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I. - INTRODUCTORY LECTURE: FUNDAMENTALS OF ELECTRON SCAT
TERING FROM NUCLEI. -

In the two last decades the electron scattering has provided phy
sicists with a rich information about atomic nuclei.

. b . .
There are some reasons which are in favor of electron scattering
as a tool for studying nuclear structure.

The first is that the interaction between the electron and the tar
get nucleus is fairly well known. This is the electromagnetic interaction
with the nuclear charge and current densities.

Since the interaction is relatively weak the electron scattering
on the target does not greatly disorder the structure of the nucleus, and
therefore, the scattering mechanism can be separated from structure
effects. With electron scattering one ¢an relate the cross-section to the
transition matrix elements of the nuclear charge and current operators,
and hence deduce an information about the structure itself, This is in
contrast to the situation when working with strongly interacting projec-
tiles, e.g. nucleons, as in that case the reaction mechanism and struc-
- ture effects become mixed,

The same considerations hold also for processes involving real
photons. However, the great advantage of electron scattering over photo
excitation consists in the possibility of varying the momentum transfer q
to the nucleus, With real photons, for a given energy transfer (s, there
is only a single possible momentum transfer q= lwsince the photon mass
is zero. On the other hand, for electrons the only restriction is that the
four-momentum transfer should be space-like:

q> W

Thus with electrons one has the possibility to study the Fourier transforms
of the nuclear charge and current densities and to obtain informations also
about spatial distribution of these quantities.

Our discussion of electron scattering will be based on the first
Born approximation. In this approximation the process is represented by
the Feynman diagram with one photon line connected to the nuclear vertex:

Electron scattering
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Thg one-photon-exchange is expected to be a good approximation for small
Ze™; Z being charge number., Consequently, our analysis is limited to light
nuclei,

Because of our total lack of information on a relativistic wave
function for the nucleus we are forced to describe the nucleons as interac
ting like nonrelativistic Pauli (with two component spinors) particles, This
is accomplished by expanding the well known covariant electron-nucleon
* interaction in powers of 1/M, the inverse nucleon mass, and retaining
terms through order l/M2 The range of validity of this approximation is
determined by the three momentum q transferred to the nucleug, One usua
11y(1) considers qx 2. 5fm~1 =500 MeV as the maximum q at which the B
M-2 approximation is useful,

The reduction of interaction between electron and relativistic nu
cleon to two-component form for the nucleon can be carried out by means
of the Foldy-Wouthuysen transformation. In order to describe the many-
-nucleon system one makes assumption that the nucleons in a nucleus do
not distort one another, so the nucleon form factors Fl(q%) and Fz(q%,)
are the same inside a nucleus as out. The second usual assumption concerns
the additivity of the electron-nucleon interaction: the electron-nucleus in-

teraction is obtained by summing over all the nucleons present.

Applying these assumptions one obtains the nuclear charge and
current operators (Fourier transforms) with terms through order M-2 1)
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where e;, yu; are the charge and total magnetic moment (in the nuclear ma
gnetons) for the j-th nucleon; T, P ., 1/2 G‘ are its position, momentum
and spin operators, r espectlvely e have used an approximation concer

ning the nucleon form factor, namely it was assumed:
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One can add to (I.1) a lot of different corrections' coming from the presen
ce of the other nucleons in the nucleus, e.g. many-body currents exchange
currents etc, They, however, are expected’ to be small,



We shall refer to Eq. (I.1) as the McVoy-Van Hove interaction.
Notice that the current has not relativistic correction to order M’z. The
two terms in J(a) describe the usual convection current, and spin current
interactions., The first term in Q("c"f) represents the static Coulomb inte-
raction. The last two terms of order M~2, are the . Darwin-Foldy and
spin-orbit terms. Because the square of the matrix element contains a
cross-term between them and the Coulomb term which is of order 1\/["2,
they must be included in a consistent calculation of the cross-section
through order M~2, For unpolarized nucleons, the spin-orbit term does
not contribute to this M2 cross term, so we can drop it at once. On the
other hand, the Darwin-Foldy term must be kept for an M~2-order cal-
culation,

The usual analysis of electron scattering from nuclei does not
take into account the possibility of meson production which :start- atw=m.“.
The nuclear physics of the production processes is only crudely understood.
In order to describe the electron scattering in terms of the usual nuclear
physics|variables (without taking into account the mesonic degrees of free
dom), one must be able to make a separation between the nuclear physics
processes and electroproductio%pi‘oc esses. This turns out to be possible
in practice if the momentum transfer g is not too large, The usually as-
sumed restriction(l) is q<. 2.5 fm~1, This is about the value of g at which
corrections to the nonrelativistic interaction (I.1) begin to become impor

tant.
There are two classes of experiments with electrons as the projec

tiles: coincidence and non-coincidence experiments,

Coincidence experiments, like the recent study of the (e, e'p) rea.
ction by the Sanitad group working Frascati, involve detection of final nu-
clear products together with the final electron. As the electromagnetic
interaction is relatively weak the coincidence experiments require a high
intensity beam and a high duty cycle in order to keep the accidental rate
low. Therefore these experiments are still scarce; their number should,
however, increase in the near future with the increasing number of new
accelerators which will have these characteristics,

In these lectures we will confine ourselvesto the non-coincidence
experiments where one observes only the final electron. This means that
one performs experimentally a summation over all final nuclear states com
patible with fixed geometry of the scattered electron,

Let us consider the scattering ‘of an., electron with incident energy
% through an angle @ to a final state with energy g' whilethenucleus makes
a transition from the ground state }i)» to the state ’§f";

The cross section for this process is given, in the first Born ‘ap-
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proximation, by the following formula

4

2 4 2 o o]
d’s _ _ecos"8/2 T g(_f.;»-E+E) _/_"’_QX Q
dnide ™ 2 do, T 0T
liy Je> a’
(1.2) 9
* 2 o -
2 oo
*(tan ”g_'_“z_)(‘]?i"]}f(i)ij
2q]_ I_JAB.
: 2 2 2 a
where q},,"W~q, (J;‘ L --Jf J -l/q (q- Jf NE J Db Q. <ij i,

= <f|J ){i> are the matrlx elements between the ground and excited
s%ates of the charge and current operators of the target nucleus, Ih Eq, (I..2)
all the quantities are to be taken in the laboratory frame,

Cross-section in (I, 2) is a function of &, ¢ and 6. A more con
venient choice of kinematic variables is to work with 0, energy loss W =
= £- ¢' and momentum q transferred by the electron to the nucleus.

We. shall rewrite Eq. (I,2) in the following form:
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is the Mott (free-proton) cross -section.

We cell C(%, q) and T (W, q) the Coulomb (or longitudinal) and
transvVerse nuclear form factors, respectively.

The terminology is taken over from the multipole analysis of the
electromagnetic interaction, C(q, w) includes contributions only from the
Coulomb multipoles which are absent in the processes involving real pho
tons. T(q,w ) includes contributions only from the transverse (electric
and magnetic) multipoles.

(%) - We use a metric such that a,=(a,, a a ) and a,, by,=aybg -a- b The
magnltude of the three vector is a=|% ‘ . We alsouse umts C=h=1,
e2=1/137,



(2)

.
3

Speaking exactly, the following equations hold‘
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w.oere in the 1.h.s. of (I.4) one sums and averages over nuclear orienta
tions; J; and Jf are the ar}\gular momenta o,f éile initial and final states.

The multipole operators Cyy (Coulomb), T 1w (transverse électric),Tf]nl\?[g
(transverse magnetic) are irreducible tensor.operators of rank J in the
nuclear Hilbert space. They are defined in Ref, (2). In Table I are summa
rized the properties of the multipole operators under some symmetry tran
sformations.

TABLE T

Symmetry Cra | Tom | T
Parity (-1)¢ (-1 )J+1
Time reversal (_1)Ji~Jf+J | (-l)Ji:_Jf_'-JNF1
Angular momentum Ji+Jde DI lJf - Jj}
conservation J > oi J71

Before going to discussion of Eq.(I. 3) let us note that the cross-
-section formula of that type holds for any process on nuclear target if
we describe it in the one-photon-exchange approxima‘tion(3). This may
be either pair production by photons




or bremsstrahlung

or production of lepton pairs by neutrino

Y

If in the experiment one detects particles in the lepton part of
the process only (and thus performs experimentally a summation over all
nuclear final states. compatible with energy-momentum conservation) the
cross-section is given by the formula:

-

G~ Ml.sz (w,q)+M2 Wl(w,q)_&

where the Mj; My functions are characterized by the process taking place
on the target nucleus and the Wi, o(#}, @) functions are always the same,
They are called the nuclear form factors and contain all the information
on nuclear structure. Thus if one measures Wi, Wy, say in inelastic elec
tron scattering, one knows all the necessary nuclear physics and can eli
minate it from other processes, This is especially important in experi-
ments devoted to a detailed study of the lepton vertex, like recent tests
of Q. E.D, at small distances,

Let us turn now to Eq. (I.3) describing the electron-nucleus
scattering, ‘ :
We note that C(q,w}), or Coulomb form factor, and T(q,s ), or
transverse form factor can be separated experimentally, This could be
accomplished by doing experiments at fixed q, and{) and varying 0. Then
the plot& vs tan2 0 /2 gives us the  two form factors., Another clever way
is to do scattering experiments at ¢ = 180° as in this case we are left only
with the transverse form factor.



By the way let us point out another advantages of the scattering
experiments at 0=180°, For backward scattering one can reach the lar-
gest possible momentum transfers, namely q=2¢% -}, At 180° the contri-
bution from the elastic scattering which usually masks the more intere-
sting q dependence of the inelastic terms is much reduced. For nuclei
with no magnetic moments in the ground state there is no contribution from
elastic scattering at all.

Also in forward scattering, say at small enough values of 9, the
contribution of the transverse part is dominant,

On the other hand, at all intermediate angles, say 0=30° to 1200,
the Coulomb terms dominate, The Coulomb form factor usually is larger
than the transverse one by an order of magnitude.

The main features of the single (without coincidence) electron
scattering are well known, In a typical cross-section curve (see Fig, 1),

o
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FIG. 1 - Schematic energy spectrum of electrons scattered
from a nucleus,

one can distinguish the following parts

a) at'J=«0 one has a peak corresponding to the elastic scattering

b) at small energy transfers a number of peaks corresponding to
the excitation of discrete nuclear levels are seen

c) at large energy transfers the cross-section follows an almost
smooth curve in which only little structure is apparent. This part of the
spectrum is referred to as the quasi-elastic peak. It corresponds roughly
to direct collisions with the individual nucleons in the nucleus,



II. - SUM RULES FOR ELECTRON-NUCLEUS SCATTERING, -

We Bhall discuss now the sum rules i, e, the theoretical predic-
tions for the electron scattering cross-section integrated over the energy
lossw : dw € (g, O, w) W(n), W(w) being a weighting factor,

In the experiment one measures the area under: the inelastically
scattered electron spectrum in Fig, 1.

Theoretically one sums over all final nuclear states.in a particu
lar way. It is, therefore, possible to use the closure relation -

z"’w gf <f 1
Lty

in order to eliminate the final states from the resulting expressions and
to operate with the ground expectation values of bilinear combinations of
charge and current density operators only.

Thus the analysis of the sum rules can give us more information
about the ground state of the target nucleus.

Of course, the direct way to study the ground state properties
is to measure the elastic cross-section.

However, the sum rules cgn be expressed through nucleon-nu-
cleon correlation function §> 1,2)= Y d33. .d3a N)l 1, 2. A)l 2. 1 is, the
refore, hoped that the sum rules may glve some 1nformat10n about dyna
mical correlations in nuclei, This is in contrast to the situation for elastic
scattering which depends only on the single-particle density

KJ (1) = §d32. .'.dSA j:;fi(l. ..A)‘] 2

Nevertheless, the dynamical correlation effects, may be seen also in the
elastic scattering,’ if the momentum transfers available in the experiment
are large enough. At large momentum transfers one can study the high-
-momentum components: of the single-particle wave function which could
arise from the strong short-range repulsion in the nucleon-nucleon poten
tial, .

Before going on to a discussion of different sum rules for elec-
tron scattering, we note two 1mportan’c experimental restrictions onthe con
struction of the sum rule,

Of course, the entire range of ¢ from O to infinity 1s never avai
lable. The accessible range is seen from the relation q2 wl=q ¢ & &'sm29/2

which tells us that W4 q. However,. the fact that the contributions to
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the sum from very large !'s are insignificant, makes the sum rules
accessible experimentally provided one works at large enough momentum
transfer q.

Another restriction is connected with a separation between the
nuclear physics processes and meson production. As the mesonic degrees
of freedom will not be taken into account in the sum rules we should also

. be able to distinguish experimentally the non-mesonic events from the me

sonic ones. It terms out to be possible if the momentum transfer is not
too large: q« 2.5 fm=1(2),

Sum rule for Coulomb scattering, -

We confine now ourserves to the Coulomb past of the electron-
-nucleus interaction. Moreover, we will keep, for sake of simplicity, the
term of zeroth order in 1/M in the Coulomb interaction.

In this approximation the cross-section is given by:

o 4
I M o
(II. 1) del‘d E' - M q4 CO (q: W)
where -
1q T, 2
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W, being the nuclear excitation energy. It is the usual practic
to use for the nuclear states the wave functions of an independent-particle
shell model, In this model the nucleons are considered to more in com-
mon potential well, The origin of coordinates is taken to be the centre
of the potential well and not the centre of mass of the nucleus, This .is
clearly incompatible ‘with the principle of translational invariance. Howe
ver, the transformation to the centre-of-mass system of the nucleus can
be accomplished by emplpying the transformation of Gartenhaus and Schwa
rtz :

The result of this transformation is that the coordinates ?’ and
momenta "137; of the j-th nucleon should be replaced as follows

1 A -2
- -7 %
(11.2) I‘j-'? I‘ -TA— El "[‘J ?
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Applying (I1.1) and (II. 2) we obtain the total (elastic +inelastic)
sum. rule for the Coulomb scattering

- fmdw.__iw_g__q 1<;§;eeq Fijiof?
4 SMm }f} i=1

As the elastic scattering contribution is dominating, especially
at small q, and makes more interesting q dependence of the inelastic
terms, we will define the inelastic sum Cionel (q) given by the inelastic
part of the integral in (II. 3).

Using closure in (II.3) we assume that the sum in the L, H.S.
part is performed experimentally at fixed q and subtracting the elastic
contribution we-obtain the inelastic Coulomb sum rule:

»->-v—v
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is the elastic form factor.

Separating out the diagonal terms (j=k) in.the double sum one
obtains: . :
= -
q( r -r )

ae < z+<1\z IO Ky -z2 F

M‘h

The same can be written as follows

: : e e AR 2T
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where
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Z(Z Z(Z-1)

is the proton-proton correlation {(two-proton density) function in the ground
state, '
A system is said to be completely uncorrelated if

P(1,2)= P(1) P(2),

where (;7) is the one nucleon density (the proton density is measured
in the elastic electron scattering)., It is therefore convenient to subtract
off this random part and to define the more useful correlation function

o~
(11. 8) F(1.2)= P(1,2)- P(1)
Using (II. 8) one can rewrite (II. 7) in the following form

inel 3y a5on i'-a(?"—?”)’v(r'
(1. 9) C, (Q)=2Z(1- F )+z(z 1)\ dr'adr'e (’

where we have app:oximated the expression (II. 5) for Fg; by neglecting
in 1t the Gartenhaus- Schwartz correction (thus making an error of order
- ) )

~Y There are two-types of correlations which are incorporated into

f (1,2),
The statistical correlations reflect the fact that the system of

nucleons should be described by a wave function in the form of the Slater

determinaiit, In order to account for these correlations it is not sufficiently

to dispose the nucleons in different single particle states (thus satisfying

the Pauli principle) but one must antysymmetric the wave function in

all identical particles,

The more interesting correlation effect is that due to the hard-co
re repulsion part in the nucleon-nucleon interaction,

- It was originally hoped that the sum rules should give some in-
formation about such dynamical correlations but it turned out that they
are rather insensitive. to them,

The effect of the dynamical correlations on the Coulomb scatte-
ring could be calculated with some confidence on the basis of various
works where one had calculated the two-particle correlation function,
It was done by McVoy and Van Hove(l) who applied for 016 the correla-
tion function of Eden et al, calculated using a realistic force with hard-
-core radius 0.4 fm. The result Crpg(q) is presented in Fig. 2° where
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it is also compared to the Coulomb sum rule C!SM;evaluated with the shell
model (oscillator potential) ground state wave function:

. 271 r 4 2
inel, , | q Z-2 q q
C. (Q)—Z;l‘l-(%)a —1)—‘2 1-(1+ =22 <) exp (- "’T—)] -
SM s P 4:M24 . 127 01\4 21622
(II.10)
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VY -being the p\arameter of the Gaussian facztor exp(-1/2 A2 rz) of the oscilla
tor wave functions (for Ol6 X =0.6 fm-1 from elastic electron scattering).

FIG, 2 - The Coulomb inelastic sum
rules(1) (divided by 2) for 016: C -
-no correlations, C"IEEE-statistical cor
relations and short range hard core
effects included,Z gpp-complete (Cou
lomb plus transverse) sum rule eva
luated in Ref. (1). The experimental
point from the work of Bishop et al.(13),

10
c%(ft’) )

The ''correlated sum rule does not deviate from Cgpg() by more
than 5% at any value of q, so the effect of hard-cores on the Coulomb scat
tering is very small,

On the other hand, it is evident from Fig, 2 that the statistical
correlations have a substantial influence on the Coulomb scattering., The
Coulomb sum rule C.(q) obtained from the classical perfect gas model
(shell model without antisymmetrization) differs very much from Csne

Let us note that Ci)nel(q) as gi%/en by (II. 9) has an important asym
ptotic behaviour. Because of oscillating integrand the correlation correc-
tion vanishes as g=poo. So does the elastic form factor and we obtain

inel, | _
C, (q)=Z
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for large enough momentum transfers., This means that the cross-seccion
reduces to a sum of free proton cross-sections, without interference, We
say say that at large momentum transfers one is dealing with quasi-free
(or quasi-elastic) scattering,

Finally let us note that neglecting in (II. 9) both statistical and
dynamical correlations between nucleons one obtains

1ne1 2

(I1.11) (Q=2z((1-F))

el

This equation describes the inelastic scattering from the nucleus in which
the nucleons move in an average potential well independently of each other,

Transverse sumirule at large momentum transfers, -

We proceed now to discuss the transverse interaction contribution.
If one works at & =180° this is the only contribution to the electron scatte
ring o _
For B =180° one has from (1. 3)

4 2

2 2
des e f(gm)

with

Taw)=F 7 w-BeE) (T5- T
liy >

The transverse sum rule is defined as follows (the integration over expe
rimental spectrum is performed at fixed q):

© 4 2
(I1. 13) I dwS(w, q,180%) /=L =1(q)
o 4t
Assuming that the final nuclear states one sums over form a com

plete set of states and applying the closure relation one gets

.".; ’; 1 —’; > 5
(II. 14) T(a) = i) . T (T DT D >
q

Let us point out that although we include in principle the elastic
scattering in our transverse sum rule, it turns out to be immaterial for
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simplest nuclei. When working at 180° the elastic contribution does not
vanish only for nuclei with magnetic moments in the ground state,

Using the non relativistic form of the current operator see Eq.(I.1)
one obtains

A iq(r,-2 )

2
. e
T(q)="-—§L—2 <1\ Z W: w,. G.x G xe ] \1>+
, I %k T k
2M ik
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where we « chose q along the Z-axis., As T(q) depends only on the absolute
value of q, we can choose its direction as we please.

Separating out the, diagonal terms in (II, 15) one gets

. 9 A
. g 2 . 2 .
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™ .
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The form (II.16) is more convenient for analysing T(q) for large

q's as it exhibits explicitly the first leading (and model independent) term.

These sum rules should be corrected for the center.of mass mo-
tion by means of the Gartenhaus-Schwartz transformation (II.2).

We obtain now after some simple manipulations(5):
& (g e
:ZM /M- /W
(I1.17)- TGs(q) = A _

_—'q_—‘ <l‘ZMMkQXG}4€ J kli>'
2w itk
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It is comparatively easy to evaluate (II, 17) in the shell model
with oscillator potential. Using the antisymmetrized ground state wave
function for nuclei with nucleons in the first s and p shells one obtains:

2 2 2 4

| 2, 2, 5Z-4 o Zqg , 2 2 Z-2 q°

Tl =3 z(pie plp 222t B 20 ()2, 2y (1 222 A

N 4 e (A NI BN I A \ (e  PYATY
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(I1. 18) cexp(-25)- 2 (2.2) K (14 Dy exp (- L) 2 A
2% M 2k 2 ol M

“g_ﬁ[z_] z2 9 22 g ]e pl- L)
A M2 3 0(2 127 &4 2 0(2

We have aszsuined here the same number of protons and neutrons in both
spin states; shis the oscillator parameter. The first two terms are the
diagonal 'terms of (II.17). The third and fourth are the - g— and p-p
correlation function of (II.17), The fifth and sixth term are corrections
due to subtraction of the c. m, motion, They are small for qp ytm-1 but
for small q's they are very important,

There are some corrections to the formula (II. 18) one should con
sider before applying it confidently to the analysis of the experimentally
measured sum rule.

As we evaluate sum rules which include summation over a host
of complicated excitations, the details of the shell model we accept as our
starting point (e, g. the spin-orbit coupling, the shape of the potential well)
geem to be not important.

A more essential point is to estimate the effects of the nucleon-
-nucleon correlations. We would like to discuss the transverse sum rule
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at large momentum transfers and in this case the wave length of the vir
tual photon transferred to the nucleus is small enough to show some fluc-
tuations of nucleons around their average shell model orbits,

We. shall not go into details of the short range correlation calcula
tions. We post-pone this problem to the chapter treating about the elastic
electron scattering,

Let us note that the 6 - Scorrelation function Tee (the third term
in (II.17) can be expressed through nucleon-nucleon spatial correlation . -
function P(l, 2). Thus in order to estimate the short range effects in
Tes> one may employ f(l, 2) taken from other calculations (or experiments),
The trouble is however that other model dependent terms in (II, 17) cannot
be expressed by means'of '@(1,2). The hard-core effects on terms invol-
ving nucleon momenta can be evaluated only on the basis of a specific
model,

We introduce the correlations into the wave function using the
following procedure. Let us consider the wave function of a nucleon-nu-
cleon pair, First, we carry out the so-called Talmi-Moshinsky transfor -
mation, i,e. we separate the relative and center-of-mass motions of the -
pair, Secondly, we modify the wave functions of the relative motion

a4 " N
=R = (r)—
lnlm} Rnl(r)Y1 ,‘-(g’¢ ), Rnl 81 Rnl(r)

N .
(IL. 19) o nl

o 2 2 2
an = { dr r Rnl g (r)
J .

where the function g(r) which modifies the standard radial oscillator func
tion Rnl(r) at short internuclear distances has the following properties

. g(0)=0, g(r) N0 for r¢ r, and
(1I1.20)

glr)s1 for x> glo)=1

h’
r. is here the radius of the hard core, and ry is the so-called "healing"

distance,

In order to simulate. the hard-core repulsion between nucleons
one can use

(II. 21) g(r)= l-exp(-%‘ '250{2 r'z)

where the correlation parameter X(&being the oscillator potential parame
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ter) may be somehow related to the hard-core radius, The form (II. 21)
enables us to perforrn all the integrals analytically.

Fig. 3 shows the result of the calculations of T(q) for Ol6nucleu's(5)
with an oscillator potential shell model wave function with and without two-
-particle repulsive ¢orrelations introduced,

9—% QL (5,2 2) —3%
< 22 (212 N2 7/
818
3
% 5(9)1'8)
71
~ B(g .y*5)
@
6..

'z Blg,y-14)

BG.s.(Q,)

|

4

FIG. 3 - The transverse sum rule (denoted h@re(S‘)
B(q)) for 016, BGS statistical correlations and

the ¢. m. motion correction included, B (¥=5,8,14)
repulsive short range correlations between nucleons
included.
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The striking feature of Fig. 3 is the dommance of the term co
ming from the magnetic moments:: g2 /2M2 (Z 2N N). The dominance
is so strong that even drastic changes of the nuc eofi-nucleon correlations
do not matter very much, For instance at g=1.5 fm-1 the leading term
contributes almost 100% and at q=2 fm~1 about 95% to the sum rule. The
transverse sum rule is, for large q's, very sensitive to the effective ma-
gnetic. moment parameter in the current (I.1).

If one could measure T(q) with good accuracy one would have an
important information about the magnetic properties of nucleons bound in
nuclei., E.g. aneffect of 5% or 10% ''quenching' of magnetic moments
would produce about 10% and 20% changes of the sum rule,

The short-range internucleon correlations do not influence very
much T(q). The most important correlation correction comes from the
Typ- function, The hard-core effects may be evaluated here with a great
confidence, as Tgy can be expressed through nucleon pair correlation
function @(1,2), and one may employf 1,2) obtained from various calcu
lations, Then there would be no need for calculating correlation correc
tion-on the basis of a specific model, The analysis would have virtually
no free parameters except the parameters of the nuclear current., The
‘precise measuremenhts of the T(q) sum rule devised to obtain data on the
magnetic properties of bound nucleons seem, therefore, to represent a
very attractive problem.

High resolution transverse sum rule,-

In this sections. we describe a way of analysing the transverse
sum rule which is adopted to inelastic electron scattering experiments
with good energy resolution, and devised for investigating groups of di-
screte nuclear levels like e, g, the Giant Dipole Resonance multiplet.

Let us remind the expression for the transverse form factor
see Eq. (I.2), (I.3)

(IL. 22) (w,Q)= 2. 7 Sw-E ~E, )(’f’ff‘i- I,
' i f

Igr'ecisely speaking the nuclear current in (II, 22) differs by a
factor f(q/,,) from that in (I.2).

Employing the multipole expansion (I.4) one obtains the transverse

sum rule in the form:
mag
[
of el o

wen w0 T 2 e s
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where the summation over f extends over all final states, J; and J; are
the angular momenta of the initial and final nuclear states and the indices
i and f specify the remaining quantum numbers of the initial and final
states, :
We shall consider only spin zero nuclear ground states. Then the
Wigner-Echart theorem gives us

el el
(I1. 24) eI\ TRE L 0= ean e g, \T?(l)ag \i, 0>

(6)

Suppose that in an experiment one can identify the transitions
of a chosen multipolarity, and that the energy avaiable. in this experiment
(notice that we have always W4 q) covers all possible excitations of the
multipolarity chosen. Then just one term of the sum over J's in (II, 23)
corresponds to the experimentally performed sum over all excitations of
given multipolarity, We can, applying (II.24) and closure, write the follo-
wing sum rule for it:

el el el

mag(J;q) =4 -n (2J+1) <i, 0\ ,ifmag Jmag i 0\7

(I1.25) T Jo(q) “Jo(g)l’

It is by no means obvious to what an extent the requirements spe
cified above can be met in the present day experiments, Probably the
clearest situation exists for the El excitations, It is known that El tran-
sition strength is concentrated around the so-called Giant Dipole Resonance
at excitation energies around 15-25 MeV, This may suggest that one has
in this case an effectively complete set of find states at disposal-even if
one works at small, say =350 MeV, momentum transfers.

It is much harder to tell whether the other multipoles have their
transition trengths concentrated at low enough excitation energies to be
tractable in the spirit of the sum rule at small q. We shall therefore con
centrate on the E1 transition, although the analysis presented below
can be easily extended to other multipole transitions,

Before going to concrete calculations let us say a few words about
the Giant Dipole states(7), The Giant Resonance was first seen in photo
nuclear reactions such as ( Y, p), ( 2{, n) and in total photoabsorption. In-
creasing the photon energy one first observes the relatively weak and
narrow magnetic levels (M1), and at about 20 MeV for light nuclei (15 MeV
for heavy nuclei) the cross-section suddenly rises to tens or even hun-
dreds of millibarns, The cross-section curve forms a broad bump (width
of several MeV) which, depending on the nucleus, may show considerable
fine structure, Above the Giant Resonance, the cross-section fulls off
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again and shows little structure.

Starting from of ground state such as in c12 or 016 the Giant
Resonance states must be 17 since only the electric dipol (E1) can lead
to as large a transition strength as is observed. Moreover one can show
that the condition AT=0 (T being the total isospin quantum number) should
be satisfied. As the photoexcitation and electron scattering are the AT3‘O
processes the Giant Resonance states are characterized by 17, T=1, T3 =0,
if the ground state is ot , T=0, We see that the Giant Resonance represents
an isotriplet whose Tg= -l_:l components lie in neighbouring T=1 nuclei, These
"analog' giant resonances may be excited by AT4=1 processes such as
muon or pion capture or neutrino absorption.

The large cross-section of the Giant Resonance suggests that the
excitation is a result of a collective motion of the nucleus, producing the
large dipol moment. Goldhaber and Teller(8) described therefore the ex
cited state as anharmonic vibration of the protons as a whole against the
neutrons as a whole, This model can be generalized in order to account
for the spin flip transitions which may be important for electron scattering
with large g's. In the generalized Goldhaber-Teller{7) model collective
vibrations of nuclear matter do not involve two fluids only, those of pro-
tons and neutrons, but involve four fluids, those of protons with spin up,
protons with spin down, neutrons with spin up and neutrons with spin down.
Possible modes of nuclear vibrations are given by the in - phase displace
ment: of any two of these four fluids against the remaining two fluids.

Another description of the Giant Resonance states is based on
the shell model. The shell model gives a much more detailed picture; it
furnishes the energies and the widths of states. The independent-particle-
-model picture of the Giant Resonance states as originally used by Wil-
kinson(9) describes the 1~ , I'=1l states being created by removing a nu-
cleon from a filled shell and raising it to a higher unfilled shell of opposi
te parity. Elliott and Flowers(lo) improved the model by assuming a

"residual interaction' between the raised particle in the higher shell, and
the hole it left behind in the filled shell, This interaction is taken as the
empirical nucleon-nucleon force,

Let us turn now to the discussion.of our high resolution sum rule
for the E1 excitations. There exist several measurements of the so-cal-
led form factor of the Giant Dipole State:

(I1. 26) 95(1_',T'=1;q)“2%1‘ 1(1;q)

These measurments were succesfully compared with the particle-hole
description of the Giant Dipole State. We shall see(6) that applying the
sum rule approach the experimental data can be equally well explained
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without resorting to any detailed calculations of the particle-hole states
and their interactions, As the particle-hole calculations become in prac-
tice quite involved we would like to stress the usefulness of the sum
rule method ° which reduces the calculations of the form factor § to a
few easy manipulations.

There are two ways of calculating the Giant Dipole State form
factor

i) One calculates Sg T, T=1;q) straight from the ground state
expectation value expression with the electrlc dipole multipole,

As we consider nuclei with the 07, T=0 states, and the final sta-
tes are 17, T=1 one obtains from (II.25) and (11, 26)

(1. 27) $”, 11390230, 7= OlTel+ (T (@ ]o’, 0>

where the subscript v labels the isovector part of the multipole operator.
For the 016 nucleus -employing the oscillator well shell model
wave function one obtains(6);

— 2
O -M)
- 1 Wo 2 )}'p n 9.3 ¢ 2
. s = ; = F + K .
(I1. 28) ¢ (17, T=150) = LM X - a0 T2
where = &2 /M (oscillator spacing) and
2 4
F2=1-0,75 -3 +0.3375 -
1 4: e s v
(II,29) M C’\
9 4
FZ=1-0, 75—9-—+0 3125 4— -......
2 k2 6\4

Thus for small q's F2 and F2 are virtually identical, Notice that for large
momentum transfers (II. 28) c¢ontains contributions from different than Giant
Dipole States excitations, especially the quasi-elastic scattering contribu
tion, Hence for large q's (II.28) cannot be interpreted as the form factor
of the Giant Dipole Resonance,

ii) We are going now to describe the El1 excitations in terms of
the collective dipole oscillations following thus the main idea of the Gold-
haber-Teller model, We short with the isovector part of Tl%) (q) for small

q's



23.
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_ j=1 j=1

(I1. 30)
‘ (%, G -y, 67 450
iTyi7i Tw

In order to obtain collective oscillations of various groups of nucleons

with respect to each other it is essential to have electromagnetic interaction,
which induces them, linear in, r.'s. Then the collective coordinates can

be introduced and only relative oscillations of the centers of mass of the
whole groups_of nucleons excited, In (II. 30) we therefore neglected a con
tribution ~ q2 r;. The néglected term destroys the coherence of the collec
tive oscillations and make them decay. The decay will be introduced into

the picture in another way.

One can obtain the § form factor in the limit qz-.;O employing
the following sum rules: ‘

A
T BB 2] T 7|02 27
j=1

(I1.31) \£>

> A
M

| A
7 (EE) \Q} ?’C3j(xj46‘}"j—yl G;J.)\i) l

f j=1

These sum rules one gets from the well known identity with the double
commutator:

Gl Ll 1=+ 2 wemy 4o
£

which is correct for operators satisfying the relation

+ -
\(f \9»- §1>\ =\ (fl‘@"§i>l,
and under the assumption that the interaction part of the Hamiltonian H
is spin and isospin independent, ‘

If we further assume that the transition strength is concentrated
around certain energy wR we get from (II.30) and (II. 31)<6):

2
: !

2,
q-70
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where we have used the identity:
Lilpy, |1 =iM (B (f\zj\ﬂ :

The formula (II. 32) does not take into account the fact that the
collective oscillations caused by the two terms of (II, 30) (neutrons vs pro
tons and neutrons with spin down + protons with spin up vs neutrons with
spin up+ protons with spin down) can be destroyed. The probability that
the oscillating spheres of e, g. protons are not destroyed is given by the
elastic form factor (normalized to unity at g=0).

So, we can easily improve (II. 32) and write

2
A WR (}Ap—v'PN) a .3 q -2
A +- ( ) F
16 | M 8 M lIL)R el

(II. 33) @(1",T=1;q)=

where we assumed that the two elastic form factors are the same and equal
to the elastic electron scattering form factor F .

For 016 the oscillator potential shell model wave function gives

2 1 qz 2 1 92 q2 q4
(II. 34) F (q)=(1-5—5) exp(-+ y=1-0,75——+0,266——-,,..
2
el 8 Olz 2 0( ‘0(2 0(4

Let us compose now for the 0l6 nucleus, the results for the
Giant Dipole State form factor obtained in i) and ii), See Eq. (II.28) and
(I1. 33).

They are identical for small q's provided one put sz U%. The
calculated form factor is with W 15 M€V in good agreement with experi
mental data presented in Fig, 4,

On the other hand, if we used in (II.33) ‘”R=2;2 MeV (the experimen
tally measured mean excitation energy of the Giant Dipole Resonance for
016) the agreement with experiment would become very poor,

We would like, however, to stress the point that in sum rules
(I1, 31) which are based on the assumption of pure Wigner forces we should
use Wh= W (the oscillator spacing), and not the experimental WR_, .For the
oscillator potential ground state and the operators

A A

Vo 2 and ST (%, G-y, G
ZVs5%; . jZ_-l Tay 55795 o)
J n

the states 17,T=1 form an effectively complete set of states only if they
are the excited states of the same oscillator potential, hence are separated
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from the ground state by w . Thus we obtain a consistent model of the
form factor although the model:does not reproduce the correct position
of the Giant Dipole Resonance,

The following concludin'g remarks are in order here,

a) As the results obtained, for low q's, from the evaluation of
the ground state expectation value of the complete multipole moment and
from the application of the sum rules (II,31) are so much alike, we would
like to gtress the usefulness of the second method which gives the form
factor -%nearly without any evaluation,

b) The presented here analysis of the Giant Dipole Resonance
Figs. 4 and 5, shows that the existing experimental data are in agreement
with the sum rule approach which exhibits these features of the collective
excitation which are independent on the details of the microspic theory
of collective dipole vibrations, It would be very desirable to have more
complete measurements of the$ form factors, especially for large mo-
mentum transfers,

General sum rules. -

So far we have constructed the sum rules in such a way that in
the theoretical prediction for the sum dw6’(q, 8, W)W( W) we had no terms
depending on energy loss W, This enabled us to use closure and eliminate
thus complicated (or unknown) final state wave functions from the calcula-
tions,

However in more general cases (u-dependent terms will occur in
the sum over final nuclear states and the closure relation cannot be used,

One can avoid this difficulty using the "closure approximation"

[P

(IL. 35) 7 g(w)i ok { e > 001> -g(0 NE *l\iz

where .Zg;» is a suitable average of an energy loss dependent function
g(%); 6 being an operator.

Thus the powers of w will be replaced by certain estimated ave
rages e.g, W =>3<Lwd=q /21VI (from quasi-elastic scattering).

Another more complicated but exact method is to remove the
-dependent terms using (n times) the identi1:y(14)

(IL. 36) ilwlo > =<l w i g >,
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12-4’@*703 o' ! 2 FIG. 4 - Electron scattering

3 fortn factors of the 17, T=1
1y states for 016, The curve 1
! is given by E1 multipole expec

tation value (II,28). The curves
2 and 3 have been obtained from
(II,33). The curve 1 and 2 are
plotted for {2=0. 36 fm-2, The
same value was used by Le-
wis(11) in his particle-hole
description of the Giant Dipole
State, The curve 3 is plotted
for d\2=0-334 fm=2, The experi
. mental data are those reported
e g inMeVE in Ref, (8).
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FIG. 5 - The Giant Dipole Resonance States form factors
for Si(28), Form factors obtained from (IT. 33) for three

values of k.= 0(2 as indicated are compared with there
sult-of Seaborn and Eisenberg(lz) (particle-hole model)—“
and the experimental data. The data are those reported
in Ref, (6). :
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where H is the internal nuclear Hamiltonian

A 2 A 5
_wm Y S» . q
- _______....{. r . = - \
H= 7 TR V(i, j)s (cuf w AN
j=1 i

being the nuclear excitation energy);
and then apply closure.

In principle, using (II. 36) one can construct various sum rules
with different weighting factors W(W). The price one pays for it is consi
derable complication of the formulas. Moreover one may worry about an
uncertainty of the proc edure(15)if the ground state wave function one uses
to evaluate the expectation values is not completely consistent with the
Hamiltonian,

.The only case where one can confidently use this method is the
Deuteron(15) where one calculates: the ground state wave function from
a given Hamiltonian, Therefore it seems to be especially interesting to
study the sum rules for H2 as carefully as possible both experimentally
and theoretically,

In particular one may expect that the “f-weighted sum rule

(I1. 37) Coy = 2 ), dt)o| i>\,2 =4i\o"Ho >
Ve

should be very sensitive to the '"gauge'' currents which arise from the
presence of the charge exchange interaction in the Hamiltonian (in order
to maintain the continuity equation). This was pointedout by Drell . and
Schwartz(14) who found the exchange effects in the energy-weighted cross-
-section to contribute up to 40% of the result,

III. - ELASTIC ELECTRON SCATTERING FROM NUCLEI. -

In elastic scattering both the initial and final nuclear states are
the ground state: lf)»= il> Therefore, electron scattering can tell us
about ‘the nuclear ground state charge distribution and other electromagne
tic (quadrupole, magnetic dipole, magnetic octupole moments) properties
of nuclei, We will also indicate that the elastic electron scattering can be
a usefull tool for studying nucleon-nucleon correlations in the ground state,

The selection rules for the case of elastic scattering are more
stringent than for the general case., We have Ji=J¢ and no change of parity.
The parity eliminates (see Table I) the odd Coulomb, odd electric and
even magnetic multipoles. Invariance of the theory under time reversal
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eliminates the even transverse electric multipoles, Thus in elastic scat
tering the only multipoles are the even Coulomb CO0,C2,... and odd ma-
gnetic multipoles M1, M3, ... Angular momentum conservation gives ano
ther restrictions: C2 if J; »1, M1 if J, »1/2, M3 if J133/2, etc.

We will confine ourselves to the discussion of electron elastic
scattering from spin zero (J;=0) nuclei. In this case only the monopole
moment of the charge density (C0) can contribute;

We have for spin zero nuclei in the first Born approximation:

de 2 )2
o% N~
(111, 1) | TS el Mz {Fo(q)
where
4 2
GJMz < C?OS 2/2 (1 +—2~Aj‘1\-/[— sir12€)/2)"1
4 $"sin"0/2
and
\1APT A 3
47 ) §E,
Fo=— Lillega i
(I11. 2)

A

A i i
=—Z——-jd rJO(qr)< 1\Q(r)\1>

Fo is called the charge (monopole) elastic form factor of the target nu-

cleus,
Let us define the nuclear charge density (spherically symmetric)

per particle as follows:
(111 3) P (r) =14 Q) >
’ fch Z

Thus in the first Born approximation one has a direct relationship
between the density distribution and the form factor (or cross-section).

The elastic scattering measurments can always be interpreted
phenomenologically choosing ad hoc nuclear charge distribution fch(r)
which fits the data for the nucleus in question,

This is true also for heavy nuclei where the Born approximation
is expected to break down, In that case a more sophisticated analysis is
necessary., One can start with a particular density distribution ?ch(r)
and calculate the corresponding electrostatic potential V(r) given by Poi-
sson's, equation. Then one solves the Dirac equation for an electron mo-
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ving in the potential V(r)., This can be done exactly by megns of a phase
shift analysis(16 of each partial wave. The phase shifts i determine the
scattering amplitude £(8).

In this case no simple relationship exists between the density
distribution and the scattering cross-section, In general the only way to
see what effect on the cross-section has a small change in the charge di-
stribution is to go through the whole calculation:

s

¢ dyw bo
f(r)—wa»V(r)ww éj SR if(mg

again for a slightly changed distribution. The simple connection between
Pen(r) and dG’ /dN given by the Born approximation can nevertheless be
used as a guide for finding a suitable charge density distribution.

The main conclusion from many experiments on elastic scattering
on spin zero nuclei is that the ground-state charge distribution is well fit-
ted (for heavy enough nuclei) by the Fermi distribution

¢

(II. 4) P = o RYa

l1+exp (r_fg)

The parameters of the distribution show(z: 16) the following systematic
behaviour in nuclei with 20 £ A <208:

i) The radius to half the maximum f is given by R=rOA1/3, ro=
=1.07 fm
ii) A Pos the central nuclear density is a constant % 0.17 fm=-3
iii) The surface thickness s defined to be the distance over which
the charge density falls from 90% to 10% of the central density is a constant:
s=4 aln3=2.4fm. The two last features can be qualitatively understood
as a consequence of the short range nature of nuclear forces(16), Because
of this a nucleon in the central region of a nucleus is unaffected by surfa
ce effects and thus the central nuclear density approaches that for infinite
nuclear matter. On the other hand, nucleons at the surface are unaffec
ted by the bulk of the nucleus, so that surface features are nearly inde-
pendent of the size of the nucleus. These consideration naturally do not
apply to very light nutlei.

The Fermi distribution (III, 4) represents average properties of
the nuclear density for many nuclei, The finer details of the ground state
charge distribution have also been studied.

We mention the recent Stanford expeeriment(”) on the elastic scat
tering of 750 MeV electrons from calcium isotopes. It was found that a
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charge distribution 5‘3 o{r) obtained by analyzing the scattering data at
250 MeV was quite inadequate at 750 MeV to explain the experimental re-
sults in the region of large momentum transfer ¢ > 500 MeV, An oscilla-
ting function, Ag‘ (r), had to added to the charge distribution fo(r) to
obtain a good fit at 750 MeV, It was suggested that such a modulating cor
rection corresponds at least qualitatively to filling shells in the shell mo-
del and thus reflects the shell structure of the nucleus,

So far we have interpreted the elastic electron scattering in terms
of a phenomenological ground state charge density. A more ambitious
approach should be based on the wave function of the ground state, Even
if we use an approximate nuclear wave function given by a simple model
(say, independent particle model) such a descriptionrepresents a more
interesting theoretical interpretation,

~Let us discuss the elastic electron scattering from light, spin
zero nuclei in this spirit, We can write the expression for the charge ela
stic form factor - see Eq. (III.2) as follows:

1 .0 .
(111, 5) Fch=“—z~ *i{l,Q(Q)lk

In order to evaluate the form factor one has to know the nuclear
charge density operator Q(q) and the nuclear ground state {i> .

(1)

If we use the McVoy-Van Hove charge operator - see Eq. (I.1)

one gets
A 1‘9 <» = A
e q(l""R) N L.
L2 .1 g i) .1 g
(Ir.e)  F_, %(q,@.) z <l z e, e . rex X
-1 k=1
where 2
TI: 2 = + "JM"
(111, 7) g;_;(q/\,,) (GEp Gp,) 1+ o )

In Eq, (III.7) we have introduced the electric form factors of
the nucleons(ls); &(qz ) represents the correction due to finite sizes of
the nucleon, >

Let us note that in Eq. (III. 6) the nuclear center-of-mass motion
has been taken into account by means of the Gartenhaus-Schwartz transfor
mation(4), Thus, we can calculate the charge form factor by using grour?d
state wave functions which are not translationally invariant,

It is well known that the elastic electron scattering from light
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nuclei (‘He4, Clz, 016) can be well described in the harmonic oscillator po

tential shell model. In this model the individual nucleons are considered
tomove in a common oscillator well. The nuclear wave function is con-
structed from the single-particle oscillator states,

Let us consider a nucleus with two protons in the s-shell and
Z-2 protons in the p-shell., Using the oscillator model ground state wave
function one obtains the charge form factor:

2 2 2
2 q Z-2 g ,_94
(111, 8) F . (q)=®(q,.)exp( ) (1 -=; ) exp (- )

2 2,
where o\is the parameter of the Gaussian factor exp(- 1/2 r") of the
oscillator wave functions. Let us note that the c. m. motion correction re
duces’inthe oscillator well model to a simple factor,

The elastic electron scattering data have been satisfactoryinterpre

ted<16) in terms of the oscillator well model for many light nuclei: He#
Beg, Bll, CI12, N14, 016(}{).

2

The only nucleus for which the harmonic oscillator potential shell
model was not succesful’ is Lie, It is likely that for this nuclid the p-nu-
cleons are bound a good deal less firmly that in heavier nuclei in the p-
-shell. This can be simulated by allowing the s - andp - nucleons to move
in different potential wells (different oscillator strenghts) as suggested by
El‘con(le), The model with two different oscillator wells provided a good
fit to the experimental data for 1.i6,

Recently, the elastic scattering measurements for He? and 1i6
have been(19,20) extended to large momentum transfers, It turned out
that the simple shell model with oscillator potential is no more able to
explain the experimental results for these nuclei. In the case of the He
nucleus a well pronounced minimum of the form factor, at q2;:710 fm‘z,
was found. This minimum is in a drastic disagreement with the prediction
of the harmonic oscillator shell model,

It was suggested by Czyz and L’esniali(’zl) that such a minimum
may arise from the hard-core repulsion between nucleons at short mutual
distances. In fact, taking into account the two-nucleon correlations one can
produce the minimum in the elastic form factor and, under suitable con-
ditions (i.e. by choosing suitable parameters), one can well reproduce its
positiom for He4, Similar attempts to explain the large momentum transfer

(%) - In the case of Be? and B11 the quadrupole scattering contribution
had to be taken into account because of the large quadrupole moments
of these nuclides,
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2
behaviour of the form factor for Ca‘LOt‘. 2)

at least qualitatively, succesful,

6(23)

and Li have also been,

We will discuss now the influence of the short range nucleon-nu-
cleon correlations on the elastic form factor in more detail. Let us stress
that the short-range effects, e, g. a hard core repulsion between nucleons,
may be visible if the momentum transferred to the nucleus is sufficiently
‘high. The usual shell model does not account for possible dynamical nu-
cleon-nucleon correlations. The wave function of the shell model has few
high-momentum components. In experiments involving large momenta,
high-momentum components of the wave function are important:and the
usual shell model is expected to break down., The high-momentum compo
nents can be introduced-into the wave function by taking into account the
strong short-range repulsion in the nucleon-nucleon interaction.

We introduce dynamical correlations between nucleons into the
shell model wave function ?SM employing a unitary(24) operator U:

(111, 9) . \«\{"/>=‘U“\f’SM> , ut=u”

Of course, it is possible to calculate ground-state expectation values (as
- the elastic form factor) using ug\lszorrelated shell model state if one uses
unitary transformed operators, 0, related to the standard operators, 0,

by:
‘ ~ 4 i
(I11. 10) ©=U 8U=U BU

As we will consider the short-range correlations arising from the
hard core repulsion between nucleons we can take into account the two-par
ticle correlations only, We neglect then the probability of simultaneous
modification of the wave functions of more than two particles as the proba
bility for three and more nucleons to come close together is expected to be
small, Speaking the same language in the three-particle correlation appro
kximation we will neglect four-nucleon (and higher) clusters in the system.

In order to account for the two-particle corrections we construct
U as a Jastrow product(25) of unitary operators of two particles:

A
(I11.11) U= ,W)/L(j,k)
irk=1

Let us consider the unitary transform of an one-body operator
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Because of unitarity one has

A. A A
(L. 12) vt onu=7 T t6m 06) M)
j=1 =1 k()

as the operators for different particles are naturally supposed to com-
mute, o
Assuming now only the two-particle correlations we obtain:

A A A
mr1s) 0" 2 0@ U T L6 K o)l k)-(A-2) 7 0()
j=1 ik =1

Where one has subtracted the contributions from these k's which are not
"correlated' to a given j.

Proceeding in the same way we obtain in the three-particle corre
lation approximation :

A
U+ 2 0(j) U
j=1 j

-~
-
-

™M

_; LGk, 1) 0) MG, K, 1)

#1
-y

“(8-3) ] WK 0G) i, 5 - (A-3) (A-2) T 0(3)
itk j=1

~H.
=

(I1I. 14)

where the correlation operator was assumed in the form:

A -
(IIL. 15) U= T\' Mk, )= TT b}_(j,k)/‘,kk(j,ﬁwfk,iﬂ |

ivk 1  isk>i

(x) - We make here use of the fact that in the simple oscillator shell model
the nuclear c.m. motion correction just factors out. Let us stress
however, that in the model with two different oscillator wells, the
c.m. correction becomes algebraically quite complicated(%).
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Let us turn now to the elastic charge form factor. In the oscilla-
tor shell model we can write ~see Eq. (III. 6)-the !'correlated" form factor,
as follows:

(111, 16) - Fop %(q,“ e).(p 4—;;-)[SM+AF]

where FSM is the so-called shell model form factor

-7 >

\Ze;q iy >

(II1.17) ¥ = SM

1 ¢
SM 2z

and AF is the correction to FSM which accounts for nucleon-nucleon corre

lations. ‘
- Liet us calculate the two-particle correlation correction to the ela

stic form factor. Applying (III. 13) one obtains from (III,17):

- =
iq-r ~
AF—MZ [<0£B(1 2)| e, e 1lp(B(1,2)-B¢((l,2)>
(III. 18) o B PSR

-{k)B(2)]e, € N rl\o(u)B(z)-B(l)oi(z)ﬂ

where the summation extends over all occupied single-particle states
of the shell.model.

In (III. 18) we have introduced the correlated two-particle states:

(I1L. 19) ]\2\1/3(1,2» =/1~(1,2)|o((1),>1 B(2)>

Performing in Eq. (IIl, 18) the summation over the spin and isospin quantum
numbers one has: '

- > )

iq: rl Ciqer,
(I1I. 20) AF-—— Z Ile(abl |ab>- A¢able |ba>
ab
whéreA (2024 denotes the difference between correlated and uncorrelated

magnitudes, The single particle spatial quantum numbers we denote a, b...;

the one-particle orbital state is |ad = \na am ).
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In the case of harmonic oscillator wave functions it is possible
to define a transformation from motion of two particles about a common
center to the relative and ¢. m. motion of the two particles, Following
Moshinsky(27) this transformation may be written:

(111, 21) .n,1 ,(}),d) 2_ {nl NL, L‘n 212(} nl, NL, A}A.>,

nlNL

where (nlm) are the quantum numbers of relative motion and (NLM) are
the quantum numbers of the c. m. motion.

We introduce the two-particle correlations in (III, 20) be modifying
(in a unitary way thus preserving normalizations and orthogonalities 5)y
the radial functions of the relative motion of a nucleon-nucleon pair:

k4

7~ (r)
nlm = R r)Y @), R_=—EZ-R (r)
[ nl ml nl
(I11. 22) -
an = f dr rz Ril gz(r)
J

where g(r) is the "correlation' function which modifies the standard radial
oscillator function R ;(r) at short internucleon distances,

. Employing the Moshinsky technique(27) one obtains from (III, 20)
the following two-particle correlation correction to the elastic .form factor:

(AF) =—1- exp(- U}s(z 1)-(Z-2)(6 t)‘a A@OO\exp("‘F) loooy +

(I11. 23)
+—— (Z-2)A <100]exp %hoo} (~—)1/2t A(loo]eXp I;Z ]000)}
where

t=q2/8°<2.

The formula (III. 23) is valid for nuclei with two protons in the
s~shell and Z-~2 protons in the p-shell, It was assumed here that the short



36.

. %
range correlations act on the relative s-states only( ).

One can derive a more exact formula by taking into account not
only correlations in the s-state of relative motion, but those in all possible
states(28), The case of two different oscillator wells for s-and p-nucleons
can also be included(26),

In order to evaluate the expressions in Eq. (111.23) we must as-
sume a form for g(r). We write

(111, 24) gz(s)=1 —exp(——lz—— /\2 sz)

This form enables us to-perform all the integrations in (III.23) analytically,
Such a correlation function represents the soft-core repulsion between nu
cleons at small relative distance s. The correlation parameter A may be
somehow related to the hard-core radius, however, the relation is rather
ambiguous,

In Figs. 6-8 we have presented, for some light nuclei, the elastic
form factors corrected for the short-range nucleon-nucleon correlations.
These are compared with the uncorrelated form factors and the experimen
tal results. a

In the case of Heé (see Fig. 6) we have evaluated the effect of the
two (curve 2) and three (curve 3) particle correlations; curve 0 represents
the uncorrelated form factor obtained from the standard harmonic oscilla-
tor shell model. By introducing the correlations we are able to explain the
existence of a diffraction minimum although the height of the second maxi-
mum is not well reproduced, Probably one should also consider a long-ran
ge correlation (change of the shape of-the potential well) in order to get a
good fit over the whole range of momentum transfer, Comparison of the
curves 2 and 3 for He? shows that the effect of three-particle correlations
in this small nucleus is particularly important.

The short-range nucleon-nucleon correlations seem to be very
important also in the 1Li6 nucleus(t), We were able(26) to obtain a good fit
to the experimental data for this nuclid in the model with two different oscil

(%) - Let us note that the oscillator function of the relative s-state does
‘not vanish for r=0. This is in a drastic disagreement with the suppo
sed hard-core repulsion between nucleons, The correlations correc-
tion coming from the modification of the relative s-state seems, the
refore, to be the most important one,

(+) - Since the quadrupole moment of 1.i6 is very small one can describe
the elastic electron scattering from this nucleus in terms of the mo-
nopole form factor only.
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lator wells provided one included the correlations between nucleons-see
Fig. 7.

¢ In Fig. 8 we have presented the correlated and uncorrelated char
ge form factor for C!12. One might infer from this figure that the short-
~-range effects seem to decrease with the increase of the mass number.
The existing experimental data for C12 can be sufficiently well explained
in'the oscillator shell model without the correlations. It could be qualitati
vely interpreted that with the mass number increasing, the effect of an
average nuclear potential well becomes more and more important, In or
der to show some details of the fluctuations of nucleons around their avera
ge orbits one has to go then to very large momentum transfers.

0.1

T T IITlll

0.01

Illlllll

0.001

q*(fm?)

FIG. 6 - Charge form factor of E[e4 versus momentum
transfer square. Experimental points are from Ref, (19).
0- no correlation, 2- two-particle correlations, 3-three-
-particle correlations. . The oscillator well parameter is

=155 MeV and the correlation parameter Eq (I11. 24)
A=1.55fm-1,
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FIG, 8 - Charge form factor of Clz. Experimental points are from
Ref. (30). Dashed line-no correlations., Full line-two-particle cor-
relations included. The parameters are Q4= o\p=126.384 MeV,
N=2,1475 fm-1,
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One should emphasize that .f one reproduces the elastic charge
form factor for He? or Li® by introducing short-range correlations one
does not prove their existence., The electron scattering measurements
can always be interpreted in terms of an effective nuclear-charge distri
bution =see Egs. (III, 23)=which may or may not come from correlations.
In fact, it was possible to fit the He4 results(lg) by means of phenomenolo
gical charge densities with the inner part appreciably lower than that pre
dicted by the oscillator potential model, Nevertheless the short-range cor
relation calculations described here may present a strong argument for
the existence of the correlations, If the correlations were absent one should
be able to derive the charge densities which fit the data from certain po-
tential -wells, However, the recent analysis(zg) has shown that it is quite
‘doubtful to find a central potential well which would correctly reproduce
the diffraction minimum for He4. In order to fit the form factor data up
to large q andinfinitely repulsive core had to be added to the central poten
tial,



41,

REFERENCES, -

(1) - K. W. Mc Voy and L, VanHove, Phys, Rev. 125, 1034 (1962),

(2) - T, de Forest and J, D, Walecka, Advances in Phys 15, 1 (19686).

(3) -~ S.D, Drell and J. D. Walecka, Ann, of Phys, 28, 18 (1964)

(4) - S, Gartenhaus and C., Schwartz, Phys. Rev, 108 482 (1957),

(5) - W, Czyz, L, Lesniak and A, Ma%¥ecki, Ann, of P! Phys, 42, 119 (1967).

(6 - W. Czyz L. Lesniak and A, Ma¥ecki, Ann. of Phys, 42 97 (1967),

(7) - H. Uberall Lectures given at NRL (Washington), NRL Report 6729
(1968),

(8) - M. Goldhaber and E, Teller, Phys. Rev, 74, 1046 (1948).

(9) = D, H. Wilkinson, Physica 22, 1039 (1958),

(10) - J, P, Elliott and B, H. Flowers, Proc, Roy. Soc, A 242, 57 (1957).
(11) - F, H. Lewis, Phys. Rev, 134B, 331 (1964).

(12) - J, B, Seaborn and J, M. Elsenberg, Nuclear Phys. 63, 496 (1965),
(13) - G.R. Bishop, D. B. Isabelle and C. Betourne, Nuclear Phys. 54, 97

NeJ

64).

Drell and C, L., Schwartz, Phys, Rev, 112, 568 (1958).

zyz, Lecture given at MIT, INP (Cracow) Report 566 /PL (1967),
. B. Elton, Nuclear Sizes, Oxford University Press, 1961,
Bellicard et al., Phys, Rev. Letters 19, 527 (1967).

. Hand, D.G, Miller and R, Wilson, Revs. Modern Phys., 35, 335

3
FProL

td;uO'U

2

. Frosch et al., Phys, Rev. 160, 874 (1967),

. Suelzle, M.R. Yearian and H. C Crannell, Phys. Rev. 162, 992
7).

(21) - W. Czyz and L. Lesniak, Phys. Letters 25B, 319 (1967).

(22) - F.C. Khanna, Phys, Rev. Letters 20, 871 (1968).

(23) - C. Ciofi degli Atti, Phys. Rev, 175; 1256 (1968),

(24) - J. da Providencia and C, M., Shakln Ann, of Phys, 30, 95 (1964),

ocrmoosr
g;uhjg
wW

(25) - R.J. Jastrow, Phys. Rev, 98, 1479 (1955).

(26) - A, Ma¥ecki and P, Picchi, (to be published),

(27) - M. Moshinsky, Nuclear Phys. 13, 104 (1959).

(28) - A, Ma%ecki and P, Picchi, Nuovo Cimento Letters 1, 81 (1969).

(29) - B.F. Gibson, A, Goldberg and M, S. Weiss, Nuclear Phys. A111, 321
(1968).

(30) - H. Crannell, Phys. Rev, 148, 1107 (1966),




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


