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ABSTRACT. -

The (single particle) motion of electrons or positrons in storage
rings is studied, giving special attention to the effects determining the
beam size in general magnetic structures.

AAAAAAN

1. - The role of the beams in storage rings is twofold, each stored
particle being at a time projectile and target. Number densities are of
great importance in connection with the practical observation of high
energy eventsfrom beam-beam collisions; in particular the luminosity
L(X) has to be known in order to get the cross section & from the mea
sured rate n = L& .

The case of electron storage rings (both e~e~ and ete”™) must be
given special attention due to radiation phenomena strongly influencing
the single beam geometrical properties.

Usually a two steps approach is followed in stud(ying the particle
motion: first, the single particle motion is described 1) and the effect
of synchrotron radiation, or other small perturbations, on the beam si

(x) - The luminosity is defined as

L =fk/s)°+f‘ds

where f is the revolution frequency, k the RF harmonic number,
9% and @ the transverse densities of the two beams.



ze is studied(Zs 3); next, intensity dependent effects (such as space-char
ge(4) or resisting wall instabili‘ties(sg) are considered. Both steps have
been given wide attention in the literature in the past years, but we had
frequent occasions to regret how much the results are scattered andhow
difficult it is to correlate them.

In particular, the single particle motion in electron storage rings
is a delicate matter calling for an unified treatment. We will attempt to
give this unified treatment in this paper; even restricting the subject to
the single particle motion in the linear approximation the description of
the various effects determining for instance the beam size will not be
easy specially when considering the two transverse betatron modes of
oscillations to be strongly coupled.

To put some order in the problems to be considered in the follow-
ing paragraphs, we find it convenient to indicate the scale of importance
of the terms to be included in the single particle equations of motion:

i) first a reference trajectory will be defined; the actual motion will de-
wvelop around it and the particles will have parameters (positions, mo
menta) so slightly different from those corresponding to the reference
trajectory that Taylor expansion truncated to the linear terms can be
considered as fairly accurate.

ii) displaced orbits of particles having energy constant in time will be
considered next; this step will be called as usual !"betatron oscillations".

iii) phase oscillations and energy losses originate from weaker forces
than betatron oscillations so that they can be included as third step.

iv) eventually the radiation from displaced particles and the radiation
fluctuations (giving rise to dampings and finite spot effects respectively)
‘will be considered.

2. - We take as starting point, defining ''zero order' motion (that is
a reference trajectory, RT) the equation for a non radiating particle in
a magnetic field constant in time

(1) I = rAw(r)
where wir) = E——C—H*(r)
is the cyclotron frequency vector. of an electron of total energy E in the

magnetic field H(x).

The RT will be chosen in the following as a particular solution
Ig(t) of (1) associated with a certain energy Eg; a better characteriza-
tion of the RT will be given later in terms of the frequency of the main
radiofrequency field.

Equation (1), together with the value of Eg embodies the "machine
parameters' usually specified to describe a ring: magnetic structure,
radii, quadrupole strenghts etc. All of these informations are collected



into a single vector function W (r), or, less explicitely, in the solution
Irg(t).

Now we introduce further terms into the equations of motion; na~
mely

- radio frequency fileds £ ;

- terms associated with random events producing a sudden
change of the vector momentum of the electron, such asthe
emission of synchrotron light or scattering and bremsstrah
lung on the residual gas.

As a consequence (1) changes into

(2) -a% (E__f') = eczf._ + eci/\g +c2 Zj Zi gi(j)s(t - ti)

where _5#3) is the variation in the electron momentum due to an event
of type "j' at the time t;.

A function Pj(ﬂ' t)dg, will be introduced describing the rate of
events of type 'j' ‘which produce a change in the electron momentum of

a quantity between q and g+ dq; we can define average values as follows

@) vty = /aPja. v da

and rewrite (2) as

(4) a%(E P) =ec?s +ectAH+ 2R +c2g

where

(5) R =209

and

©  aw-Zo% =ZT{Z P3e-r0)- P}
j j L=

R(t) is the average effect of random forces; G(t) is the term responsible
for fluctuations.

We want to study the motion defined by equation (4) in the case of
small displacements from RT; that is we assume that the influence of
the added terms will limit the actual motion to a small volume around
RT, so that Taylor expansions can be confidently used.

Putting
£=_I_'S‘|'<Y£ E = Eg(1 +p)

and linearizing equation (4) with respect to 3_{' and p we get
SE+1gb = -pIg+ SLAw(zg) +

+.¥‘.'s/\[(g£ ' V)N(r)]_r=r +-fy:i"52

g —

(7)



where 9 9
(e Lo iz
(8) ¥ {ES e+ g (B+Q)

Ls

Accordmg to our definition the velocity of the reference particle
Vg = l's is constant in modulus so that the arc length on RT is given
simply by s = vst

It will be convenient in the following to use instead of the deriva-
tives with respect to time, as in (7), those with respect to the arc length,
s, on RT, which will be denoted by primes.

To establish the relationship between these derivatives we first
note that, calling dl the arc length on the actual trajectory, one has, to

first oredr in dr,
ds {1 +£'S : 53'}
so that

(9) 'd%“’“"' {1+rs Sr} 3;

The quantity v appearing in (9) is the velocity on the actual trajec
tory. It is interesting to note that from the definition of p it follows
that

dl

and therefore (v -vs)/.vs is much smaller, for ultrarelativistic particles,
than the first order quantity p. Henee in the following we will assume

V=VS

in accordance with the well known fact that in electron circular accele~
rator the angular frequency behaves very nearly as the inverse radius.
The approximation vg ¥ ¢ will also be used whenever possible.

Having decided to use the derivatives with respect to s in the
description of the motion, it is natural to use as frame of reference a
frame defined on RT in the usual way by means of the orthonormal tan-
gent, normal and binormal vectors ®{(s), A(8), & (s), such that

1

L]
. = 1
Ty Vs?.‘. A4

-K(s)et + H(s)Z
(10)
®' = K(s)A 7'

-H(s)/A

K(s) and H(s) being respectively the curvature and the torsion of RT.

Any vector u can then be written as

u = WX tupd ru T



and in particular we chose
(11) $r = x(8)/A + 2(8) 2
It can be useful to write down explicit formulae for J_I_‘_', 3_1:" :
S_r_' = -Kxdd +(x' -Hz)A + (z' + Hx)J
8t

(-K'x - 2Kx' + KHz) + (x'' - K2x - 22'H - zH' -
- H2x)/ + (2" - ZH? + 2Hx' +H'x) T

These formulae, together with (9), can be used to rewrite equa-
tion (7) in terms of derivatives with respect to s. To further simplify

equation (7) we use also the definition (1) of RT, from which it follows
that

wi(ry) = -vgH(s)
(12) ty(ry) = 0
Wy(rg) = -vgK(s)

and the fact that, on account of Maxwell equations and (10), the field
gradient must be such that on RT

(Sr-V YWy = (L + M)vgx - Kznvsz
(8r -V ), = —Kznvsx + (L - M)vgz
where 9‘“2 9’”3
-K2ny, = =
] S0y dx
dw
_ 1T, _ 2 1 .1
Lvg = -5 ¥, Mvg = 5% T3 %

Then the equati ons of motion (7) can be put in the form

v p" = "7"1(1 - KX)
(13) x" +K%1-n)x = -Kp+Hz' +H'z - (L - M)z + ¥,
z" + K?nz = -Hx' - H'x + (L + M)x + ¥y

The 1. h. s. of the last two equations (13) has now a quite familiar
form; ordinary focussing forces appear expressed by the field index n.
Fringe field s can be properly accounted for since derivatives of the
magnetic field, such as H' and L., have heen retained. However it is
often a very good approximation to consider machine parameters as
stepwise varying functions of s, thus simplifying (13) by elimination of
the terms describing fringing fields.

In this case a lattice is precisely specified and (13), apart from
the ¥; terms that will be specified later, become constant coefficient



equations in every cell of the lattice. However edge focussing or short
magnetic quadrupoles can be easily and accurately introduced in this
lattice structure by the addition of zero length cells in which the para-
meters have a & -type behaviour.

Rewriting (13) in the case of step machine parameters one has

p' = ¥(1 - Kx)
(14) x" +K2(1 - n)x - Hz' - Mz = -Kp + %,
2" + K2nz + Hz' - Mx = ¥y

3.~ Our problem is now to find the solution of equations (14). Aswe
will see to find the solution we will use the fact that for electron synchro
trons or electron-positron storage rings the radiation reaction force is
usually much smaller than magnetic forces (or the centrifugal force in a
typlcal magnet). To this fact we will refer in the following as condition

"a',

This will allow us to use a perturbation technique to solve (14).
Hence the first thing we need is an explicit expression of ¥, which was
defined by (8). Let us consider separely the various terms appearing in

Y& starting from R.

In R we can single out radiation effects by writing R as a sum of a
term R,. due to the emission of synchrotron light plus other terms 9XES.

The reason for this separation is that while the radiation reaction
is known to be dependent on energy, position and velocity, all other
random forces (mainly those due to collisions with gas atoms or with
other particles of the circulating beams) are only energy dependent.

Thus we will write

R
1 . =T x *
(15) Eq R Eg t8,tarp

where the subscript "'s' indicates a quantity to be evaluated for E = Eg4
and gf_x

X

a 3p

E=Es

The radiation reaction is given by(s)

_ 2 €2 +_af.o }
Br—-3c5_1:'b' {r+ (r r)

where ¥ =E/mc2. Introducing the quantity

2 2
we = (3 PPrE /By = 3 r 3K



where rg is the classical electron radius, and by series expansion to
the first order R, can be written as

2
1 _ H oM
o Brc ~WS{[1+2p+2(Kn xS 2

(16)
-2 % z']é +(x' -Hz) b + (2' + HX)Z}

The fluctuation term (1 -p)G, being the difference between the
actual random value and the average value of the electron momentum
variation, is a small quantity, so that it can be evaluated directly on
RT; namely we assume

(1-p)G = Gg = £sEg

At last we consider the RF field, which is assumed to be longitu
dinal and dependent on a parameter & measuring the phase of the par
ticle with respect to the RF field and on s.

We further assume that the dependence on €& and s can be facto
rized so that we have

. e €
(17) T = H(E)f(s) &
s

The function f(s) must be such as to satisfy the condition that, for fi-
xed €, fé xdl be independent of the path, so that one must have

() Fexd =FppExds

Since dl=(1-Kx)ds it follows that f(s) must either be of the form
Po(8) (1 +Kx), in which case (17') is satisfied up to terms of order x .
or mustbe zero where K is different from zero, i.e. in the bending
magnets. In the following we shall assume this second condition to be
satisfied.

Now.in a storage ring the average particle energy is kept constant
so that the RF field must essentially balance the energy lost by radiation
or other random effects. Hence we assume that a particle moving on RT
has such a phase, &g, relative to the RF field that its energy loss is
exactly compensated; namely

(18) £(60) B(e) ds = Blwg - §%) ds

Equation (18) can be used as the definition of the synchronous
phase 6.

A particle not moving on RT will have a phase displacement re-
lative to the synchronous one given by

(192) G(s) - &, =_/~sdl -fs ds = -/Sdes



or

(19b) &'(s) = -Kx.

Notice that ©(s) as defined here is just the longitudinal distance between
the particle we are considering and the synchronous one; hence equation
(19b) can be assumed as the one describing the longitudinal motion.

In most practical cases the RF field is obtained by means of seve-
ral RF cavities distributed at equal distances along the machine and ha-
ving a very short length compared to the cell of the magnetic lattice. It
is then a good approximation to write

N |
e& ev, R L

— = sen(k w,©) d(s - r =)k
Eg NgE o ;i Np

where L is the length of the RT, Np is the number of RF cavities, W, =

= 27C/L is the revolution frequency, k&, is the frequency of the RF cavi
ty (k must be an integer number), and V, is the sum of the peak voltages
of all the cavities.

We are now in a position to evaluate the order of magnitude of ¥.
In fact from (18) it follows that the RF field must be of the same order
of magnitude of R;, whose order of magnitude is given by wy,.

It is then easy to verify that the condition ''a'" mentioned at the

beginning of this paragraph is satisfied as long as one has
(20) ro 73K < 1

For a machine in which the bending magnets have a field of the
order of 104 Gauss this means 7 2 10%.

Hence all of the electron circular accelerators considered up to
now satisfy (20) and, as a consequence, the condition "a".

Although it would be very interesting to study the situation in which
condition "a'' does not hold we will not consider it in this paper.

4. - As said in the previous section, to solve the equations of mo-
tion (14), we use a perturbation technique based on the assumption that
condition "a'' is satisfied. The procedure will be as follows:

1) we solve (14) assuming ¥ = 0; in this case one has p =constant and
the equations determine the transverse motion to order % =0, i.e. with
no synchrotron oscillations dampings and fluctuation terms;

2) using the preceding solution and assuming %q £0 (but %5 = "/‘3 = 0)
we determine the longitudinal motion and the variation of energy;

3) to the solutions so obtained we add a small term, due to the pertur-
bation produced by ’V‘z and 'V'S and then determine the complete solu-
tion of (14) by a.perturbation technique.



Let us consider now the first step. Introducing the vectors

X 0

o= - | K

y(s) =| X(s) =|

z! 0

and the matrix

02 1 0 0
. |-K4%1-n) 0 M H
Aols) 0 0 0 1
M -H -K2n 0

equations (14) can be rewritten, for Y - 0, as p = constant

(21)  $'(s) = A(8)¥(8) - PAL(s) + 7 (s - 5,)

The vector S’o embodies the initial condition for s = Sy
The solution of (21) is given by

s
(22) gr(s) = / N(s, s'){-p??(s') +§r0§(s' - so)} ds'

-
provided that the matrix Ny(s, s') satisfies the following equations
—Q—N Y = A (s) N s')

(23) —’agsj No(s,s') = =Ny(s,8') A (s")

No(s, s')y =1

The solution (22) can also be written in a simpler form if we choose
the particular solution associated with the non homogenous term pQ to
be periodic in s with the machine periodicity L.

Then we have

y(8) = y4(8) - p¥(s)

where
(24) Ip (8) = Ng(s, s5)y,
and

A s
(25) T (s) = {1 - Ny(s, s-L)}-l / Ng(s, s')y'z‘(s') ds'
s-L

~ A
The term ypu (s) describes the betatron oscillations and p‘f(s) the

closed orbit, proportional to the energy displacement.



10.

The frequencies of the betatron oscillations, are usually of the
order of the revolution frequency &, or bigger. These frequencies are
defined by the characteristic equation

det|Ny(s,+L, s5) = A 1 =0

which also allows to study stability condition. This and other properties
of the matrix N(s, s') are studied in Appendix A.

We consider now the second step assuming for the moment '%1
to be given by

Yo = 1(&)P(s) - wg+ ST

and hence neglecting the fluctuation term and terms like "}‘—mp or 7’1 0%
which, as we shall see, give rise to secular effects.

Then the first of the equations (14) becomes
p' = H(E)P(s) - wg + £
to which one must associate the equation (19b) defining €7, namely
&' = -Kx
As said before we consider the transverse motion to be given by

(24) and (25), so that the equations for the energy variation and for the
longitudinal motion can be rewritten as

p' = £(S)P(s) - wg + T

(26)
&' = Kflp-Kyﬂl

Since we are mainly interested in the small amplitude motion
around the synchronous particle we also linearize the function f(€):
Sf

£H(6) = 1(S) +5&| g = (F-8))
[e]

It must be noted however that £(S) contains the only non negligi-
ble non linear terms: these terms have their full importance at injection
when the dampings have not yet influenced appreciably the initial ampli-

tudes. 5
. . f(& . .
Using the notation F = _Sib\_l'lg= &, and introducing the vectors
4,7\ i A ~F &, f(s)+£(6,) f(s) -wg+ 8T
S

'Kyﬂ. .
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0 F fi(s)

KT, 0

the linearized equations obtained from (26) can be written as

£ (8 =

~ A
@1)  Gie) = £(8)7(s) +T(s) + 9o (s - ;)

A
Here again the vector 7 gives the initial conditions.

The solution of (27) is
(28) 7 (s) = / M,(s, s'){é\oé(s - s')+%(s')} ds'
(4’-m

where the matrix My(s, s') is defined in the same way as N (s, s').

Assuming f(s) to be given by the expression introduced in section
3, namely

Ngr
Bo) = 2, 8(s-ro)
r=1 R

it is easy to show, explicitely integrating (27) for £<s< &+ I\I_L_ ,

that the matrix M(ﬁl-‘- + &,£) is given, in the limit & —> 0, by
R

14+ LXF F
L Ng
(29) (g +£,8)=
| Lok
Ng 1

where o{, the momentum compaction, is given by
&+L/Ng

Ny
A = Té K(s)fl(s) ds

The frequencies of the energy and phase oscillations are determined by
the characteristic equation

det

M(ﬁ%+é,2)->\1’ =0

so that in our case we get

with
1
(30) cosm = 1 +§




12.

Clearly the motion is stable only if F < 0. Assuming

eV

o
f(g) = senk W, &
NgEs °
we have
eVOkvu.o W
F = NRES senk 0%%
and
1 Z’EdkeVo
(31) cosp =1 tg cosk w, &
NRES

As long as condition "a' (8 3) is satisfied the second term on the

r.h. s. of (31) is much smaller than one. Hence we have

~ 2T _ L 2
TG e Oty
where
2 c(keVO
\)s z - -i——-E—S—— cosktUOG"o

Clearly Vg measures the frequency of the longitudinal and energy oscil
lations measured in units of the revolution frequency. Notice that

Vg <1,

To summarize the results of this section we can say that, in the limits
of the approximations used, the particle perform betatron oscillations,
with frequency near to W, and around the closed orbit p? ,-and phase
and energy oscillations with frequency much smaller than w,,.

At last we want to add a ref\nark concerning the particular solution
of (27) associated with the term T (s), namely

S )
/ M, (s,8") T (s') ds'
-

A .
From the structure of Z it follows that when Vg4< 1 this parti
cular solution is small and can be neglected.

5, - Let us write down (14) using the complete expression for ¥ as
given in section 3, in particular (15), (16), (17), (17') :
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P' = Po(&)F(E - 6\°)+f(€o)po(s)+f}1!'w -

8
-p {f( &0) Po(s) + 9}1£ B a’f * WS} )

2
H M H *®
(52) "Wl 2R - Se)xtn - ot - Ka} - plKx v gy

x"+K2(]L -n)x - Mz -Hz' = -Kp -wg(x' -Hz)+(1 - p) §:+a§p+gsz
z"+K2‘nfz -Mx+Hx' = -wg(z' +Hx)+(1 —p)f§+a§p+ €g3

where the notation fi(s)(1 - Kx) = Po(s) has been used to semplify the nota
tions (note that K =0 whenever f(s8)#0 according to the statement in pa-
ragraph 3).

To (32) we must add the other equation
&' = -Kx.

On the base of the results of the previous section we look for a so
lution of (32) of the form

P = Pgi tH
(33) 7

H

-~ N
Yp =¥ (Pg1 +Py)

Pp, being; a quantity of order wg and oscillating with the betatron frequen
cy, and ¢ being still defined by (25).

y

Actually an examination of the first of equations (32) shows that
these fast oscillating terms derive from the fluctuation term, ggq1+ and
from the coupling with ¥, and that this coupling occurs through terms
proportional to wg or ¢¥. Hence when we substitute (33) in the first
equation (32) we can single out the fast and the slow oscillating parts of
p and, neglecting all terms like Pp f(6) or P Wg, we obtain the two
equations

2
H 2M H b4
(34) By = -2 (k- K )91t K V837K Iny 'Kyfﬁl} - $1K9a,

pLy = Pols) F(E - 6,) + £ eo)po(s)’w’f -wg - psl{f( &5)0o(8) +

X

2
(35) +S?1 af+ws-K§1(§}1{-ws)-zws[(Kn..EK_)fl.;.

+ % ¥s- %?Jg *Eg

Note that wg ™ K2 so that dividing by K causes no trouble.
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Equation (35) differ from the corresponding equation (26) of sec-
tion 4 only for the addition of the fluctuation term and of the term pro-
portional to pg1. The coefficient of this term, which is the one respon
sible for the damping of the energy and phase oscillations, is small,-
being of order wg, and periodic with the machine periodicity, so that
it can be substituted by its average value Dg:

L
L oot $Eev,- 2 xFisT vy -
0

- 2 wg [(Kn -%E)fl + Mﬁfﬂ} ds

Notice that in the process of average the term ~WSE.§4. which
can be written as the derivative of a periodic function, drops out,

Dy

(36)

Hence equation (35) together with the other equation G'= -Kx can
again be written in the form (27), namely

-~

(37) 7'(8) = $(s)9(8) +T + 4, 8(s - 5,) + 1
‘with
-Dg  Fpy(s)
(38) Q(s) = ® °
KY, 0
and

-Ff(s) 6, + £6,) Po(s) + &7 - w

-Kyp, *KSp

s

il

A
T(s)

(39)
A gSl
/’p(S) = )

When substituting (33) in the last two equations (32) we make use
of the following considerations:

1) a part of the terms propgrtional to pgj +p/b drops out because of the
definition of the vector§ ; ‘

2) for the remaining term containing pgq or its derivatives we assume,
since we are now interested in fast oscillations,

Pgy =cost, Pg1 = Es1
3) we neglect all terms proportional to W% or to wWgox;
4) we neglect small closed orbit terms like ¢ % or j’xpsl;

5) we neglect all terms like wgX 4, WgZp , WgX}y , Wgzh , when they
are summed to one-of the main focusing term like for instance in the
sum Mx, +wgX, .
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As a result we obtain with the help of (34), the following equations:

xj; +K2(1-n)x, - Mz, - Hzly *X'/s{“’s [1+2xny; - SAL
* s”i,K?l} - I

(40) 2
9 . H H
z;’ +Knz, - Mx, +Hx), +z}5{ws[1 - Zﬁ-fl -4 Ef‘l +
M =
*2 'K'f3]‘§ =1
where
) = 8gp * 85 2%3 - HY3) + 2, ¥,
(41)

[y = g + 841 (2F 4 +H}o1) + g'slfB

Since those coefficients of x', and Z'/L which are proportional to
wg are small with respect to the main focussing forces, and are periodic
with the machine periodicity, they can be substituted with their average
values which will be called D1, D22 :

1 L ¥
D, * 75/ {ws(l + 20K ¥ -K¥,) +f1Kf1} ds

0

(42)

L 2
1 f H 2M
Dy2 L/ {Ws(l'zK 1t Kf:s}ds
0

We again used the fact that the average value of wsgf‘l is zero.

Equations (40) can now be written in the same form of (21), namely

(43) Yy - AE)y, =T +5,d(s - s,)
where
0
o /i
(44) o= 0
/s
and 0o 0 0o o
- 0
(45) As) = A (s) + 0 Dyq 0
0 0 0 o
0 0 0 -D,,
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Defining a matrix N(s, s') by means of the same equations (23),
defining Ng(s, 8') but with A substituted by A, the solution of (43) is

s -
(46) ya(8) = N(s, 85)¥,(80) +[00N(s, s') IM(s') ds'

The solution of (37) can also be written as

S 8 ~ -~
(47) M (8) = M(s, 8,)%,, +/ M(s, s'){T(s') + F'p(s')} ds'
- 00

with M(s, s') still defined as Ng(s, s') by equations (23) but with A (s)

substituted by ¢ (s). s

As remarked at the and of section 4 the term j M(s s')’L(s ) ds'
can be neglected.

In this case (47) become
-~ -~ S -~
(47a) 7 (s) = Ml(s,s,) 7 +[mM(s, s')l"p(s') ds'

which has exactly the same structure of (46).

6. - The solution of equations (14) given by (46), (48) represent, in
the case /' = 0, g g1 = 0, damped oscillations with the damping constants
determined by the coeff1c1ents Dy1, Dgg, Dy which satisfy the relation-
ship

D11+D2 / (4ws-a)ds

While the damping constant for the synchrotron oscillations is sim
ply given by (see Appendix 1):
1 1
[ = - =D
T, 2 s
for the betatron oscillation the damping constants are complicated func-

tions of Dyq1» D 29 (see Appendix 1). Only in the case when the radial and
vertical motlon are uncoupled we have

L
1 __1 1 T _x% x
. - "2Pu 2L/ wo(1+2nKE 1 K3 )+ $TKE, ds
L1 = - L
7= "3 Dy L/ Wg ds
g 0

~

Let us now consider the case in which the fluctuation terms
and gg1 are different from zero.
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Then we are no more interested in the instantaneous values of the
random vectors y, or % but in the correlation functions <y/§ 2 s.)y/L t(s')) .
<’7r(s) ’7t(s')> where the averages are now referred to the distribution
of the random variables appearing in the fluctuation terms.

In particular we want to know the quantities < Y r(s)yﬂ t(s)) and
<’7r(s)’7t(s)> which we shall write for brevity as

<y/-”ry/5t> ¢ (@r7t> .

Once one has determined these quantities the distributions of the
energy and of y, are given by
4

1
48)  Pylya-s - LS et} % enpd -S>
(48) b 198 9¥83% 4) = 2 L det ™y ] exP A Tt edB

1 71
49 P (M) = ———b exp - —1 L

where the quantities m, . are related to < 4 4 t> by

50 < " = l. ._..._1\£I.:t__.
(50) R/ ’c> T2 det m
and

S M_ - detu.
. rs T rs
r
Both my; and y/&*ry/it> are symmetric in r and t.

The folding of Py, and P, according to (33) and neglecting P gl
ves the distribution of the absolute positions and velocities.

Writing .

A A A
Y <" N3

one has

- +00 - A
PG = [ dmp) PG+ 7 E)

-

The explicit result is
~ 1 1/2
(1) PG) = —5(dethy) / exp{-zﬂrsyrys}

Z_, Mpt™ svft NFV

t,v
(52) /a'rs N mrs_ . 1
‘ ———+2m ¥
292> v tﬁ'

where
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Use has been made of the symmetry property m, . =mg. which also holds
true for the new coefficients 4 .o = A5, .

Local symmetry axes (somewhat like normal coordinates) can be
introduced by diagonalization of the matrix ‘/"rs {; this can provide some
information in connection with the observation of synchrotron light ( see
Appendix 2).

7.-  In this section we want to evaluate explicitely the quantities
LI eIt D MMt > . To do this we first notice that the quantity

/"—”'p(-s), defined by (39) can be written as
(3)
CX
(53) ;"p(s) = ZZ (s - 5y)
I
(3)

A
and that, since the C are random variables (describing the random

process 'j''), one has the iportant property
(54) { r‘p,r(s)Pp,t(S')> =3 (S—S')Kit(s) r,t=1,2
where .
> LW (s)p 0
(55) K’s) =1

0 0

This matrix will provide the relevant input data for the actual
computation of <%.%,> .

Then we follow the same procedure for the betatron oscillations.
Notice first that the term /7 (s), defined by (41) (44) can be written as

/:'(S) = Z Z{a‘g)‘fl(s)g (s=s )+ f)(i) fz(s)gl(s_ﬂs )}
L

and the insertion of this term in (46) is formally equivalent to the inser
tion of

e =2, Z{Qﬁ’ £,(s) - B el(e) +
7 A
(56) .
+ A(s) Bg) fz(s)}g (s - 8y)

Then one also has, in the case of betatron oscillations like (54) for the
phase motion, the following structure of the correlation functions of the
random perturbing terms:



(57) rA®PIs)> = 3(s - 8)K_(s) rt=1,.. .4,

K(s) will indicate the 4 x4 matrix having elements Krt(s)'

Liet us now consider equation (46) which can also be rexritten in a
form which makes explicit use of the periodicity of the magnetic struc-

ture, i.e.
s

(58) Ip(s) = N(s, s-L)gr,,,(s-L)+/ N(s, s')ll‘\‘x(s')ds'
s-1L,

We shall abbreviate in the following N(s, s-L) by N(s).

It proves convenient to diagonalize N(s); this can be accomplished
by means of a matrix U(s) such that (see Appendix 1) :

A(s) = U(s)N(s)U 1(s)
is diagonal.
The transformed vector is
a(s) = U(s)yp(s)
Also, due to the periodicity of U(s)
a(s-L) = U(s)y, (s-L)
so that

~ -~ V 8 /\x
(58a) a(s) =A(s)q(s-L) +/ U(s)N(s, s")*"(s') ds'
s~L,

Next introduce the correlation functions
Qrs(slv Sz) = <qr(sl)qs(82)>
G, (81,83) =< auls;) g(s3)D

Q and G will indicate in the following the corresponding 4 x4 matrices.

Assuming that the machine is stable, a random-stationariety cha
racter of Q can be recogmzed in the following property

Q(s1,85) = Q(sy +nL, s, +nl)

where n is an integer.

Then recalling the property (57), an equation for G is easily de-
rived from (58a) in the form :

G(s,s') =A(s)G(s-L, g') + U(s)N(s, s'")K(s') 8(s, s')

Here 6(s, s') is a function (not a matrix) such that
6(s, s')

1 when s-L £ g'% g.
= 0 otherwise.
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It follows that, as required by causality
G(s,s') = 0 when s'> s
=, U(s)N(s, s")K(8) when s-L < s'< s

and this is all what we need together with the random-~stationariety of Q
to get the following equation for Q(s) = Q(s, s)

(59) Q(s) = A(s)Q(s)A(s) + R(s)
where s
R(s) = U(s) N(s, s')K(s)NT(s, s') ds' UT(s)
s-L

Here UT is the transpose of U, etc; use has been made of the obvious
property K(s) = KT(S-).

Introducing the diagonal matrix (see Appendix 1)
T(s,s') = U(s)N(s,s") U L(s")

and the matrix ;
z(s,8') = U(s')K(s')UT(s")

R(s) can also be written as

s

(60) R(s) = / T(s, s')z(s')TT(s, s') ds'
s-L
The solution of (59) is

Q

&) = X [aE)] me [ae)
0

This series can be summed by virtue of the fact that A is diago-
nal so that
1
Q = —— R .
rs 1 ArAS rs

It also easily follows that the quantities we need are given by

-1 -1
U Ul
_ 3 rr! “ss
(61) 187 r s‘> IZ,‘;, 1-4A, As‘ Rorgt

This formula provides the formal solution of the problem. Its structure
is better understood by writting

R(s) = U(s)&(s)UT(s)
‘and introducing the 4-indices simbol

-1 =1

- E Uyt Uy Ugg Us"v
1-4 4,

r s

rtsv
r's!
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Then < Ip Y4 s > can be expressed as the product of a factor depending
on machine structure only (M) and'a factor depending on radiation (# ):

< I 9 s> B tz" Miﬂtsv wtv

Vv

In particular, resonant filtering of the radiation noise is exhibited in the
denominators 1 - Ar| Asn appearing in the definition of M,q,; analysis
of such denominators for a given machine structure is generally impor-
tant in itself.

In fact for a stable machine one can write

+ . +.
A - el- 81-1"1)14; A, =" Ep iVl

with 21 ols<<1 and Vl' 9 real, so that the main terms of (61) are gi-
ven by '

3 1 -1_.-1 -1 -1
B s 4 +
e T3 £L {Url Usa B1p ¥ Upg Ugy R21}
(62)
1 -1 -1 -1..-1
" 76,13 Vst Bag T Upy Ugs R43}
The evaluation of (’? " ” > can of course be performed in the sa
‘me ways as for ¢ YArIA LY - éalling M(s, s=-(L/NR)) the transfer ma
trix over one period defined by the RF cavities, and f\(s) the diagonal
matrix obtained by a similarity transformation generated by V(s)

1

_ Ly
N(s) = V(s) M(s, S-NR )YV "(8)

-E ti v
we have writting ‘Q‘l g = e( £p-iVg o)L/ Ng,
63) . 4.> = L IR Jy-1 v RP +v iy lgP }
( Mr Yt 2gp, L | 'rt 12127 Vg Vi Boy
where 8
(64) RP(s) = V(s),/ M(s, s')KP(s') M (s, 8') ds' V"~ (s)

L

8 = —

Ny
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8. - While (63) can be easily put in the usual, and more practical,
form A S
o
ﬁs NR 2 ! 1 e
12 T T 2 Lejs) 7 ds
(65) L1 LoF 1L
’ 1 L Lok

the computation of the transverse beam size by means of (62) is quite
cumbersone and requires the use of a computer.

This task has been performed succesfully for the case of the 2x1.5
BeV ring Adone by M. Bassetti and M. Buonanni obtaining indeed useful
numerical data on the beam size.

However in the case when the vertical and radial motion are uncou-
pled also (62) can be written in a very simple form.

We think it useful to show how this can be done for instance for the
case of the radial motion.

Of course the same procedure can be used to obtain (65) or the ver
tical dimension.

Using the notations of ref. (7), the matrix N(s, s') can be written
in the one dimensional cases as

L 1
. [/6(!:'2)]2 {cos’l/« +°((S')Sen'§t} [/6(8)/!(3‘)]2 sent
N(s, &')= 1
I¢(s)-X(s))cost - T1+ek(s")l(s)seny /5(8,) g{cosv-d(s')sen’%
[A (s)m(s1)]Y2 As) 1
The matrix U(s) is given by
i+ol y
Us) = 5
i-o _p

and with the help of (66) one can write the matrix T(s, s') as

iy
/A 1/2

e 0
-iy
e
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The next step is to write explicitely the matrix K(s). To this end we
assume that in the expression (41) of \"1 the term ggo can be neglec
ted, as is usually possible, to a good approximation, and that gq1 is
defined as in (53).

Then using (56), (57) one has

%] 15,
SE

©8)  Ks) = 2 Lef(s))
J

Using (66), (68) one obtain that the off diagonal elements of the matrix
z(s, s') are given by

2,5(8) = z,,(s8) = ;}{(H«Z(s»ﬁ(sw
(69)
+ 24 (8)ol(5) £ 1(5) F () +/52(s)?§(s>}§_4<c§(s)>
J

We have now all the elements that we need to evaluate R12 and
hence < Y 5 038 ¢” as defined by (62). The result is

’C"‘ s
Ar 1 2 1+l2(s') 52
<y/5:r'y/!-t> - 4r —I:/ Z<CJ(S')>{;5(S')S fl(s')+
s-1, J

(70) .
+ 2(8") fl(s')fz(s') +/3 (s')fz(s')} ds' D_(s)

Here Drt(s) is the r,t element of

/% (8) - (s)
D(s) =

L2
-« (8) ——L—l;(s) 5)

This result agrees with the well known formulas in the literature®,
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APPENDIX 1. -

We collect here for completeness the relevant properties of the
matrix N(s, s') as defined by (22) and (46).

The first property we mention is:
(A.1) N(s'",s)N(s,s') = N(s",s')

This property is completely equivalent to the set of properties
(23) since, when s''=s, (A.1) gives N(s,s)=1 and when s' =s+ds the
equations of motion give

N(s+ds, s) = 1+ A(s) ds

The second property concerns the diagonalizability of the matrix N(s, s').
First notice that N(s, s') can be reduced to it's Jordan canonical form;
then, from the continuity of N(s, s') and the fact that N(s,s)=1, it fol-
lows that N(s, s') is diagonalizable.

The third property concerns the independence of the eigenvalues
of N(s) on s; this is easily shown by using property (A.1) as follows;
det (N(s) = AI) = det {N(s s )[N(s') - XI]N-1(s, s )} = det(N(s') - A1)
for every s, s'.

The fourth property is perhaps less evident: the matrix
(A.2) T(s,s') = U(s) N(s,s') UT(s")
is diagonal. Here U(s) is the transformation matrix such that, by defi-
nition
A(s) = U(s)N(s+L, s) U 1(s) = U(s)N(s) U }(s)
is diagonal.

To prove the property (A. 2) let us introduce the orthonormal ei-
genvectors &;(s) and the eigenvalues >‘i (independent of s) of the ma-
trix N(s):

(A. 3) N(s)&:(s) = N, el(s)

then put

(A. 4) N(s, ) es) = Z all)(s, 81 & (s)
Now

N(s+L, s')éi(s) = N(s+L, s'+L)N(s')§i(s') = N(s, s')A; el(s'
so that multiplying (A. 4) by N(s+L, s) we get
(A. 5) N(s, s')xiéi(s') = 2, a( )(s s )xk 1(8)

Next, multiplication of (A. 4) by >\i and subtraction of (A. 5) gives
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(A. 8) Zag{i)(s. s')ék(s'){ki - )‘k\g =0

We will assume non-degenerate eigenvalues for a properly operating
machine; thus 'the linear independence of the eigenvectors requires

ag)(s.s') = a,(s, s')Jki
It follows that
(A.7) e (s) N(s, ") ey(8") = a(5,8) 5,

where e;(s/) indicates the hermitian conjugate (one~-row vector) of ek(s).
But (A. 7) is equivalent to (A. 2) since the matrix U(s) is build up by u-
sing the eigenvectors according to the well known technique for diagona
lization.

Eventually, we note that the damping constants will be obtained
from the secular equation for N(s) and that only the eigensolution will
have a simple exponential decay. Moreover, the homogeneous equation

-~

y' = A(s)y will in general have a wronskian proportional to

exp{- /[Trace,A(s)] ds} .

APPENDIX 2, -

The distribution in positions as deduced from (51) by integrating
over the angles can be expressed in an equivalent form in which local
symmetry axes appear. To this end, let us introduce locally rotated
axes X, Z by the transformation.

X = xcosO +2z sin®; Z = -x 8in0 + 2z cos O
By choosing 2 4
XZ
tg20 = ;:——:————
XX ’azz
and then putting
— 1 Az
. | + [P —
’l“,‘xx Z(Axx 'azz)+ sin 20
— 1 /‘xz
= - 4 - ———
/‘zz 2 (Axx /Azz) sin 26
the distribution transforms into
-~y _ 1 = = 1/2 i =2y =2
P(x,z) 7 (Mg gy) '~ exp - (K XA 2 ).

Thus, looking at the beam section (e. g. by the light an alliptic
spot appears having symmetry axes along the direction X and Z. Also,
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the inverse effective area S in the luminosity (for two crossing overlap
ping beams) is given by

-;- =/P2(§,E)d3€d'z' = -——(,a A )/2 = -;-P(O.O)-

XX ZZ

1/S is thus half the maximum transverse density.
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