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The problem of the influence of the beam loading on the stability of the coherent
synchrotron oscillations is resumed and discussed in this work by means of finite diffe-
rence(le uations i. e. in a way that differs from the ones employed.by preceding au-
thors'® <»

INTRODUCTION -

Model of the phenomenon -

1) It is assumed to have only one beam and a single radiofrequency cavity on the
first harmonic,

2) The cavity can be represented by an equivalent resonant circuit in parallel, with
its three R, L, C, parameters,

3) The cavity is powered by an amplifier which, at intervals of time T equal to the
synchronous period of the particles, brings about a constant perturbation of voltage and
current,

4) The beam is described by a rigid distribution of charges determining, at every
turn, a constant perturbation of voltage and current.

5) The structure of the machine is characterized by the "momentum compaction",
o(c’ the period T of rotation of synchronous particles, the energy Wo irradiated by the
beam in each turn and its variations which will be later specified,

Furthermore, the machine is assumed to work at constant energy U,.



1 - EQUATIONS AND MAGNITUDES CONCERNING THE ISOLATED CAVITY -

In our schematization of a resonant cavity as an R, L., C, oscillating circuit in pa-
rallel, the evolution in time of the electromagnetic field is represented by the homoge-
neous differential equation,

1.1 = —+— x =90

®x 1 dx | 1

dt2 RC dt LC

where x can be a current flowing through any one branch of the circuit shown in fig, 1
or the voltage difference between two points of the some cir

cuit, Let us define some parameters connected to the magni

I(t) V(t) |+ tudes of R,L, and C.
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From fig. 1, one obtains

di(t)

1.3. vit) = L at

If I(t) is taken as the variable x of equation 1.1 it follows that
1.4 { x(t) = I(t)
L x(t) = V(1)

and by means of formula Al, 4 obtained in Appendix 1, the solution. of equation 1.1 is found
to be

Vi) = ¢ %" [(cospt - % senpivio) - 22EL ()]
1,5, <
1t) = e~ %Xt [-s—ﬂlé—t— V(0) + (cos At + = senft) 10)]
h
or else .
_ ~olt [ cos(At+Y) sen/t
vit) =e [ cos ¥ V(o) - cos Y ZOI(O)]
1.86. <
_ -Xt | sendt V(0)  cos(At-¥)
I =e " cosyY  Z, * cos ¥ I(O)] )

If one writes

Vi cos(Bt+Y) _senft__
. cos ¢ "“o cosy
1.1, v(t) = and M(At) =
sendt
It) Zicos 7 cos(At-¥)

cos )0



the expression 1.6, can be written more concisely as:
-t
1.8, v(t) = ™7 ' M(ABY)T(0)

Since M(A1t) has a determinant equal to 1 and a trace <2, in absolute value the Twiss for
mulae can be applied,

t
1.9, M(At) =1cosAt + Jsen/fBt = eJ/3
with

1 0
1,10, 1=

0 1

Z
o

-tgy " cosy
1,11, J =

S S

Zocosy gy
1.12. 3=
1. 8. then becomes

-l + A

1,13, Tty = T HIF A

In all of the following calculation, the only matrices involved are I and J which commuta-
te with each other. This property makes the order of the matrices non-essential, In the
intermediate calculations I can be neglected and J treated as an imaginary unit,

2 - EVOLUTION OF THE CAVITY IN THE PRESENCE OF EXTERNAL PERTURBATION,

Let B (t) dt"be the perturbation applied to the cavity at time t' By the application of
the superposition principle, equation 1.13 can be generalized as follows:

t
2.1. T) = EFANEZ 0 /e(‘_ﬁm)(t_t')ﬁ(t')dt'

(o]

In the more restrictive hypotheses that perturbation be different from 0 only in the
interval of time ty - t5 and that t be external to this interval, and indicating by ty a gene-
ral time within the interval ty - ty, the equation 2.1, can be written:

tf
2 :
2.2 F) =TT AN ) 1 X HADE) / ol AI)ltg-t1)

p(t')dt'} u(t-tg)
t

where



u(x) =0 for x =<0
u(x) = 1 for x>0
Finally assuming that
t2
2.3, -;p(ts) =/ o=+ AT tg-t") Z(tat
Y

equation 2, 2, becomes

(

- -
v(t) = e( +ﬁJ)tvf

2.4, (0

" e(_ o +/3 J)(t-tg) ;;’p(ts) u(t-tg)

If one considers 2,4, to be valid at any moment, only local errors are made which
have no effect before or after the perturbation.

Formula 2, 3, can be used to evaluate the perturbation induced on the cavity by the
supply and by the beam (going through), The two perturgetions will later be assumed not
to be both present at the same time. For the first one, vy, it is not necessary to specify
the components, it is enough to assume that it is constant and periodic.

The perturbation due to the beam will be called ?B' Let us consider the case of a
rigid beam structure: the perturbation is then constant, however, because of coherent syn
chrotron oscillations it is not strictly periodical.

To calculate ;"B: the following hypotheses will be made:

a) the rigid beam structure can be described by the charge density function p(t) which it is
agssumed to be positive,
b} an infinitesimal charge p(t) dt crossing the cavity induces a perturbation,

-»> p(t) —»
. = - d
2,5, dv c P, t

where in the case of purely capacitive coupling

2.6. P,

c) Because of energy conservation, an infinitesimal charge p(t)dt crossing the cavity recei
ves an energy,

2.1, dE = p(t) V(t)dt
Through equations 2.3, and 2,5., at a general time tg one obtaing

to

2.8, : VB(ts) = - /

Y

dt

- ol ot §1
of +ﬁJ)(tst)_p_(at_)__-5>o

The energy Ep that the beam takes from the cavity can be throught of as consisting
of two terms. The largest is the energy which the beam would take if the voltage in the ca



vity were not affected by the beam.
Using formula 2. 7. the following equation can be written for this part:
to v
| ol + B J)(t-t -
2.9 Eg [V- (ts)] = 5’0 / ! " S)p(t')?z’- (ts)dt'] = My Valtg)+M, 517 (tg)
t
where V’(ts) is the vector associated to the cavity prior to the perturbation 73 and Mjq and
M, are two time independent coefficients,

f)’o is to be multiplied.(lines by columns) with the vector on the right,

The second term takes into account the beam-induced voltage variation, As the e
nergy delivered to the beam depends linearly on the voltage this second term is independent
of the voltage in the cavity prior to the beam crossing, By 2.5 and 2.7, one finds:

t, t
> - +A J)(t-t") p(t") ~-
2. 10, AEB = - P, / p(t)dt e( N )%—~ dt! Pq
ty ty
3 - DEFINITION OF THE VECTORS v, AND ?z’g -

In this paragraph it is assumed that the beam revolution frequency be identical to
that, 1/T, of the RF power supply pulses and delayed with respect to it by an amount .
If at the initial time, the cavity is characterized by the vector ?7(0) generalizing the ex-
pression 2, 4., at the general time t, we have:

m

n
- ) = LA S of- %+ I)-AT) 7S (=44 3) [t-(ar+7)] v
h=0 h=0 o
where
3.2, n=[t/T] m = [t -7)/T]

with [a] integral part of a.

In A2 it is shown that, assuming

' AIT -oAT o~ (R_-AJ T
e("_°(+AJ)1: (e -e )(VA+'e VB)

V(o) - ‘
2 [cosho(T - cos/ST-_\

-y }
3.3. Vs(.t) =

}
V(t) can be expressed as a sum of two terms: ?S(t) which tends to zero due to the factor

e“‘t, and the asymptotic expression 3. 4. function of T and't,

T - AJT
- e -8

3.4, v (T,t)=
¢ Zrcoshb(T~cosﬂTj

{e(-».<+ﬂJ)(tfn'l“)‘.;;tx + {~%+A3) [t-(mT+T)) VB}

From 3.4, and 3. 2., it can be easily drawn that ?c(‘t ,t) is periodical with a pe-



riod T. The following equation is obtained:
- . _—>
3.5. Vo (T, t4q:T) = v (T,1)

where q is an integer,

This result directly depends on the periodical character of the cavity perturbation
as also on the damping of the electro-magnetic field oscillations,

From_:i. 4, it is possible to see that if one indicates with-’\'r‘;( T, nT), and 7/"0*(?", nT),
the values of v, before and after time nT then ’

3.6. VT, nT) - V (T, 0T)=Vy

In the same way:

"+ ~ - > - _—D
3.1. vc(L,n'1+’Z*) -vc('l", nT +7T) -VB
-ip
Other than from eq.s 3.2. and 3,4,, one can define'v c('t, t) in the following way: Vc(t , 1)
is a vector which at times (nT ) has the value given by eq. 3. 8.

LT -AJT ; »
8.8. 3T, nr) = =0 [VA re °‘+’8J)(T"’r)“713]
N 2 coshO(T—cos/&‘T]

at times (nT + T),; has the value given by eq. 3.9,

T -AJT :
3.9. N (TaT+T) = 28 : [e(-“m)t:;A;;;Bk

) 2 [(:osh G(T-cos/bT]

[ and during the time intervals [nT - nT +'l‘] and En'T+’L' —-(n+1)T]
3.10. I behaves as a homogeneous solution of eq.1}l according to eq. .
1.13.

Let's point out the fact, that, in the hypothesis of a periodic perturbation, -\}’C(Z', t)
can be a physical vector.

Later on, we will consider the case where the béam crossings are not synchronous
with the RF, Lo

It is therefore convenient to define a vector which has a definition similar to that
of ?r'::('t', t) and accounts for the non periodicity of the beam crossings.

Let us suppose that the crossings occur at times nT + T(n)(indicating the dependan
ce of T from n explicitly). We define a new vector ??g'(t) in the following way:

3.11. Tl Tm) =3 (oo, ot + Tw)

3,12, ' ;;'B‘““)ﬂ ="§:['t(n), (n+1‘)T]

Durihg the time intervals T_nT + T (n) - {n+ 1)T] and;[(n+1)T-‘
3.13. — (n+ 1T + 'C(n+jl):] , v_(t) behaves as a homogeneous solution
of eq. 1.1, consistent with 1.13.

We would like to underline the fact that ?r"g(t) can be a physical vector only during



1,

an interval [nT.’+ T(n) - (n+1)T + T(n+1)] whenever T(n) is a function 6f n, but it is
coincident with vo(T,t) if T(n) does not vary with n.

4 - DEFINITION OF VECTOR ¥, -

Let us suppose that the beam crossi ngs are not synchronous and occur at times
nT + T (n). Eq. 3.1, has to be replaced by:

n m
. ) = oK AN 5 e(-~(+/3J)(t—hT)‘-,>A+ PENEISTE) [t-(hT+'c(h))];,,B
=0 h=0
where:
4.2, n=[t/T) m = | (t- T(w) /1)

Due to T(n) varying from one crossing to the other v{t) will not have an asintotically pe-
riodic expression of type 3. 4., but a different one that depends on: T (n).

To go further we have to introduce a new vector Vr.(t), which is a generalized form
of V4(t), already defined in eq. 3.3.:

4.3, Vel = %0) - Vott)

where ?r‘g'(t) is defined by eq.s 3.11, 3.12., 3.13,

The new vector ?r:.(t) is not influenced by the discontinuity VA at times (n + 1)T and
follows eq. 1,13, durix_]’g the entire time interval [oT +T(n) - (n+1)T+ 'C"(n+1)]. In fact,
considering eq. 4, 3., v(t) and ?g(t-)» are both physically possible during such time interval,

Taking for simplicity:

4.4, Vi) =VinT +T(m)
- .
- = = t
4.5, vr(n) vr(nT +T(n))
we obtain:

"7;(11_,_1) - e(-°(+/3J) [T+T(n+1)-“C(n)] -\’f:(n

4.6, )

At the (n-&-l)'.th crossing -v’r(t) varies from?;.(nﬂ) to-\'r:.'(n+1). To deduce the relation existing
between these two values, let us apply eq. 4. 3. to the right and to the left of time (n+1)T +
+ T(n+l)

4.7, % [y +T(n+1) ] ='§’z;(n+1) +-:ré;[(n+1)T +'t(n+1):]
4.8, 3 )T +T (1)) =-\>r:(n+1) +?,—-§ Le+n)T + Tt}
According to eq.s 3.13, 3,12 and 3.5

4.9, "’,{; [(n+1)T +"C(n+1ﬂ = e("°(+ AJ) 't(n+1);’>: [‘c (n), T]

According to eq.s.3,11,, 3.7., 3.10. and 3.5.



T,; [(n+1)T+ t(n+1)] = ?Z [‘c(n+1), (n+1)T + T(n+1)]

a0, ¢ W [n+1)T+ TUo+1)] =¥ [T0r1), T+ TUnt1) | +9p

| ¥, lesreten] - A ANT [ (n1), 7] +7,

According to eq,s 3,1, and 3,2,
4.11, L [(n+1) . T+'t(n+1’)] =" [(n+1)T +'t(n+1)] +?,’B

Subtracting eq. 4.7. from 4, 8, and using eq.s 4. 9., 4.10., 4.11, and 4.6, we finally ob-
tain:

-\"+(1’1+1) = e("&"'/lJ) [T +’E(n+1)-’t‘(n)] -3+(n) + e(_gL.*_ﬁ J)Z'(n_'_l)
r r

. {%7: lzr]) -3 [, T]}

4,12,

5 - BEAM CAVITY COUPLING -

In this paragraph, we want to establish one more relation between T (n) and vector
Vr(n) which, together with eq. 4.12,, will completely define T(n) and '{r’r(n).

Eq. 4.12. includes the cavity parameters, the relation that we shall deduce now
will essentially include the parameters defining the machine structure and the radiation
mode, '

Let us first consider the relation between two successive beam crossings and the
beam energy.

5.1, Ta+1) - T() =h [Em) - (Wy+0.5W)]
where
< T
__ ¢
5.2 h = W
s
WS synchronous energy of the beam (not of the particle) X NelU,
N number of particles;
e elementary charge;
U, energy of machine;
w o energy irradiated per turn at equilibrium conditions;
OLC momentum compaction;
E(n) beam energy after the nth passage through the cavity;
T period of the synchronous particle and of the power supply.

T(n) delay of the nth crossing with respect to the nth power supply pulse.

At equilibrium, ‘T(n) does not vary and we obtain:

5. 3. E(n) =Wg + 0.5 W,



In fact, under those conditions, the beam looses an energy Wo in one turn, co-
mes back to the cavity with energy Wg - 0.5 W, gains an energy W, and returns to Wy +
+0.5W
. o-

Considering the beam energy variation from one crossing to the next, we may
write, recalling eq, s 2. 9 and 2. 10,

E(n) - (Wg+0. 5 Wo)] .

E(n+1) = E(n) - WOI’1+K W
a S

5.4. N
+E Eq [v [T+ Tnr1)] + AEg

where Wo represents the total radiation energy losses per turn both coherent and incohe-
rent, and K accounts for variations in such losses,

The following terms in eq. 5.4 give the cavity contribution (2, 9., 2.10),

As Ep defined by eq. 2.9 is a linear function of !x?(ts), we may write (eqs, 3.1,
4.3, 4.4, 3,11, 3.8).

[ EBI[?— [(nt1) T +’C(n+1):]] = EB['?# [m+1)T + 't(n+1)]]-EB(x?'j’3)
5 5. ¢ Eg-leyTet (n+1)]]= EB[‘G'g* [T+ T (n+1)'_]]+ BV ()] -EL ()

EB[?;‘ [(n+1)T+ "C(n+1)']]= Eglvt [Tt1), T (n+1)'_]]+EB[‘x’r;(n+1ﬂ -Ep(vy)

Substituting eq. 5.5, into 5.4,, we deduce

E(n)-(W+0,5W )
° ] + By [‘x’r:(’t(n+1),’c(n+1))] +

E(n+1)=E(n)-'W0 [1+K

Ws
5. 6. + By [‘G:(nﬂ)] - B (W) + AB.
At equilibrium conditions for both beam and cavity we also have:
5.17. v.(n) =0

and eq. 5, 6 determines the value of ts synchronous delay
- = + > ~
5. 8., By (95T, T ] =W, + B @)- AR

Eq. 5.8, determines the beam position relative to the power supply pulses,

It might also be written:

o } ‘
5.9, EplVa(T,. TY] =W, - AE,
Multiplying eq. 5.6 times h, using eq. 5.1 and 5. 8 and defining
w
5.10 K =K-—>
cT W W
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5. 11, A= Tm) - T

eq. 5, 6 becomes:

X (n+2) - XY(n+1)(2-Kw)+ X (n)(1-Kw) = h {EB [7g<t<n+1>, T (n+1))] -

5. 12, _Eg [;;:( T, 'cs)] + EB[T,’;(nﬂ)]} .

6 - LINEARIZATION AND PROJECTION OF EQ.s 4,12 AND 5,12 -

Let us consider simultaneously eq.s 4,12 and 5. 12, that we rewrite as:

e(-u(+/3J)EP+'t(n+1)-'Z‘(nf] 2+ (-%+A)T (n+1) .

AT MOEX
6.1,

. {‘x’r: [T(n), T] --\7: ["C(n+1), Tl}

X (n+2)- X (n+1)(2-Kw)+ X (n)(1-Kw) = h{EB[}’r:(“C(nﬂ.), T (n+1)) -
6.2,

-t ] [-a+ .l
- + +
vc('Cs, Z"S) EB vr(n 1) }
According to the definition 5.11, we assume in eq. 6.1, and 6, 2:

6. 3. T =T, +X (n)

>+
Thereéfore we may consider X,(n) and vr(n) as independent variables.
To progress with the discussion, it is convenient to linearize eq,s 6.1 and 6, 2.,

; There is onl_y one way to do it and namely to expand each term of these equations
in series of X,(n) and v;(n) to first order,

There are no zero order terms because X,(n) and _\;:(n) are zero at equilibrium,

Considering.the t,wo_)equations and remembering (2, 9) that EB is.a 1ine‘Er opera
tor, we note that the variable v'I'.'(n) is only present at the first order, Therefore V'I','(n) is
linear already.

As for X (n), we have first of all to make the substitution:

RELEYEN) [T+ T (nt+1)- T(n)) (kBT

6. 4.
As far ag the other terms are concerned, we have shown in App, III that, assu
ming
T e/3JT
6.5. Py = (4 -A7J)

2 [cosh oLT -cos:/&T]
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and

( &XT o AIT) (-+B1) Ty

2 costh-cos/STJ

6. 6. P, = (-L+AJT)

there are two more substitutions to be made:

-+ T) T(n+1){'§: [z, T] -7 [etera), T]} 5

6. 7.
—> [X (n+1)- Y () ] P Ty

6. 8. ¥ [, T ] -3 [re), te] = Awe,?,
Using eq.s5 6.4, 6,7 and 6.8, eq.s 6.1 and 6. 2 become:

6. 9. ) - AT Y - XL BT = 0

6.10. X (m+2)- A(nt1) [2-kw-nB (P, 7] +X (m)(1-Kw)-hE [ T (m+1)] = 0

To continue the discussion of eq.s 6, 9 and 6. 10 we must now obtain the two scalar equa-
tions corresponding to 6, 9,

By defining an angle 9 as:

6.11, ABT=27+0

We obtain from eq. £ 1.9, 1.7 and 6. 11:

" cos(0+Y ),V:(n)-ZOI:(n)senO

“K+AT) T+,  _ e-*T
v (n) = =——

coslf

6.12; e(

send

Z
o

V:(n) + cos(0+ Y )I::(n)

In App. IV we have derived the product:
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[:e— O(Tsenz P -sen(2 Y+Q)] VB+[e— *T os ¥ —cos(0+f)] Zolg

A
6.13. P_T_= °

BB 2-[cosho(T—cosQ]

VB

Z
o

[éos(9+ ‘f)—e-d\Tcos lfI - sen 0 I

In a similar way, in the same App. IV we have obtained for PAVA:

[_e-J\Tsen(¢s+2}o)+sen(¢s+)0—0)]VA.+[coS(¢S+ Y-0)-

y -e“’(Tcos(¢s+\F)] z 1,
> o

6,14, P,v,=
2cos?[costhT-cos0:]

A'A

v
[e—d\Tcos(¢S+ Y)-cos(¢s+‘f-0)]——zé +[sen(¢s—0)-e_°(Tsen¢s-] I,
o

—
\'e

6. 14 shows that vector P ?A depends an B also, through the phase (@ = /A 't's) which is

in turn determined from eq, 5. 9.,

We will assume, in the following, -V’A to vary with "V’B in such'a way that EB(PA?A)
stays constant and positive. This corresponds, with good approximation, to the hypothesis
that the amplitude of the RF voltage does not vary with load.

If one defines

-‘Y ~ . ._,
6. 15. 2e Y cos § =2 -Kw - h-Eg(P, 7))
6. 16, 1-Kw=e2Y
7
6.17. d = 0

) 2cos ¥ [cobsh‘*T-QOSG]

eq,s 6.9 and 6, 10 may be writien using eq.s 6,12, 6,13, 6.14, 6,15, 6.16, 6.17 and 2. 9:

s’ -l o

+ e + €
V. .(nt1)- o5 °°S(°+V)Vr(n)+'cosy

+[cos(0+ Y)-echos\f]ZoIB} [)(,(n+1)-X(n)] =0

6.18. 4 -oT Vvim)  -oT
+ e r

I (n+1)- send -

r cos 'f ‘Zo cosy

sen(-)Zc> I:(n)+d {[sen(z )0+0)'e.<krsen2 Y] Vgt

%
cos(0- Y)I:(n)'-t-d {L[e- *Tcosjﬁ -cos(9+yﬂ “Z;g +

! +senQIB§[X(n+1)- )((n)] =0



6.18.

13,

L X(n+2)-2e-ycosgX(n+1)+e~27){(n)-hMuVi(n+1)-hM121:(n+1) =0

7 - 4th ORDER POLYNOMIAL ASSOCIATED WITH THE EQUATIONS SYSTEM 6, 18, -

The solutions of the homogeneous equations system 6, 18 are of the type:

7.1,

Ym) = oy x?
V+(n) =g X
r v

+ n
Ir(n) = aIX

Introducing these solutions in eq. 6.18 and simplifying one obtains a system of

linear equations, homogenoeus in a

ficient determinant P(x)

7. 2. P(x) =

must vanish,

x » 2v» 8. For the system to yield solutions, the coef

d{[sen(z\ho)-e' &TsenZ y]vB+ -AT : e-°(T
- - cos(0+Y)), —— Z_send
+ [cos(p+0)-e *Tcos\f]zolB}(x-l) cosf cosf O
-AT -AT
AT B 0
d {EE cosy -cos(9+‘f)]z; +sen9!1¥x-1) - EZ-'O—C—::T;— X <os ¥ cos(6-¥)
x2 - 2xee-Ycos(Y + e-ZY —thx -hMlzx

Eq. 7.2 shows that P(x) is a fourth order polynomial in the variable x. P(x) is
sum of a first part, which is independent of the load and a perturbation term, which de-
pends from the load through Vg and I,

Assuming:

7.3.

4

P(x) = Po(x) +AP(x) = Z_ (am + Aam) x4-m

m=0

one quite easily deduces

7.4,

and:

7.5,

- - - A -
Po(x) = (x2—2xe Ycosd + e 2‘Y)(xz-2xe TcosO +e

ao =1

a, = -2(e Ycos 8+e_°(Tcos0)

a, = e~27 4 e'z“T+4e'(7+$T)cosgcos J

ag = -2 e~(r+oAT) [e-Ycos0 + e=*Teos é;]
| - e~ 2(y+™T)

)

Through a long series of algebraical and trigonometrical relationships one obtains:
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-’

Aa =0
(o]
Aa4=0
Aa. = hdiM, .V [ (2 Y+0) ~AT 2y]+(1v[ —Y—B--M Z 1)
ap = 11’ plsen -€ n 12Z_ " "11%'B

; [e' vUI‘cos‘[’ —cos(9+\/)1 + MllesenO}

-2oAT VB )
7. 8. { .Aa2 = hd{MHVBEa sen(2 Y—O)-sen(Z Y+0]+(M12 Zo - M11ZOIB)

. Eos(9+\f )-e‘z"LTcos(O-\f)] —MIZIBsen9(1+e_Z‘<T)}
v

-2T B
SGn(2*f—Oﬂ+(M12 A M].].ZOIB) .
(o]

AT
hd{M11 Vg gsen2Y -e

- -\ -
. [e Z*Tcos(O—\f)'-e Tcos\f]"&-l\/[llesenOe Z&T} .

8 - BEAM STRUCTURE AND PERTURBATIONS -

From eq.s 2,8 and 2, 9, one deduces that the four quantities V IB, Ml 1, Mpo
which appear in eq.s 7. 6, depend on the choice of tg, tg being the time where we consider
the beam perturbation,

On the other side from par, 2, it appears that, within wide limits, the choice of
ty is arbitrary and does not influence the physical results,

Mathematically this means that A ay, Aaz, A g as obtained from eq.s 7, 6,
must not depend explicitly on tg.

It should be possible therefore to express the perturbations as functions of quan
tities independent from tg,

Infact let us consider eq.s 2, 8 and 2, 9 again, We can write using eq.s 1,2 and

1.9,
8.1, :;.B' = _/50Zo J;/[coshb((t..ts)+senhb((t-ts)][Icos /3(t—ts)-Jsen/3(t-tS)]p(t) podt

1

to
8.2, Eg = B’o f [cosho('(t—ts)-senho((t-ts)][lcosﬂ(t-tsHJsenﬂ(t-ts. p(t)‘\?r(ts)dt
tl
Assuming
t9 :

coshed (t-tg) cos/B (t-tg)

8. 3. 11 = f p(t) -dt

22 t1 senh® (t-t5) | | senfB(t-ty)

and using 1. 11 for J, one obtains for Vp and Iy



15,

V. = /g°Z° [( +A_ Jcos¥ + (A, +A )senv]
B " cosy L7117 Sar)c0 12 " a3
8. 4.
Ao
B'ZSsy’( 12 T A99)

and for the terms M11 and M12 defined by eq, 2. 9:

ve

‘ 21
Ml.l = cosy [(AII—AZI)COS L/ + (A22-A12)sen L(’]

8.5,
Zo
1\/[12 ; -lcos\f (A22 - AI»Z)

Replacing the coefficients of eq. 7.6 with eq, s 8,4 and 8. 5:

Nz -
AT 2 2 2 2 2 .
MV = - cosp {'.Al1+A12)‘(A22+A21)]°°s YA A-AA,)

v

2 2
ssen P + (A22 - A12) }

v 2A Z

: B _ o o

M12 z - MllzoIB T 2 {(AuA
o cos

o 6 | 22-A12A21)cos‘~f+

2 2
+ (A22 - A12) sen K/}

and:writing

2 2 2
= (A11 +A1‘2) - (A22 + A

\__\
O
—
]

8,7,

2(A

L.

eq.s 7. 6 become:

11A22 - A12A21)

&
{

, = -dh ﬂ’ozo{Ql [sen(z‘f’ﬂ))-e‘ &Tsenz ‘f] -Q2 [c:os(z Y+0)-cos2¥ e” &Tl}

&
i

5 = -dh /AOZO{QI ‘:e-szsen(Z Y-0)-sen(2 *{’+Q‘)]+Q2 ——cos(z Y +0)-—e—2 *Tcos(z |4 -0)]}
8. 8.¢ '

‘Aas = -dh AOZO{Q]. [e' “Tsen2 ¥y we_z&Tsen(Z Y —Oﬂj -Qz[e' *Tcosz\f —e_zochos(Z‘? -9)}'1

\
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Defining now:

2,1/2

Q = @ +q))
8.9. Ql =roos‘\,—

Q, = Q sen¥
and using definitions 5,2 and 6, 17

2
'&cTﬂoQoZo
8,10. g =
& 2W cos ¢ [c‘osho(T -cosQ—_l

we may rewrite eq.s 8. 8

i Aa, g{’e‘d\Tsen(Z‘/ -‘V‘)-senﬁzl/-'lk)ﬂ)]}

8,11, < Aaz g{sen[(z Y-,V»)+0]-e-2 U\Tsen[(z)o % )-Q]}

D
o
]

X g = g{e—ziTsenI(z ‘f-'%)-gl-e_*Tsen(z)o-V)}

We will show in App. V that the terms Q and Q2 defined by 8.7, and therefore Q and ¥,
are independent of t5. These are the quantities we mentioned at the beginning of th1s pa-
ragraph,

Through eq. s 8.11, we can easily evaluate the modifications brought about by
a finite length beam structure as compared to a point-like beam,

Eq. s 8.1linclude the three terms Wy, Qs ¥ that we want to consider now in de
tail, For a point source distribution, W, the sync]hronous bunch energy, is qgU,. Qg is
coincident with q (choosmg tg comc1dent with the point charge crossing time and using
eq.s 8,3, 8,7, 8.9) and Yis zero

For the finite source distribution for Wg we have to consider also the energy di
stribution around the synchronous energy and as far as Qg is concerned, the general def1
nition 8. 9,

Finally % is always positive (see App. VI) and given by

1/2
8,12, Y b _p__ng

2V 5 B

In eq, 8.11 SB is the interval of phase angles that contains the beam,

As JB is normally very small, we have that:
8.13, (IR &
Eq. 8,12 is right only to an order of magnitude; the exact definition of % still comes from
eq.s 8,9,

Resuming the comparison of the point source with the finite source structures,
the new definitions of Wy and Q, are equivalent to a slight difference of total charge and do
not affect the perturbations mathematical expression, :
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Eq. 8.12 and the fact that % is a contribution to a second order effect (eq. 8.11)
allow.us to neglect the correction due to %,

All this is with regard to the effect of the beam structure on the polynomial per
turbation terms,

Let us add now that every cause of coherent losses, strongly dependent on the
beam structure, generally causes variations of the parameter vy (6. 16) associated with co
herent synchrotron oscillations damping,

9 - QUALITATIVE DISCUSSION OF THE SOLUTIONS -

Let us first consider the unperturbed polynomial, The solutions of eq. 7.4 are:

9,1, e-7i1&
and

- AT + §
9.2, o T +1i6

Eq. 9.1, represents the synchrotron oscillations of the bunch when the RF voltage is not
affected by the beam oscillations,

From eq.s 6,15 and 6. 16 obtains:

Kw
. 9.3, y v

~ o
9.4. § hEL(P,¥,)

v represents the damping of the synchrotron oscillation due to coherent and incoherent ra
diationslosses,

$ represents the zero-load phase variation of the synchrotron oscillations over
one turn,

Eq. 9.2 shows the time dependence of the cavity overexcitation \7;, defined ex-
actly by eq. 4. 3, ,

From eq.s 1.2, and 6, 11 obtains
& . ki
9.5, KT = —~ AT = (24 + 9 Al
’ 7 A tg'f-(2n + 9) '"'tfg )0 Q

9. 6. 0=/7T - 2q.

When the cavity is loaded, there ig coupling. In such a situation to every poly-
nomial root there corresponds a normal mode with both Vr(n) and A(n) simultaneously
different from zero,

From eq.s 7.1 one derives that, in order to have stability, the four perturbed
solutions must be smaller than one in absolute value,

As generally KT is greater than v, the most stable pair of solutions when no
perturhation is present, is the one corresponding tb oscillations inside the cavity.

One can deduce from eq. s 7. 6 that the product of the four roots is constant be-
cause Aa4 is zero. Therefore in order for the perturbation, not to destroy the stability,
the damping must be transferred from the highly damped couple to the least damped one,
If it is the least damped couple to reduce its damping, the stability range is very small,

Let's show now that the sign of parameter 0 determines the way the damping is
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transferred,

Fromeq,s 7.5 we obtain that,‘ for the case of complex conjugate damped roots
(no load condition) one can write, considering E’i positive

= -4+ £1
9.7. ~|\ ":12—6—52
- £

a3 4 + 3

while from eq. s 8, 11, neglecting second .order terms one has:

—
Hﬂ-’

i

A.a1=—g 0
9.8, Aa2=2g-e

Aa,

i
t
;0
[-»]

where gis positive (see 8, 10) varying with the load. 0 must be negative if one wants the per
turbed coefficients to stay of the type given by 9.7, We then qualitatively find the same crite
rion already deduced by other authors 1,2,3),

In the next paragraph we will quantitatively analyse the influence of the load and
of parameter 0 on the stability of the solutions,

10 - QUANTITATIVE ANALYSIS OF THE FOURTH ORDER POLYNOMIAIL -

One way to obtain quantitative information from the fourth order polynomial, is
to calculate the four solutions for every series of values of the parameters v, d, KT,
0 and load (the influence of beam shape represented by the parameter % is negligible) and
to check for stability,

This way is certainly the most likely to give results.

Nevertheless we do not need to know both polar coordinates of the solutions, As
far as stability is concerned it is enough to know the modulus, Starting from these consi
derations we will present a way of translating the stability conditions into an inequality,

Let us consider the factor expansion of a fourth order polynomial,

4
- S m = - - - -
10.1, P(x) Z_' b ¥ = (x - %) )x-x,)(x-x,)(x-x )
m=0
and assume;
r - .
1 7YY,
Xy = 9119,
10.2. 4 4 -
3 Y3Yy
X, = Y3/vy

For the time being, we will consider only the case of complex roots, Under such an hypo
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thesis, the new variables Y1 and yq represent the moduli and Y9 and y, the phase compo-
nents of the roots,

Using 10.1 and 10, 2 we obtain

7

b =1

1 1
b, = - [yl(yz + %, )+ Yq (y4 +-}7;)]

o
i

2 2 1 1
vo o+ 39+ + =
10. 3. ¢ Py Tty vy, v, )(y4+y4)

2 1, .2 1
by = -[y,valy, + ) IS S )]

2 2
L Py T¥1Y,

n

We might eliminate: ¥ and Y4 from eq.s 10. 3 and obtain a symmetrical relation between
yl and y3.

We will show in App. VII that, assuming:
2 2 2 2 2 2
= + = + =
[ ZEYL T YTy hh /vy = vyt b, /vy
. 3 2 i 2 .2
= 5% p - ‘ ~(bo+
l G(z, bysby. by, b)) = 2 byz (b, b, 4b4)z+[_4b2b4 (bg b1b4)]
the solution of polynomial 10, 1 is reduced to solving a third order equation in z:

10. 5, Gz, b1’bz’ b3,b4) =0

where remembering eq. s 7. 3:

( bO =a0
by=a;+ Aa
10. 6. J b2=a2+Aa
b3 =a, +A3.3
L by =2,

In no-load conditions Y1 and yg assume the values e~Y and e_*T. If at higher
load values one of them should cross the value one instab ility would result,

Correspondingly one of the three solutions of eq, 10, 5, must assume the value
1 +ay, as from eq.s 10.4. If we define:

10.7. by, by,bg) = G(14a,, b, by, by, 8 )

4’b1’ 4

initially, under stable conditions, one has:
10, 8. F(al, az, a3) #F0
and stability is maintened until F(bl’ b2’ b3) does not cross.a zero at some load value,

In the case of complex conjugate roots, one can conclude that the sufficient as
well as necessary condition for the stability of the four solutions is that function
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F(bl,bz, b3) maintains the initial sign or reacquires it, That is:

F(b, ,b_,b.)
10. 9. 1L 23 5o

Flaj,a,,8,)

Let us now consider the possibility of real roots, In this case eq. 10,9 is still
necessary in order to have stability, but is not sufficient any more because y5 and y,, as
defined from eq.s 10.2, may now make the moduli greater than 1,

Anyway we will show in App. VIII that the particular perturbation structure con
sidered brings us to the conclusion that condition 10. 9 is sufficient, from a practical point
of view, also in the case of real roots,

Let us now consider eq. 10,9 again in order to show the load influence,

In (10. 6) the load affects the A @ values. In fact recalling definition 8, 10

oL TA2Q z
C 0o 0 0

10. 10. g = :
2 Wycos ¢ [coshv(T-cosQ]

in the limiting of point load we have

_ 2
10. 11, Q, ~ 9p
192
10, 12, WS qBUo
and taking into account (1, 2)
q
=B _
10, 13, qB/Aoz0 =& -Vg
we obtain
'8
i c(/6T)(qB ﬂ:oZO) ) (2w+0)
10. 14, = 5 = 5 r
2U cos [coshO(T-cosg-l 2cos™Y (cosh™®T-cos0)
where
A2
10. 15, r=2cB
CU
o

For physical values of 9 (i, e. for small ones) there is a one to one correspon
dence between the values of g and r,

Through 8, 11 and 10, 14 we can write 10,6 as

o
1

1 al+cl-r

10.16. b, =a_ +c, . P

where
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c, = { e'&Tsené -sen( & +0)}' f

10, 17, J 02 {sen( & +0)- ef_zo(Tsen( & - O)}- f

L oA
03 = {e 2bLTsen( £-09)-e Tsen E}» f

and
§-20-7
10. 18, 27 + @
200s2\70 (coshRK T-cos0)

Substituting 10. 16 into 10.9 from 10.7 and 10.4 we have for stability

2
10. 19, Ar+tBriD o,
D

where

[ D=(1+a)%- 2 _ (22422

D={(1+ a4) a2(1 + a4) + (ala3 4a4)(1+a4) + [4a2a4 (a3+a1a4)]
10, 20. < = (1-a ) (c +c )+(a c3+a c )(1+a )-2(a c3+alcla4)
2 2
| (1+a, )c 15-C5-¢] a, (c1 -c )(c cy 4)

It is by no means easy to formulate 10, 19 explicitly in a general way, It is, the
refore useful to illustrate this formula by some observations and graphs,

In App. IX we will prove that coefficient A of 10. 20 usually has the following re
presentation

-(3AT+y) 2
AL de” t

202
(1+tg 5)

{tgz gsen(i)[1+cosh°< T] -2tg§cos(£ )senhoAT+sen(&) »

10, 21, 20 0
. (1-cosh°('T~)} {tg 5 sen - [cosh'y+eosh('y+b( T)]+2tg-§cos(£)senh'y+

+sen($) [cosh('y+°<T) -oos'y:l }
The first factor vanishes for two values of tg 0/2; the first
ok
tg g— ='tgh ——g— cotg &

has no importance; the second corresponds to

m
~
10, 22, gAl ~ 2

2Q
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The second factor (see App, IX) vanishes for the following values of 6 A

/gAz 2@y .
10. 23, \ . . it y>>n/d
A3 7 3
2vQ
- - , .2
10, 24, 0,4 =055 =~ Qy if v =a/Q

10. 25, —» complex conjugates if vy < 1r/Q2

9p9° a3

In App. IX we deduce an explicit expression for the factor B, in the case of a
vanishing v:

B= f-8-e_8°(Tsenh T(1+’cg2 g—)_z{—seng (1-coshel T)(cosg -coshel T)+2tg%cos£ senhg T
206 S 30
10, 27, (1-coshd T)-2tg Eseng cosho{T(l-coso)-2ig 3 cos § senho| T(l+coshe{T) +

+ tg4gsenf (1+cosh°(T]i(cos$ +cosho T)

B vanishes for (see App. IX)

10, 28, 0., & - o 2)

Let us last remember that coefficient D of 10, 19 is the zero-load value of ¥, If ¥ vanishes
two initial roots have modulus 1 and because of 10,4 and 10,5 G(1+ay, ay,ag, ag, ay) (i.e.
D) vanishes,

In fig, 2 we plot, as functions of @ and at fixed v, & andQ, the two values of
(o(ch)/CUo , which annihilate F as defined in 10,7, i.e.:

5 +I8%aap

2A

10,29, ry
2

We can see from 10, 10 that these two roots determine (at fixed 0 and varying load) the sta
bility (and instability) regions. Since the case qp = 0 is stable (y non zero), it is easy to
determine the stability (and instability) regions (see fig. 2 and following),

Fig. 2 shows that the stability region corresponding to the 15¢ root goes from
zero to some positive value, The stability limits are much higher when 0 < 0, That is
qualitatively as in(1, 2,

The 214 root is negative when § <01 (10, 22,) and goes from - oo to + oo when
0 crosses the value 04 1,that is when A vanishes. For 6 > 8,4 the 2 root exceedes the
18t one so that with increasing load we have first stability these instability, ahd then sta-
bility again, :

Fig. 3,4 show the some graphs but for different values of & and @, In the case
of fig, 4 the 054 (10. 25) value is eight times smaller than the corresponding value of fig,
2 and we have an asymptote for the 15t root too.

Let us last consider the limiting case of zero ¥ (that is the case of a proton sto
rage ring),
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In this case D vanishes and one of the roots of 10, 29 vanishes also. The other
one is:

10. 30, ' r = .

Formula 10, 30 is plotted in fig. 5. It has an asymptotic behaviour for 0 =
= 0p1 (10.22) and goes through zero for 9 = 8p (10.28). It also has approximately the sa
me behaviour as the 15t root (see fig.- 2) for 8 < 0, and as the 2nd root for 0 > 0g.

How this behaviour is obtained with continuity from fig, 2, can be understood by
the following argument, Let'us assume (by continuity) that also for v # 0 there exists a o
for which B of 10, 20 is zero. In that case 10. 29 gives

= D
10. 31, ry =% ’ A
2
When v (hence D) decreases the two roots (10. 31) vanish, As the 15t and 2nd
roots go to zero, to do the right and left halves of the curves respectively, By continuity

the right part of the 214 curve becomes the continuation of the left part right of the 15t cur
ve. By continuity it is also possible to determine the stability regions,

From 10,21 and 10. 27 we obtain an approximate of 10, 30. (see App. IX):

éqB ~ 1r2 2 T
) e, et —re — 4
10. 32. cu, QZ (O+5; 268 )/e

When such high values of the load are considered that they can approach the,
asymptotic of the stability region, the limitation of app. XIII, must be taken into account,

CONCLUSION -

1) - With the hypothesis we say in introduction the further essential approxima
tions in our work are that of considering small oscillations (about the equilibrium) and
that the perturbations.produced by beam and by supply on the cavity are distinct with re-
spect to the time,

2) From figures 2, 3, 4 and 5 we drow the general conclusion that the stability
range is greater for negative 0's than for positive ones; it is therefore useful to operate
the cavity at a higher frequency than the natural one. This agrees with the results of pre
vious papers 1,2,

From the same figures it appears that there are stability regions for positive
0's and for a load greater than a given value; it is not possible through to reach them wi-
thout going through instability regions,

3) - This work is mainly concerned with the equilibrium conditions, Nothing
can be exactely said about the transient of injection during which the hypothesis of a rigi
de structure of the beam and the small-oscillations approximation do not hold, However
we may do qualitative considerations. Because the delay of the beam with respect to the
sinchronous period is proportional to the Ap/p and the overexcitation'due to the crossing
beam is proportional to the delay and to the load, the coupling between the beam and the
cavity decreases as the energy, Therefore it is useful to inject and to work with higher e
nergies,

In the figures we said before, we drow also the range of stability corresponding
to negative values of the load, Such situation that Iooks -extremely theoretical really happens
during the injection: in fact many of the injected particles before being lost may give di-
sorderly energy to the cavity helping the beam-cavity system to go out of equilibrium,
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4) - From the above mentioned figures one can see that for a negative 0, the sta
bility limit is reached when (X,qp/CU,) lies between 10~7 and 10~6 (for more details on
diagram 4 see 8 10. In the worst case, i.e. vanishing v (figure 5), we obtain from 10, 32
that the order of magnitude di ({.qp/CU,) for reaching the instability is #2/Q2, where Q
is the quality factor of the cavity.

For Adone qg is the charge of a bunch multiplied by 2 since both electrons and
positrons pass through the cavity,

5.10ll
ag = 2:N-e =2 -3—-:%-0—— 1,6 - 10-19 = 2,14 - 10-8 coulombs

o{

c 6,12 - 10-2  is the momentum compaction

c =103 pF the cavity capacity

Uy, =3,5 - 108 volt the energy of machine during the injection

and one therefore obtains

°(ch

CUo

=3,75 . 109

a value smaller than 107 by a factor of 30,

This result may still not be satisfactory because of what said under point 3 and
because generalization to the case of many cavities and bunches is not straight forward,
The work of Henry deals with this last point but does not ready a definite conclusion,

5) - There is a qualitative agreement with the conclusions of preceedings works,
For a quantitative comparison let us consider only paper(2) because it is the only one that
compares with ours, in that on 4th degree polynomial is considered and on inequality for
the stability attained.

If x and y are solutions of the polynomials the behaviour of our variables is as
x1 whereas in (2) it is e¥t, Then one must make a comparison between the logarithm of
the solutions of our polynomial and the solution of the polynomial in(2 multiplied by T (pe
riod). One can easily verify that, for zero vy, the four noh perturbedsolutions are equivalent,

On the contrary there is no agreement on the four perturbed solutions, This can
be shown by comparing the final formulae that give the limits of stability,

In ref, (2)the condition for the limits of stability is

0 < sen2¢,y <2 cos Y5

VB
where
= _Q
tg¢,y - e}
and
2tg¢‘y Z(Q/‘n‘)O
sen2@_ = = .
1+ tg2¢'y 1+(%—9)2
Vcos (_c‘_)ﬁ)z Uo - 82 v -
cos¥p = () Frw 2m ok
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Finally Vg is proportional to the load and one approximately has (3, 4.)

-Q 9B
B « C

Substituting one obtains

2 q
0 < __gL.( ‘")g < .é_ / (E(L_]_?’_

1+’(Q O»)2 Q CUo
™
which may be written as
ol g 2 2 2 2
c’'B < . 3 T +Q 0
Ccu Q2 270
o

The last formula must be compared with (10. 32) that gives our approximate s0
lution in the case of vanishing v

°<ch < 'rrz 9+(32/21r)+(1r/2Q2)
cu & 0
o

The disagreement, is remarkable, (see fig. 5),

6) - Let us remember that in ref, (3) the case that the cavity is not equivalent
to an RLC circuit is considered, In the frame of the present work we do not know how to
deal with such case and we hope that the RF experts will rule its occurence out,

7) - In our work we show that the rigid beam structure is practically described
by one parameter only, i.e. by a positive angle ¥ . Generally Y% (see 8 8) can be assu-
med to be zero as long as-the beam lenght is short with respect to the RF wavelengh,

8) - In the present work we did consider the radiation damping of synchrotron
oscillations accurately, When y = 2,52 . 10-7 (e*7 is the attenuation of coherent synchro
tron oscillations from one passage to the next) the limits of stability gain a factor of 2 or
3 over the case of vanishing is predicted, The y value of 2.52 . 10-7 that was used in com
puting curves 2, 3, 4 corresponds for Adone to an energy of 350 MeV and a third of a full
machine turn,
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APPENDIX 1 -
Eq. 1.1, using the definitions 1,2 may be written:
dz

dt2

Al 1, +zo<—+(/3. rol®yx =0

This eq. has a general solution which is

A 1.2, x = e—thxcos/&t + bsen/:‘t]

a and b are two arbitrary constants,
Let us express a and b using the initial values x(0) and (dx/dt); = q.

From eq, A, 1, 2 we obtain:

A 1,3, X = e-th:os/ﬁt(—o(a +bA)-senpt(Ab +/3a;j[

X% is the time derivative of x(t).

From A, 1,3, we deduce:
x(0) =
x(0) = b/b- o x(0)

A.l.4, x(0) o

2
aﬁ-l-o(b =ﬂx(0) +75— ®(0) + /5 ——- x(0) = /5 x(0)+75— %(0)

Using these, eq.5 A, 1,2, and A, 1, 3, become:

(t) = [(cos/&t +ﬂ-senﬂt) x(0) + senﬂt (0)]
A.1.5,
. ot [ P2 &
x(t) = e [— /_,,—senﬁt x(0) + (cos/3t - z—sen/&t)ic(o)

APPENDIX II -
In eq. 3.1, appears the sum of the geometrical progression

e(n+1)(a( -ANT
e AT

-1

n
S. = Z. e(o(-—ﬂ’J)lT=

1=0 -1

and rationalising

[(n+1)(<x -ANT ]][(C’HﬂJ)T_l]
n [(o( AT 1:H:(*=<+/~’-~J)T ]

e(n-l-2)e(T-n/5JT _e(n+1)(v( -AIT e(°<+/5J)T +1

e2 AT eMT(e/.’:JT ter AJT)

"

+1
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en(o(--/5J)Teo(T e -AJ)Te_/st _e/3JT+e-°(T
2[cosh°(T - cosA T]

(e°‘T ’e-/.%JT) en(o(-/-'*J)T (e D(T_e/BJT)

2]cosh{ T - cos[&T]

Using this expression in eq. 3.1 we deduce:

[(e‘*T Lo AT X -ﬂJ)TvA+em(°(—/3J)(T+T)‘.?B)]
+

F(t) = e(-d+/bJ)t{?(o)+
2)coshwT - cos/.ST]

[(e- oAT__ /-‘bJT)G.’,A XA/ ?B)}

+
2| cosho{T - cos/ST]

This last formula allows us to deduce eq.s 3.3, and 3, 4,

APPENDIX III -

Let's first consider the term:

b, = e(-D(+ﬂJ)?(n+1){3:Y:dn),’I"} -'x’;: ['t(n+1),T—l}

Prom eq. 3.4., we deduce:

e -
B

b, - AT AT {e(-v<+/1J><”c<n+1)-'t<n)_1}e(-o<+/s.mrv.,

2 :coshekT-cos/ST]
and expanding in series to first order:

-AT  AJT
Py = (%opg) St [x(n+1>-X<n>1 -V
2[c:osh°(T - cosﬂ T]

see eq.s 6.5 and 6. 7.
The other terms:

by V2 [T, T % 2.\

again from eq, 3.4, :

%T  _AJT (R BD) T (1) _e(-e(+/3J)’?:;J 3,

p, = S——°
2 2[cosh°(T—cos/3T]

and expanding to first order:
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ol -AJT, (
-e Ye

2{cosh®T - cos/inT]

—“+;’9J)Z~s

p, = (s fin) L8 X (n1) ¥,

see eq.s 6.6. ¢ 6.8,

APPENDIX IV -

Using definition 6.5., eq, 1.9, and 1,2, we obtain:

P_ = /30 [Iseny’ -Jcos L/:\ ‘[I(e_ LT -cos@) —Js:enQ] =

2 lcosh™®,\T - cosO]

B

T2 [coshoT-cos0]

- -
{I[(e vLT-cos(-))sen‘f—cos‘~fsen()__l —J[(e T~cosO)cos\f+

+ senYcosO] =

A N "
) 2[coshaLTo—cos0:l {I [e Tsen\(’-sen(g.+ Yﬂ +J|cos(6+Y)-e Teos \f] .

From 1,11, :
[(e-J‘Tsen\p-sen(Qw’))cos‘f-

AT
: -|cos(8+Y)-e " cosY|Z
_(cos(9+y)-e_°chos?)sen‘a [ ] °

PB - Zcos?(cosh&T -cos0)

-okT
e seny-sen(@+Y)cosY+(cos(0+
cos(0+ P)-e_&Tcos\/ [

Z +\f)-e-chostf)sen\/]

(o]

e-OLTsenZ\f—sen(Z ¥Y+0) [_e'vaCOS‘/- c08(0+§°ﬂ Z,

A,
" 2cos P (cosh™T-cos0)

cos((;+‘f’)-e_°< Tcos\/

Z
o

-sen@

eq.s 6.13 follow,

In the same way we deduce from eq. 6. 6:

-« T,
A% o«T
= ' ' ~ (T
Pas 2[0?3shn(T - cos0] {[—Isen\fﬂcosﬂ [I(e cos ATy-cos/H(T-Tg)+I(e™ sen ATy +

+senf3(T - 'Z's):)}
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and defining:
s = /A %s

% e *%s AT AT '
PA = ZE:oosho(T-cosO‘] {-I senY (e cos¢s-cos(0-¢s))+cos‘f(e sen¢s+sen(9-¢s))] +

+J cos\f(e‘*Tcos ¢s-cos(0-¢s))~seny(e$Tsen¢s+sen(0-¢s))]}
Y, o~ % T
1:.Az ZEOSOhblT—COSQ] {-I [e Q‘Tsen(¢s+'f)+sen(9-¢§y)]+J[e°LTcos(}‘+¢s)—cos(¢s+ Y,-Oﬂ}

from 1.11 we obtain:
-e+°(Tsen(¢s+2Y)+sen(¢s+2(/-0) [cos(¢s+Y—9)—eochos(¢S+Y)-120

X
- o i
Pa™3 [cosh®T-cos@] cosYy

oAT 1 LT
—[cos(¢,s+}’—o)-e cos(‘fs+)”-)]—z—; sen(¢s-0)-e sen;?is
which gives eq. 6. 14,
APPENDIX V -
Let us define
P, = cosh« ts q; = cos[its
P, = senho(ts q, = sen/jts
We obtain
2 2
V.1, Py - P, = 1
2 2 =
V.2, aj +q2 = 1
and

coshe{(t -~ ts) = p;cosho(t - pzsenhO(t
senh{(t - ts) = plsenhb(t - p2cosh°(t
cos At - ts) = q,cos A+ q,sen/bt
sen/3(t - t) = q senft - qzcosﬁt

If we further define
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' /tz cosholt - cosAt
A11 B p(t) senholt - sen/&t dt
t
22 1

we obtain (8, 3.)

- = 1 1 v 1 = v Lyitl
Agy = P9y AL PP AL, Pyd A PyyBy, =L PiaiAl(-1)

i
= v v 1 ! = v (o i+j
R TRR I PR SRS Py SUIRS PR SE IR S) Zi, P40
V. 3. N
A, =p.qAl +p q Al -p q Al -pa Al =X p  qA! (-1
21 - P1%17217P 99592 Pa %1711 Pa %% 10 T4 Pir1 Y i

A

SRETRE I

A A Ar (-1t

T | 1 =
52 P 5851 Py Ay *PydnA 2-i,jpi+1q;i+1 ij

In V. 3. the indexes are modulus 2, We have for Ql'

a (_1)i+m +

5 2. 2 .2
), = +. w4 = ] 1
Qq = Ay A p)-(Ag%A0)) Zi,j,m,nAijAnm[piqum n

i+j+m+n i+m

¥ P11 Py (1) P 9Pmi -1

=

- ( 1)i+j+m+n
p'i+1qj+1pm+1qn+1 - ]

= 1 ' _ i+m- - -
Z i, j, m, nAiJ'A mn{qjqn( 1) [p iPm lDi+1pm+1] 1
i+m+j+n
¥ qj+1qn+1(—1) {pipm'pﬁ-lpm_,_l]} =
= t Al - j+n .
Z i: j: m, nAiJAmn i[q:]qn+q‘]+1qn+1( 1) ]

i+m
' [pipm-pi+1pm+11 (-1) }

From V.1, and V, 2, we obtain

- R i
90, +, 1, (1) S

i+l
PiPrm " Pi+1Pm+1 © 81m('1)

and from this
2 i+1
= ! -
V.4, Q, Zi, KESREEY

In the same way we have for QZ’ using the V.3
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- _ - ' oAl _ i+m+n+1 .
p = 2By An-A A D2 8, i, m, nAijAm,n[piqum+1qn+l( 1)

o
I

-

_ (_1)i+m+j+1
pJ'.qj+1pm+1qn

"

A ) i+m+1[ . 3 j]=
22 i, §, m, i mnPPme1 (1) 94 -1 -0y 9, (-1)

n+1

R i+m
2 1AY 1)t -
Z, i, m, i 1, n1PiPm (1) [qjqn( 1

l,J
22

1Y)
qj+1qn+1( 1) l‘

itm+1 n . j“
AV A - -1) g -
i,j, m,n ijAm+1,n+1pipm( 1) [q qa,(-1) '13'+1qn+1( 1) 1

the terms in square brackets gives (-1)‘] 5 , therefore we obtain
g jn

Q,=2Z (-t
2

1] ]
i, §, m™ i m+1, 7+1PPm

9 z p.p (_1)i+m+12

i
1 1 -
i,m i"m J ijAm+1,j+1( 1)

the second sum’ is different from zero only when i = m and then

. L2, _ 2 Tay A i
Q zzi;i( DT R ALAL L = 2Zp; AL i1, 1D -
. D ity
V.5, 'Ai,i+1Ai+1,i( 1) l

2 i+l
= U 1A ' - = ' vO_AL r ).
2(A11A22 A12A21)Zipi( 1) 2(A'11A21 A12A21)

The expressions V.4, and V. 5. indicate that Qq and Q2 are always equal to the
values obtained at tg = 0,

APPENDIX VI -

From eq.s 8.7. and 8, 9, we deduce:

(Al 1A22‘A12A21)

2 2 2
(A11+A12)-(A22+A

VI 1, tg Y=2 5

21)

From eq. 8.3. it follows by choosing ty appropriately, we can make either Aqy
or A21 zero, so that (assuming A21 is zero)

2A A
VL2, tg (= 22

2
Al 1+A12’-A

2
22

As the bunch width is small compared with the radiofrequency wavelength and
function p(t) is roughly simmetrical around the value of ty which annihilates Agq, it fol-
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lows that:
senh ®{ (t-ts)sen/&(t—ts) >0
VI, 3. coshwst (t-ts)cos/&(t—ts) >0
A1 » Ay
~
A12 0

so that VI, 2, becomes

ta
4 p{t)senhd (t-tg)sen/B(t-tg)dt

A
22
V1.4, Yy =22
A] 1 /'tz
p(t)cosh (-t )cos/A(t-1_)dt
tl S S
and expanding VI, 4,
/1;2 2
Y Tp(t)(t-t,) at
VI 5. Yook —

to
p(t)dt
1

If we refer the time to tg, indicating with tg the bunch transit time and applying
Schwartz inequality:

ty tg/2 +tg/2 +p/2
/ 2. . 2 B 2 ; 4 1/2
p(t)(t-ty) dt = plt+tg)t dt < p(t+t )dt t® at =
t -tg/2 -tg/2 -tg/2

On the other side:

and for eq.s 1,2,:

so that indicating with:

SB ﬁotB
we have
9 1/2
VI, 6. W - Y ) 5’]23



33.

APPENDIX VII -

1 1
From the second and fourth liries of 10, 3, assuming (y2 + ) and (y4 +-};—) as
unknPwn, we’obtain Y2 4

b3
1, Y~ P
Yoty T
1”73
A VIL 1
b3
I ¥3 - P173
Y4 Y, 2 2
3~ 91

and from the expression of b2, ‘we obtain by substitution,

b2 y y
3 2 3 1
. -b b (= =
b, = (5% + y9) 1Yy " P13 'vg)
g = Yy T V3)V Y, 2 2.9

Again, using the last one of eq. s 10. 3:

6. 6 4. 4 2 2 2 2 9 _
AVILZ (3] +y5)-by(yy+y5) = (b, -b b)(y> + y2) + [2b2b4-b3 i} b1b4] =0

6. 6,2 23 2 2
As (yy +v5) = (5] +53) - 3b,(yy +y,)

4, 4 2, 22
(yp +¥5) = (y; +¥5)" - 2D,

we finally deduce
2 2,3 2 2 2. 2 2 .2
- +y9y - -b: + -b. - =
A, VIL 3. (v1 *+ 93) -by(y, * 93) - (4b, by b )y’ +32) [4102104 b b1b41 0
from which eq, s 10. 4 and 10, 5 follow.

APPENDIX VIII -

Remembering eq.s 7.5 and 7576, we have:
P (0)#0 AP(0) =0
and therefore:
A, VI, 1, P(0) # 0
Considering the value:1, we have: P,(1) # 0 and as (see eq. 8.11):
Aal + Aaz + Aa3 =0

A, VI, 2,
AP(1) = 0;
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and therefore
A VIII 3, P(1) # 0
A, VIII. 1 and A, VIII, 2 make clear that the two values 0 and 1 cannot be solutions

of the perturbed polynomial,

If a complex conjugate root becomes real in the interval (0, 1), it cannot move
out of that interval and then it cannot become unstable by reasons of continuity,

Anyway a couple of roots could become real in the interval (-1, 0) and one of its
values could become unstable crossing the value -1,

Let us show that we are far away from this possibility.

Using Descart es rule of the signs, polynomial 10,1 may have negative real roots
only when the coefficient signs are not perfectly alternated,

As we deduce from eq. 7,5, the values of the coefficients are initially, with
good approximation, 1, -4, 6, -4, 1, To brebk the sign order, one of the three coefficients
should change sign.

Considering eq. 9.8, the strongest limitation is due to the third coefficient and
so it must be:

A, VIIL 4. lAazl <

From 10,15, 10,16, 10.17, 10,18 we obtain, neglecting second order terms in o(T' ’0
and 0

K q
A.VIIL 5, 'A azl'z CCUB 28— on
o K°T%4g
and, posing:
A, VIIL 6. =- o tely = - AT tep,

where
¢’Y phase angle of the radiofrequency impedance,

We obtain
24 -q
. B
A, VIILT, Z]vx ¢ B
VII ,Aa c 1, Qsenzgz[Y
If now we assume:
ol =6,12. 1072

C
Q =5.10°

qp/C. voltage pulse due to the beam =20V,

16] o’ machine operating voltage = 3,5 x 108 v
= 60

g, =5

we obtain

| Aaz\ﬁ’-vs.lo“s

so.that eq. A, VIII, 4 is well satisfied,
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APPENDIX IX -

For A (10.20) from 10, 17 we get for the 15¢ factor

2%

(CZL‘-C3) = f{2 e-J\TsenE_-»sen(Z +Q)-e" Tsen(&-g)} =

- - K o4 -
=g Tf'{Zsen{ -gen & cosG(eQ‘kT + e T)-cos €send (e T--e T)}

remembering that r
-
e°<T +e T 2cosh™XT
etwI1 - emb(T = 2genh™T
2
A IX. 1 9 _1te" (0/2)
cosf = R S
1+tg” (0/2)
senf = 2t (g 2)
1+tg” (8/2)
we obtain
2e”*Te (20 0
A IX, 2, (c,-c )= =5—2 lig 5sené (l+cosh®’T)-2tg cos  senhol T+sen$(1-cosholT)
CREEPET N L 2

2

In a similar way we get for the 274 factor of A

(c3-01a4)=f{e~24’rsen(£ —9)-e_b<TsenZ -e—(3°<T+2'Y)sen<‘_ +e—(2°(T+2‘Y) sen( & +0)} =

= o™ T g £cos8(e"+67) «cos £send (¢”-e ") -sen i[e('*T”)+e'(°(T+Y) 1}

and by means of A, IX, 1 and similar formulas

-(2X T+y)
(c,-c.a )= -2fe senitgzgEosh(u(Tw)+cos'y]+2tg9-cos €senhy+
R TN 2 2
2

+sen& | cosh(WT+y) -COS‘Y]}

A IX, 3,

Finally from A IX, 2 and A, IX. 3 we obtain 10. 21,

Let us now consider B (10, 20) in the v zero case, From 7,5 we obtain

-2 [cos 3+ en‘*TcosO] '

)
u

1
-2%T -%T .
A IX. 4, ag = -2 [e cos d+e cosQ-_\—a1+2(1+a4)cos J
- =2XT
a, =e

from which
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B = (1_34)2(01+03)+al(Cl+c3)(1+a4)+2(1-a4)cos §c1(1+a4)--2a1(03+c1a4) -
-4c300s8(1-a4) =
= (1_:,14){(1-a4)(c1+c3)—2<=°s g(‘33“’1"‘4)'26—O<Tc°sg(cl_(:3)}
~2AT
i 2k
B = Al o ){(1-e * e rog)1vtg” §)-2008 8 (144" e e 2,)-
(1+tg '2')

A IX. 5,
-olT 29
-2e (1-tg 2)(cl--c3)}

In the last expression (c1-c3) and (cg~cya4) are an estimate already. We must
calculate (cy+cg). From 10,17 we have

-2k - -
01+03 =f [e 2 Tsen(i —Q)—sen(£+9)1 =_fe °UI\[:-senf,cos()(ee(T-e T)-

ol -
- cos £send(e T +e T)]

and finally

20 2

26”7 20 0

_(c1+c3) = . =————4tg" = sen £senhoLT—2tg—2-cosé,coshb(T—sen..’;senho(T
(1+tg™ 2)

2

Now, with substitution of A, IX. 2, A IX.3 and A.IX, 6 in A_IX, 5 we have

2T  -26lT
e e

20,2
5)

(1-

\ 2senhu(T(1+tg2 g—) [‘cg2 g-senisenthT-Z‘tg-g-cos Z_coshu(T-senésenthT] *
(1+tg

+2cos 8\(1+tg2 %) tg’z-g-sen ¢ (coshedT + 1)+sen & (coshWT - lﬂ -

-2 (1-tg2 —g—) tgz gsen £(1+cosh\(T)—2tg-g-cos € senholT+sen& (1 --coshb(T)]

and finally

SSenhokTe-3°(Tf 40
B = tg 5[(1+costhT)(cosh°(T +cos§‘)]sen€ -

20,2
(1+tg 5)

A IX. 1. - 2tg3‘ gsenho(T(1+cosh°(T)cos £ --Z‘tg2 -gcosho(’I‘(l-cos g)sen &+
+ 2tg % senho{T(1-coshAT)cos& -sené{cos g—cosh&T)(l-coshv(T)}

In order to obtain the values of tg(0/2) for which A vanishes, we observe that
this is very simple for the 15¢ factor, We have for the 279 factor from A, IX. 3.
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; 2
-cos & senhy _-thos & senzh'y - sen2£ cos2(°(T+y) - cosz'y]

sen & [cosh(kaﬂHc os'y]

-cos & senhy + }/@osza +sen26 )senzh'y—senzé senzh (AT +y)

| sen & [cosh(v( T+y)+cos'y]

4
senhy »> sen £ sen(AT+y) 2 —12-
Q
the radical quantity is positive and we obtain
%A
~ -cos&-1 ., _
g - senhy 2senf Q
and 25_ 2 "
0 -cos £ +(1- 280 senzh( T+y) ) Z_z
A3 2senéy -~
tg —5— =senhy ~ _— .
2 2sen& : 2¢ L 2
A IX. 9 ) 5_2 (°<T+‘Y)2 _ "2
2 2 T 4y}

Y

from which 10, 23 follows.

If the radical quantity vanishes we obtain easily 10, 24, Finally in order the ze-
ro 10,28 of B we observe that B (A, IX. 7) is approximately

2 2
o Bsemh®Tf J4 20 w30 3° 20 _« o __m 2w
B (g ) G325 3-"gtE 5T ey agT (8 T gr)
2
It
1
<
S TI)
Px L
Q
2 2
~ 2f 4 _é_____ T
A IX. 10, B--"‘QT‘H' 9+(21r +W)

from which 10, 28 follows.

In a similar way we obtain from A, IX.2 and A IX, 3 in the v zero case

2 3
2 T 'rr 2 w

A IX 11, A > 4% 10— = of ()
[ Q][ZQS Q?

From A.IX, 10 and A, IX, 11 we obtain 10, 32, of vanishing v is predicted, The v value of
2.52 . 10-7 that was used in computing curves 2, 3, 4 corresponds for Adone to an energy
of 350 MeV and a third of a full machine turn,
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Meaning of the symbols used in figures 2, 3, 4, 5,

v damping factor and phase variation of synchrotron oscillations from a crossing to
5 the next one in the absence of coupling. § is assumed to be load independent,

AT ]damping factor and phase variation of the cavity overexcitation from a crossing to
27+0 jthe next one in the absence of coupling.
0 =/3T-2¢
ﬁ = (—L - ___2_2_1 )1/2 radiant frequency of free solutions of cavity
LC 4R°C ’ : :

T = period of sinchronous particle.
AT=1/Q A =_= I/ZBC damping factor ‘of cavity
Q = quality factor of capacity
"(ch

C U0
A = "momentum compaction",

Qp = charge of the bunch (coulomb).

C = cavity capacity (faraday).

Uo = energy of machine,

The values of the curves in logarithmical scale labelled with a plus or a minus
sign are to be considered positive or negatives ones. The same curves are qualitatively
shown in linear scale on the right,

Fig. 5 shows also the Robinson's curve,



40,

10
8

i

351

T

EIOET

i

g

2

FIG.

194

)

¥
i
i

Hidhd

ot

5

Hini
i

HT

Fiafigd

cifin

[

4

2
T

F16. 3



41,

TR

4

FIG,

tmmw‘ =

|
i}

T

&t

BSESE=

!

A

il
TR b e T

g

ibeaidh esined]

i

FIG. 5




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


