering amplitude adapted
to the Regge-pole model can be found in ref. (*°). The above assumptions
require, for every parent trajectory exchanged, the exchange of an infinite
family of Regge poles (daughter trajectories), with well-defined quantum
numbers with respect to the parent pole (*1). The residues and the trajectories
of the members of the family are strictly related near t= 0 through some
analyticity requirements (**). In particular the assumptions a)-d) permitted
these authors to evaluate the contribution of a Regge-pole family to the scat-
tering amplitude at ¢= 0 in the equal-mass configuration and to show in this
particular case the complete equivalence between the group-theoretical and the
analytic approaches (10-121¢).

(®) R. DELBOURGO, A. SaraM and J. STRATHDEE: Phys. Lett., 25 B, 230 (1967);
Phys. Rev., 164, 1981 (1967).

(*) G. Domoxos and G. L. TINDLE: Phys. Rev., 165, 1906 (1968).

(8) G. Cosunza, A. SciaRrINO and M. TOLLER: Phys. Lett., 27 B, 398 (1968).

(®) G. CosENza, A. SCIARRINO and M. TOLLER: University of Rome report n. 158
(1968); CERN preprint TH. 906 (1968).

(1) P. D1 Veccuia and F. DrAGo: P7L-ys. Rev., 178, 2329 (1969).

(1) D. Z. FreepMaN and J. M. WaNG: Phys. Rev., 160, 1560 (1967).

(2 P. D1 Veccuia and F. Draco: Phys. Lett., 27 B, 387 (1968).
() J. B. BroxzaN and C.'E. JoNEs: Phys. Rev. Lett., 24, 564 (1968).

(14) J. B. Browzan: Daughter sequences in unequal mass vector meson-scalar meson
scattering, Massachussets Institute of Technology preprint, November (1968).
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Other relations between the parameters of the various members of the
family, like the « mass formulae», have been then evaluated (1p15-18),
In this paper we consider the series of reactions:

S+N =T +N,
(1.1) NEN = NN
S+ 8T 1T,

where N is a nucleon and J (S)is a spin-J (S) and mass-m; (mg) particle with
Wy 7= Mg == nucleon mass.

Then we evaluate the « minimal » behaviour of the Regge-pole residue func-
tions satisfying the assumptions a)-d). In this way it is possible to define
a quantum number M and to classify the Regge poles in families with well-
defined quantum numbers. This classification is equivalent to the group-
theoretical one; moreover the ¢= 0 behaviour of the factorized Regge-pole
residue functions, satisfying all the kinematical constraints, is the same as
that derived in ref. (®9) by the group-theoretical works.

In Sect. 2 we write down, in terms of the helicity amplitudes, the kinema-
tical constraints at ¢= 0 for the reactions of the type (1.1). The details of
the calculation are given in Appendix A and B.

In Sect. 3 we write down the factorization requirements near {= 0 for
the Regge-pole residue functions free from any kinematical singularity.

The « minimal » solutions of the factorization requirements and the con-
straint equations are given in Sect. 4, where our results are compared with
those obtained by CarErLA, CoNTOGOURIS and TRAN THAUH VAN (*7), and
CosENZA, SCIARRINO and TOLLER (59).

Finally in Sect. 5 we show how the introduction of the quantum number M
permits us to classify the Regge poles in families with well-defined quantum
numbers.

In Appendix C we determine the singularity structure near £=0 of the
residues of the daughter trajectories in the various helicity amplitudes.

A short account of this work has been published elsewhere (1¢).

(**) P. D1 Veccuia and F. DraGo: Nuovo Cimento, 61 A, 421 (1969).
(*¢) J. B. Brownzax, C. E. Jones and P. K. Kvo: Phys. Rev., 175, 2200 (1968).
) A. CapELLA, A. P. CoNTOGOURIS and J. TRAN THANH VAN: Phys. Rev., 175,
1892 (1968).
(*®*)y P. D1 VEcconia, F. Draco and M. L. Pacierro: Nuovo Cimento, 56 A, 1185
(1968).
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2, — Conspiracy relations.

We shall use the customary notation f¢,, to denote a helicity amplitude (**)
for the t-channel reaction a-b—>c¢-+d. Helicity amplitudes free from kinema-
tical singularities in s and ¢ must be used in the derivation of the constraints.
The first step is to define amplitudes free from kinematical singularities in s (*°):

- \—lA—pl ~[A+p]
(2.1) fowsar = (\/2— sin %) (\/ 2 o8 %) fozan 5

where 1= a—b, u=c—d and 0, is the scattering angle in the centre-of-mass
frame of the ¢-channel

The works by Hara (2') and WANG (22) show how one can then remove the
¢ kinematical singularities from the parity-conserving helicity amplitudes (3°)
v free from s kinematical singularities. The Wang result can be written:

(2.2) =Ko F

cdiab cd;ab

td
cd;ab ?

where K%, (1) is a known factor containing the kinematical singularities at == 0.

However the analyticity requirements and the crossing symmetry will
provide additional kinematical zeros at t=0 in certain linear combinations
of the parity-conserving helicity amplitudes. We give now the kinematical
constraints at t==0 for the various cases in our discussion:

1) BU case (i.e. S+N —J-N). The constraints turn out to be
(2.3) s — L= O)
for any ¢ and d satisfying the inequality ¢+ d, and
(2.4) i — T = 00
for any ¢ (). The details of the derivation of these constraints are given in

(%) M. Jacos and G. C. Wick: Ann. of Phys., T, 404 (1959).

29y M. GeLL-Mawn, M. L. GOLDBERGER, F. E. Low, E. MArRX and F. ZACHARIASEN:
Phys. Rev., 183 B, 145 (1964).

(1) Y. Hara: Phys. Rev., 136 B, 507 (1964).

(22) L. L. WaNG: Phys. Rev., 142, 1187 (1966); 153, 1664 (1967).

(*) The factor %, which was present in the constraints (2.4) in ref. (1%), has been
eliminated because of the /2 factor in the definition (2.1) of the helicity amplitudes
free s kinematical singularities. The constraints EU have been derived independently
by J. D. Srack (33).

(2% J. D. Stack: Phys. Rev., 171, 1666 (1968).
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Appendix A. The number of the independent constraints (2.3) is given by
J(28-+1), while the number of these (2.4) is given by (28--u)/2 with

=0, if 0;04=1,
(2.5) %
=1, if o,05=—1,

where o; = 5,(—1)" and %, is the intrinsic parity of the particle J. We sup-
posed above that J> 8.

2) UU case (i.e. S+8S->J+J). The constraints are

(2.6) Fht . ?(—-)t _ C’(tm)

cd;ab cd;ab

N

it [A—ul<|A+4ul, and

(2.7) Tetun— Teaman = O™
it |A—up|> |2+ u|, where m = minimum (4], lu]). The derivation of these
constraints is presented in Appendix B.

3) EE case (i.e. NN - N+N). In fact in the simplified treatment
given here we consider only the nucleon-nucleon scattering in the equal-mass
configuration. In this case the constraint is well known (23):

(2-8) Tt — 215 — i3 = 00).
The derivation can be found in ref. (24).

It only Regge poles contribute to the scattering amplitudes, these relations
can be satisfied in either of two ways:

1) Each of the two amplitudes involved in an equation has an additional
factor of ¢ in the residue: in this case the relation is trivially satisfied (evasion).

2) The amplitudes f involved in the kinematical constraints g0 to a con-
stant when #— 0; this implies a relation between the intercepts «(0) and the
residues $(0) of the various trajectories which contribute to the / (conspiracy).
In the following we will see that the mechanism chosen by the Regge-pole
families to satisfy the constraints will enable us to derive a classification of
the Regge-pole families.

(%) M. L. GOLDBERGER, M. T. GRISARU, 8. W. Mac DoweLr and D. Y. Woxe:
Phys. Rev., 120, 2250 (1960).
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3. — The Regge residue factorization near {=0.

The partial wave expansion for the parity conserving helicity amplitudes,
free from S kinematical singularities is given by (*)

(3.1) for = 3 (2d + Dlegs Foa + ¢ F el
J

cd;ab

where the ef functions are defined in ref. (20)
The contribution of a Regge trajectory oF to the previous amplitudes is
given by

20t(8) 4 1

(32) F{ES T
gin a*(2)

cd;ab T

sl )E}Lf( ) (—cos 6,) +

Zoc i
where the functions E can be found in ref. (20). Here and in the following
we omit the signature fac‘oor which is not essential in our considerations.

Because of the conservation of the angular momentum, parity, G-parity
and isotopic spin in strong interaction physics we can label the single Regge
poles by the quantum numbers v (signature), P (parily), ¢ = Pt (normality)
and &= G(—1)? where T is the isospin of the Regge trajectory and @ its
G-parity. However the analyticity requirves (*'), for every parent Regge pole
exchanged in unequal-mass reactions the exchange of an infinite family of
Regge trajectories with residues conveniently singular near ¢==0 (daughter
trajectories). If we label with » the quantum numbers of the n-th daughter
trajectory, there exists the following relation between them and those of the
parent:

(3.3) 6n=0¢, P,=(=1"P, 1v,=(1)7, g, =£,

where the quantum numbers without subscript refer to the parent trajectory.
Therefore a Regge pole can be labelled by a further quantum number », which
characterizes the behaviour of its residue function near {= 0 in the unequal-
mass scattering. Using the above considerations it is then possible to achieve
the classification of Regge trajectories shown in Table I. The classes 3 and 4
do not couple to the nucleon-antinucleon system because of the conservation
of angular momentum, parity and G-parity. In the following we will determine
the further zeros of the residue funetions which are necessary to satisfy the
factorization requirements and the constraints and we will get a more com-



MINIMAL SOLUTIONS TO THE CONSPIRACY PROBLEM ETC. - II 1253

TasLE I.
|
1 o=+ P= £ w even i
2 o=+ P=_¢& n odd
; 3 o= -+ P=-—¢ n even
| 4 o=+ P= ¢ n odd |
; 5 : 6=— P= & n even 1
| 6 | o= P=—¢ n odd
7 o= — P=—-¢ n even
| 8 0= } P 3 n odd

plete classification of the Regge trajectories in families with a well-defined
new quantum number M.

Now we impose the factorization conditions for the residue functions of
the Regge poles.

The objects which factorize are the residues of the individual poles in F* -
therefore in our case the residue is

(3.4) caian®) = Hoa oy () (P oy P o)™ ™ g () 75,0 (0)

where (P, L,)* ™" is the threshold factor, N = minimum (1205 1#0)s Gosan(®) i8
a factor which takes account of the further smgulamtles present in the
residues of the daughter trajectories near {= 0 and Visa(t) is the reduced
residue free from any kinematical singularity at f==0: it can contain at = 0
only eventual zeros. Hence if reaction 1 is a+b—>c¢+d, reaction 2 is
¢+ d—>c-+d and reaction 3 is a + b-—>a -+ b the factorization theorem can
be stated as (25):

(3:5) [chd awt )Vud (UL, P )a inglcd;ab(t)]z -
- [chd cd(t)y;:cd;ad(Pcd)z(ai_ ? gzcd;cd( )] [—Kaab ab(t)y;:ab;ab(Pab)z(a*_Ns)gsab;ab(t)] *

In Tables IT and IIT we give the behaviour of the factor K% .(¢) and Gozan(?)
for the reactions (1.1), while the behaviour near ¢ = 0 of both sides of eq .(3.5)
is given in Table IVa) for the reaction S48 J +dJ.

If an equal-mass vertex is present in the reaction considered, then the
conservation laws imply the identical vanishing of the residue if the following
conditions are not satisfied:

0éT,(— 1) =1,
(3.6) ‘
S=1, it o= +1,

(**) ¥. ArBa® and J. D. JacksoN: Phys. Rev., 176, 1796 (1968).
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TasLe II a).

Ab_mplitude 2] | lBehaViour near?
| NN T8 ] t=0 K) |
l a) Towi-t 1 | #0 | 3
‘ b) Tora 3 0 +0 l -
T Ee e

d) Jowam 0 0 - |
i‘ e) - Joaa—y 1 » #0 | L
i ) Jow | 0 #0 | 1
i 9) “ Jowa-i 1 | 0 | 1
| ) | P 0 | 0 ] ]

Tasre IIb).

1, érnplitu_de " IA— ul Behaviour near

] NN - NN t=0 K,

i

‘ even 1 3
| fui s
j odd i t ;

Tasre II o).

| Amplitude JS-»JS Behaviour near {= 0 Kyf)
T 1=

N = max ([A+ ufs [2—p|)

where the quantum numbers in eq. (3.6) refer to the Regge pole exchanged
and § is the total spin in the NN system. For the residues involving equal-
mass vertices, which to not vanish, we give the factorization requirements in
Table IVbh) and IVe).
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Tasre III.

Amplitude Singularity of the residue of the »-th danghter
(7’3:1;ab)UU 1/t
(Veasar) " (/e if (—1)=

(1/t)<n—-1)12 if (— 1) = —

(Votsan) ™" (/e if (1=
minimum (|4], |u]) = 0 (1/t)tn—nl2 if (—1)p=—
Voasan) ™" . (1jtym2 if (— 1= |
minimum (|4, |u])# 0 \ (1 jtmtDizy if (—1)r=—1 |

TaBLE IV a).

Factorization conditions in JS—-J8

+ )2 =1

(yl;,u (V/f:u)('y;.k;l)

TaBLE 1V b).

Factorization conditions

in NN o N 12— pl
in NN > NN
W) = Ve ED even
Vi)t = Vi) (v5a) : odd

TaBre IV o).

Factorization conditions in NN —JS

a) (yc-i‘—i;%_%)z tl,ul—(‘ll2>[1+(——1>"1 — (')’&;cd)(?’;—éﬂf—%)
b) ‘w (Veagga) " 01T HRUF D — (7 D V)

e) Vo) 1M = (0 ) (Vi)

) B (e DD Vo) Vi)

e) (Veagp—p) TV s (0 ) (Vi)
f - (g RHTRI=DN ok

9) ! (Vaaga) TP (D a8
h) ‘ (e 20 = (kD)
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4. — Minimal solutions of the conspiracy problem.

In this Section, under the assumption that only moving poles are present
in the complex J-plane, we give the behaviour of the Regge-pole residues near
t=0 allowed by the kinematical constraints and the factorization theorem.

In general, from a given solution to all the factorization requirements,
one can obtain solutions by increasing the number of { powers of some of the
Regge-pole residues in the original solution. If a given solution cannot be
obtained from another in this way, we will call it minimal. It is important to
note that in general the minimality of a solution is strictly related to the set
of reactions in which it is minimal. In fact if we consider two sets of reac-
tions {4} and {B} a minimal solution in the reactions {B} may be not minimal
in the set of reactions {4}.

This means that even if some of the solutions given below are not minimal
where looked at from the point of view of a particular reaction, they are minimal
in the set of reactions (1.1).

As we said in Sect. 3, on the basis of general analyticity properties the
residues y can contain only additional zeros at ¢= 0. Therefore if the fac-
torization requires that y ~ 1% a is constrained to be a positive integer number
greater than or equal to 0.

Taking into account this restriction it is easy to find the minimal solutions
of the factorization requirements listed in Table IVa), b), ¢). For the reac-
tions with unequal masses, of the type S+8S —J-+J or 848 —J-+J', one finds

(4.1) APSE L

for any class of Regge poles listed in Table I M-

We can include into the set of reactions (1.1) also processes of the type of
S+8 > J+4J’ because for them the factorization requirements are identical
$0 those listed in Table IVa). The result (6.1) is coincident with that cbtained
by Le BrerrAc using only UU scattering reactions (*¢).

When an equal-mass vertex is involved, the selection rules due to parity
and G-parity invariance must be taken into account. This implies the identical
vanishing of the residue if the conditions (3.16) are not satisfied.

In the equal-mass reaction N+ N — N+ N, for the residues which do not

(*) The behaviour given above is different from that reported in ref. ('} because
there the singularity structure at t=0 of the residues of the daughter trajectories
was included in y.

(26) M, e BELLAG: Nuovo Cimento, 55 A, 318 (1968).
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vanish we have

™, it (—1)M" =0,
(4.2) Vasan ~
biab t]M—ll, if (~ 1)/1+n .
For the families with ¢== + and 7— — &, whose parent and even daugh-

ter trajectories do not couple to the NN system, we have for the odd daughters

gt if 2 =0,

4.3 o~
( ) yab,ab { t]M—lH'l , 1f |Z! . )

Using the factorization conditions given in Table IVe) it is then easy to
obtain the behaviour of the BU residues (Table V). The minimal solutions
(4.1}, (4.3), (4.4) and Table V of the factorization equations are consistent with
the constraints given in Sect. 2; such solutions are therefore the minimal solu-
tions of the conspiracy problem.

TABLE V.

Behaviour of the EU residues near t= 0 [

S — |

a) V;l;z-%-—% — t(1/2){]1m——M |1+ —1 |~}
b - Nt(1/2){fIHI—MI-“W[+IM-(1/2>[1+(—1)"J|+(1/2)[1+(—1)"1}
) ‘ Veaskt
I - — — SU—
c) Vo pp~ t(1/2>(M+}M-—(1/2> [ (—D =1/ 2)[1—(—1) "1}
Cd; g
; d) : Vb~ UM+ M= 2 1 (D] [+ Q/2) (=D ™1}
: cd;
€) Veoasik 3~ BN =~ | M~ U2 [1— (=D ™[4 (1/2) [1— (—D"]}
ed;g—
- 2] gl =21 |4 M — |}
.1 i !
i f) ycd,z%M ‘
9) 7’2& 33~ DAY 111} |
i 2

i !

h) f Vosmp~ 1" |

M is a number that we introduced at this point in order to label the minimal
solutions. It can assume all the integer values between zero and infinity.
Every family of Regge poles is characterized by a value of M.

An interesting feature of our results is that, for all the values of the masses,
a family with a given M contributesa symptotically only to the forward
s-channel helicity amplitudes with helicity flip equal to - M. This property
gives to M a clear physical meaning and permits to identify M with the Toller
quantum number introduced in the group-theoretical approach.
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The previous results for the minimal solutions of the conspiracy problem
are coincident with those found by COSENZA, SCIARRINO and ToLLER in the
general group-theoretical approach.

However, besides the solutions given above, which are consistent with the
group-theoretical one, we find two more solutions for the families with ¢=--1,

= ¢

oo | ° ; if =0,
TN
e constant , it 120,
" el
" .
IS8Ty ¢ > if u#0,
edied )
[ ) if u=0,
(4.4)
— e constant , if A=0,
HNN-NN)
- i ) if 140,
g lusl
plt1 . ~
PES-ISH 4 ’ it u#£0,
ed;ed -
t ’ if u=0.

We did not find any way to eliminate these solutions: their meaning and
their relations to the group-theoretical results are unclear.

The problem of the minimal solutions of the conspiracy problem in the set
of reactions (1.1) has been also treated by CAPELLA, ConToGOURIS and TRAN
THANE VAN (77) using the analytic approach.

They obtained

(4 5) ya ~ t%[l»o‘(—l)”'*’”*’}']
* abab

for the EE mass configuration, while for the UU mass scattering their results
are coincident with those given by (4.1). The apparent disagreement between
the expressions (4.2), (4.3) and (4.4) is due to the fact that their result is only
valid for M = 0, 1 because they did not impose the minimality in all the chan-
nels (1.1) at the same time. In so doing they obtained the solutions for M =0, 1,
but lost other solutions which are minimal in the set of reactions. (1.1). Finally
the behaviour of the EE residues for the family with o= -+ and 7=—¢§
cannot be obtained from (4.4) because the previous authors did not consider
these families.

5. — Classification of Regge-pole families.

The introduction of the new quantum number M permits us to classify the
Regge poles in families according to the values of M, o, &
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Class I: M =0, 0= 41, 1=2¢§.

A parent trajectory requires the existence of a family of trajectories with
« angular momentum »:

%,(0) = a(0) —n,
where «(0) is the intercept of the parent trajectory. For # even we have

‘[n:Pnzf::z’

and for n odd

Only the trajectories with n even can couple to the NN system. This is the
class I of FREEDMAN and WANG (4). Poles of this class never conspire, as can
be seen from the behaviour of the residues listed above.

Class Ia): M =0, 6= -1, 1=—¢.

Poles with »n even have

and with »# odd

=P, =f=—1.

The parent and the even daughters of this class do not couple to the NN sys-
tem: this explains why this class is not contained in the Freedman and ‘Wang
classification.

Also these poles never conspire.

Class II: M =0, 6 =—1, 7=—E&.

The poles of this class satisfy the constraints (2.4) and (2.8) by a daughter-
like conspiracy; that explains why such constraints are called « class II » con-
straints. All the others are satisfied by evasion. For » even we have

Tn::_-PnZ_ fe T
and for »n odd
T,=—P, = =-—1.

The parent trajectory contributes to the amplitude :‘,;’;_% and congpires with

the first daughter that contributes to the amplitude Nc‘;;;‘_%. The same mech-
anism of conspiracy applies between the amplitudes 7=}, ; and {74, in the

nucleon-nucleon secattering.
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Class 1la): M =0, 6 =—1; t=2¢.
Poles with »n even have
T,=—P,= &= 7
and with » odd
Tp= —Pp,=—&=—1.
The parent trajectory of this class, which is decoupled from the NI system
at ¢t =0, satisfies all the constraints by evasion. Also this class is therefore

absent in the Freedman and Wang classification. Conspiracy between daughters
is allowed in the EU configuration.

Class II1: M =1, v=2§.

In this class we find the well-known parity-doubling phenomenon. The
parity doublet structure not only allows satisfaction by conspiracy of the con-
straints (2.3), (2.6), (2.7), (2.8) but it is also imposed by the general analyticity
requirements considered in detail in Appendix C and in ref. (27). Therefore
in some particular conditions the class III conspiracy is a necessity, not just
a possibility, deriving from the analyticity and crossing symmetry requirements.

One has the following quantum numbers:

n even, T,=P,= &= 7,
1
n odd, g, =P,=—¢=—1,

Only trajectories with »n even can couple to NN system.
n even, t,=—P,= &= 7,
g=—1
n odd, tp=—P,=—&=—1.
Class Illa): M =1, 1=—¢&.
The poles of this class have the following guantum numbers:
n even, Tp=Py=—&= 7,
O =
/N/Odd, Tn:Pn:: E:_T-
Only trajectories with n odd can couple to the NN system.
{n even, 1,=—P,=—&= T,
0= —
\’I’bodd, Tn:—Pn: 5:__.1;.

(*7) M. A. Jacoss and M. H. VaveHN: Phys. Rev., 172, 1677 (1968).
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The parent trajectories satisfy the constraints by evasion. Conspiracy between
daughter trajectories of opposite value of o is however allowed.

Poles with M > are decoupled, at ¢= 0, from the N°N° system, in agrée-
ment with the group-theoretical approach.

Such a classification is coincident with that found in the general group-
theoretical approach by Cosenza, SCIARRINO and TOLIER and results a gen-
eralization of the Freedman and Wang classification. In fact the classes Ia),
IIa), I1la) are absent in their classification because the parent Regge trajec-
tories of these class are decoupled at £= 0 in NN scattering.

ko ok

It is a great pleasure to thank Prof. L. BerroccrT and Dr. A. SCIARRINO
for very useful discussions, and Prof. M. TOLLER for helpful correspondence.

APPENDIX A

The method used for the derivation of the kinematical constraints in the
channel S+N —J N is due to CoHEN-TANNOUDJI, MOREL and NAVELET ().
Let us consider the reaction

(A.1) S(a) + N (0) —J(¢) +N(@)

where the expressions between brackets refer to the helicity of the corresponding
particle. The ¢-channel of the reaction (A.1) is

(A.2) N(D') +N(b') —JT() +S(4).

The helicity amplitudes of the processes (A.1) and (A.2) are related, through
the crossing matrix, by

- — . 9,\"14xl 6.\ ~la+al 1
(48)  Jroo = (VEsinZ) T (VEes 2 5 i it
‘ A'v' e’ D’

2 v R/ANEY O\ v+el
- dio(oe) Avala) (\/§s1.n Et) (\/E €os Tt) Fosow s

where €08 y., ¢os z., cos (6,/2), sin (6,/2), cos (0,/2) and sin (0,/2) are regular func-
tions near ¢ =0, while cosy, and cos y,are singular (22).
Drawing out the singular behaviour at ¢ = 0, the rotation matrices related

(*) G. ComEN-TANNOUDJI, A. MOREL and H. NAVELET: Ann. of Phys., 46, 239 (1968).
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to the two nucleons can e written near t =0 in the form

iy (i —1
(A.4) @ (cos "”“’)N(f(w_)% ( ) ’
1 %
where
M (m? — m3) ]"’
A. = o
(A.5) BD) [2[8— (Mscr— ML= (msipy + M)?]

and M is the nucleon mass.
Tor sake of simplicity it is convenient to define, for any ¢ and A', the

following system of equations:

o AN G P AN
(A.6) 1 S @y () dbval2a) (\/z sin 5’) (\/ 2 cos —2f) Fosrimw -
' D'

Since the rank of the system (A.6) is one it is sufficient to consider only the
equation which is obtained for b = d ==}, so that we have near ¢= 0:

L BD _~ K
(A7) B = — —— [ferm—ifdm]
(1)
for ¢ %= A’ and
oA BD 4 i
(A.8) G =— =9 edm — ife ]

for ¢'=A4'".

In the previous expressions we extracted from the parity-conserving helicity
amplitudes the same =¥ singularity near t=0 (Table ILa)). If now we put
the relations (A.7) and (A.8) into (A.3) we see that we must have

(A9) S o) ol Fizan — Teiaa] + 3 dalre)
4 c'a'
¢'#A" ¢ A"

- Bral g iz — D3] = 00)

in order to not have a kinematical pole at =0, which is forbidden because
the left-hand side of the eq. (A.3) contains quantities free from kinematical
singularities in f.

Because of the presence of the dj, functions the determinant of the
system (A.9) is equal to a finite value; therefore the only allowed solution is

T

(A.10) S — i = 00)
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for any ¢'#= A’ and

-~

(A.11) fio —ifsha = 0(0)

for any ¢'.

APPENDIX B

The kinematical constraints between the i-ehannel, helicity amplitudes of
the reactions

(B.1) S(a) + 8'(b) > J(e) + J'(d)

can be obtained following the method of CoOHEN-TANNOUDJI et al. (33). How-
ever we will follow here a more direct approach suggested by FRAUTSCHI and
JONES (). )

The relation between the amplitudes fi; and fij is

] 1. -
fusw = 5 i + foa],

(B.2) ) e
P = 08 s — R,

where A'== D'—b'; u'=0¢—A’, N=max(|A]; |u'|) and o, (os) is the natural
parity of the particle J (S). The ¢-kinematical singularities of the amplitudes
fu and ity ave

(B.g) ?:‘l;zl ~ t_"}l;"’"/‘,] y ?Z'J;:’z: ~ t"'%N .

The kinematical constraints follow there immediately from the requirement
that the two sides of the identities (B.2) have the same behaviour near t = 0.

ArrENDIX C

The daughter trajectories have been introduced by FrEEDMAN and WANG (1)
in order to eliminate any kind of singularity at ¢==0 in the full amplitude.
They treated in detail the spinless case and evaluated in this case the sin-
gularity. of the residue of the n-th daughter at # =0 in the unequal-unequal
mass scattering:

(©.1) T~

(*®) 8. Fravrscu1 and L. JoNEs. Phys. Rev., 167, 1335 (1968).
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and in the cqual-unequal mass configuration:

w2
(%) , it (1=,

1 (n—1)/2
(—t‘) , if (—1)r=~-—1.

(C.2) yEU ~

Those are the most singular behaviours required for the residue of the daughter
trajectories in order to have an amplitude analytic at ¢=0; of course if the
residue of the parent Regge pole vanishes at t = 0 the residue of the daughter
trajectories will be less singular than in (C.1) and (C.2).

We will extend the Freedman-Wang approach to the spin case, where the
singularity structure of the daughter residues will show some differences with
respect to the spin-less case.

We will see furthermore that in some cases the introduction of another Regge-
pole family with opposite value of ¢is necessary because the daughter trajectories
alone are not sufficient to restore the analyticity of the full amplitude.

We start from the eq. (3.2), which can be written

20t + 1 ' o .
(©3) 155 = T aalt) Yl Pea Pan)” BT (0800 +
207 + 1 K3, . .
—‘él;rl_gif gfd;“b(t) 'I_{%,—Z (Pcd-Pab) T Nyc:fi;abE},M ('“ CcO8S Gt) y
cd;ai

if we use the expression (3.4) for the residues and we eliminate the ¢ kinematical
singularities. For sake of clearness it is convenient to consider separately
the UU and BU mass configurations.

Tn the UU case (C.3) becomes

(0~4) ~2§f§u ~ gfd;ab ?’i‘t;ab(Pcd Pab)“i-w E;;i(—‘ CcO8 et) + gfd;ab :
- P,y Pup(Poa Pab)ﬁ_ﬂ—l Eﬁﬁ(“ cos 0,) )/jd;ab s

where we incorporated the factor (20 - 1)/(singe) in the residue y.40 and we
used K&.,(t) = Kiga(t)-
We note that the factors

(P.oPu)” " E3 (—cosf,) and (PoaPo) " Hzy (—cosfy)

have the same singularity structure at ¢=0 of Pyiy(—cCO8 Ot)(ljchab)aLN
involved in the spinless case. The only difference therefore with the spinless
case arises from the presence of two.terms in (C.4) and from the fact that the
second term contains a factor that behaves like 1 /t near ¢=0. This singular
behaviour of P,;P. complicates in the spin case the analysis of the singularity
gtructure of the residues of the daughter trajectories.

Obviously in the amplitudes with minimum (1A], lu|) = 0 the singularity
structure of the daughter poles is the same as that in the spinless case because
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of the identical vanishing of the Ej, function. For the other amplitudes be-
cause of the presence of the factor P,, P, in the second term of eq. (C.2) the
introduction of daughter trajectories is necessary to eliminate some singula-
rities, but is not in general sufficient to have an amplitude analytic at ¢ = 0.

In order to restore the analyticity of the full amplitude we need the contri-
bution of another Regge-pole family with opposite value of ¢ with respect to
the family primarily introduced in the amplitude. One can then study the
singularity structure of the daughter trajectories of these two families and it
is easy to check that such structure is not different from that found by FREED-
MAN and WANG in the spinless case. Finally we can conclude that in the spin
case for the UU mass configuration the singularity structure of the residues of
the daughter trajectories is the same of that given in (C.1). Furthermore such
analysis permitted us to get that the analyticity requires the existence of the
parity-doubling phenomenon (27).

Obviously the possibility of the parity doublet can be avoided if p5;,, ~1¢ ab
least when ¢ —0 for the pole primarily exchanged, but we are interested at
this stage in the most singular behaviour of the residues of the daughter trajec-
tories and we expect that such further zeros will come out from the factoriza-
tion conditions.

Let us then consider the FU mass configuration. The expression (C.3)
in this case becomes

(05) ~é;§:;)atb ~ gfd;abyzil;ab(Pcd-Pab)“i_N E;.'—/j‘t (_ Cco8 et) +
Kot ma ,
-+ [—I(d;b( 2Pcdpab] gfd;ab(Pchab) i IEM {—cos 6t))’fd;ab .
od;ab

Also in this mass configuration the only difference with the spinless case arises
from the presence of two terms in (C.5) and from the expression

Ktzz‘:l;ab(t)
Ko

Pcd-Pab7

which in some amplitudes behaves like 1/t for ¢ — 0. Because of the identical
vanishing of the £~ for A and u not both different from zero, the analysis can
therefore be restricted to the amplitudes with us=0 and A= 1; for the other
amplitudes the singularities near ¢ = 0 of the residues of the daughter trajec-
tories is evidently the same than in the spinless case.

It 2=1 and w0 the expression (C.5) becomes

(06) ﬂ::zlft-—% -~ g:t_i:HVj;l;%—%(Pchab)“iNEi‘_liﬁ(— co8 Ht) +

+ Goaspd(Pea Pa)” " P ET (— c08 0,) Yeastet

(C.7)  Fa¥a~ fraa-tVoit(Pea Po)™ ™ B (— cos 6,) +

1)

S (P P) T T B (— 080, s
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where f(#) is a function regular at ¢ = 0, which incorporates the nonsingular part
of (P.ePw). Because of the factor 1/t in the second term of (C.7), also in this
mass configuration the parity doubling phenomenon is in general necessary
to restore the analyticity of the amplitude at = 0; the singularities can be
cancelled only if in the first term of the right-hand side of eq. (C.7) contribute
the odd daughters of a Regge-pole family with ¢ = —1, whose residues have
the singularity structure

1\ n+1
(C.8) Voaibt ~ (?) with (—1)*=-—1

which is different from the expression (C.2) valid in the spinless case (7).

In conclusion the analyticity properties require the singularity structure (C.8)
for the residues of the odd daughters belonging to a family with o=—1,
while for all the other amplitudes and Regge-pole families, the singularities
are given by (C.2).

(*) We are grateful to Prof. L. Berroccur and Dr. A. SciarriNo for enlightening
discussions about this point.

RIASSUNTO

8i presenta un approccio non gruppistico al problema delle cospirazioni, basato
sulle proprietd di analiticith, simmetria di cressing e fattorizzazione. Si determinano
le soluzioni per tutti i casi di interesse fisico e si deduce una classificazione per le fami-
glie di poli di Regge.

MunnMaibHeie peniennst IS Npod/ieMbl. KOHCIMPATHBHOCTH
1 kaaccupuxanus cevelicts momocop Pemxe. - I

Pestome (*). — Ilpennaraercs He TEOPETUKO-I'PYIIIOBOH MOAXOM K npobneMe KOH-
CIMPATHBHOCTH, OCHOBAHHEIM HA AHATATHIHOCTH, KPOCCHHI-CHMMCTPHM 11 (haxropusanyy.
Tlomy4aroTcs pelienus IS BeeX (QE3uIecKi MHTEPECHBIX CIyHaes. ITposoguTCs JIKacCH-
duxaua ceMelicTB TOMOCOB Perpxe.

(*) Iepesedeno pedaxyueil.
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