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Abstract
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1. The origin of CP violation is one of the fundamental questions of particle physics

and cosmology which remains an open problem to date. The recent measurements of

"0=" [1] (see also [2]) represent an important step forward in our understanding of this

phenomenon, since they have ruled out superweak scenarios. Nonetheless we are still far

from a quantitative description of the dynamics which generate the amount of CP violation

observed in hadronic processes. Indeed, even within the Standard Model (SM) it is very

hard to predict the value of "0=" in terms of the parameters of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix (see e.g. Refs. [3] and references therein). Given the large

theoretical uncertainties affecting the calculation of this quantity, it is very useful to collect

additional experimental information about CP violation in j�Sj = 1 transitions. In this

respect charge asymmetries in non-leptonic decays, as the difference in K+ ! (3�)+ and

K� ! (3�)� Dalitz plot distributions [4], represent an interesting class of observables,

since they are straight direct CP-violating effects free from j�Sj = 2 contaminations.

Moreover, contrary to "0=", these asymmetries stem from the interference of two �I =

1=2 amplitudes and do not necessarily suffer the suppression of �I = 3=2 transitions. In

spite of these advantages, however, within the SM such observables are expected to be

very small, of O(10�5), due to the constraints from "0=" and the smallness of final-state

interactions [5,6]. A natural question is whether extensions of the SM could enhance

these CP-violating asymmetries at such a level that they could be recognized as a clear

signal of new physics.

Good candidates to provide new large CP violating effects are the supersymmetric

extensions of the SM with generic flavour couplings and minimal particle content. In

this framework, among the possible contributions which may be envisaged, it has been

recently recognized the importance of the chromomagnetic operator (CMO). Its CP-odd

contribution can become large in the presence of misalignment between quark and squark

mass matrices, and, without conflict with the experimental determination of the K0– �K0

mixing amplitude, it can account for the largest part of the measured "0=" [7]–[10]. Ac-

tually a non-standard CMO is the only possibility, within this framework, to considerably

affect the CP-violating part of �I = 1=2 amplitudes without serious fine-tuning problems

in j�Sj = 2 processes [10].

In this paper we investigate the possibility of using the CMO to enhance CP violat-

ing effects in K ! 3� decays. We work under the assumption that the Wilson coefficient

of this operator is mostly due to left-right mixing among down-like squarks. This implies

that a large chromomagnetic term is necessarily accompanied by sizeable corrections to

" and K
L
! �0e+e�. We thus perform a combined analysis of these processes together

with "0=" and K ! 3� decays. We have not considered other possible supersymmetric

sources of CP violation in K ! 3� decays, such as left-left or right-right squark mix-
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ing, since only the left-right ones trigger the enhancement of the CMO which is the most

promising candidate to give an observable effect.

Our main conclusions are that, even within supersymmetry, effects at the level of

O(10�4) may be observed only under special circumstances, among which large cancel-

lations of different contributions in "0=". Otherwise, similar to the SM, the natural order

of magnitude of the charge asymmetries will remain of O(10�5). As we shall discuss,

this conclusion is rather general and applies also to other direct CP-violating observables

in non-leptonic processes.

The paper is organized as follows. We first derive the main formulae needed to

evaluate the CMO contribution to CP-odd asymmetries in K� ! (3�)� decays. Then

we discuss the role of down-type left-right mass insertions, including contributions from

the CMO, in the K0– �K0 mixing amplitude. Finally a combined analysis of CP-violating

effects in K� ! (3�)� decays, taking into account the constraints imposed by ", "0="

and K
L
! �0e+e�, is presented. The results are summarized in the conclusions.

2. We start by analyzing the charge asymmetries in K� ! ������ decays. As dis-

cussed in Ref. [5,6], the most interesting CP-violating observable is the asymmetry in the

Dalitz plot slopes g�. Neglecting the suppressed �I = 3=2 contributions, this can be

written as
g+ � g�

g+ + g�
=

"
Imb

Reb
� Ima

Rea

#
sin(�0 � �0) ; (1)

where the weak amplitudes a and b are defined by the momentum expansion of A(K+ !
�+�+��) around the center of the Dalitz Plot,

A(K+ ! �+�+��) = aei�0 + bei�0Y +O(Y 2) ; (2)

Y =
3(p

K
� p

�
�)2 �M2

K
� 3M2

�

M2
�

; (3)

and �0; �0 are the small rescattering phases, known from chiral perturbation theory

(ChPT) [11], evaluated at Y = 0. In the limit where we neglect �I = 3=2 contribu-

tions, the slope asymmetries of K� ! ������ and K� ! �0�0�� modes are identical.

Since a and b are �I = 1=2 amplitudes, on general grounds one expects Ima=Rea

and Imb=Reb to be both of the same order as the weak phase of A0 = A(K ! (2�)
I=0),

namely
Ima

Rea
� Imb

Reb
� ImA0

ReA0

� Re

 
"0

"

!
j"jReA0

ReA2

� 10�4 : (4)

Given that sin(�0 � �0) <

� 0:1 [11], this sets the “natural” order of magnitude for the

asymmetry to 10�5 [5]. Actually, within the SM, the situation is even worse: neglecting
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the CMO, which in this case has a very small coefficient, the asymmetry vanishes at the

lowest order in the chiral expansion. This happens because at this order there is only

one octet operator which generate the same weak phase to all the �I = 1=2 amplitudes

[6]. Clearly the situation may improve if the contribution of the CMO is enhanced by

supersymmetric effects, which we now discuss.

Let us start from the relevant piece of the effective Hamiltonian. This can be written

as [10]

Hmag = C+
g
Q+
g
+ C�

g
Q�

g
+ h:c: ; (5)

where

Q�

g
=

g

16�2

�
�s
L
���taGa

��
d
R
� �s

R
���taGa

��
d
L

�
(6)

and the dominant contribution to Wilson coefficients, generated by gluino exchange dia-

grams, is given by [10,12]

C�

g
(m~g) =

��
s
(m~g)

m~g

h�
ÆD
LR

�
21
�
�
ÆD
LR

�
�

12

i
G0(xgq) : (7)

Here (ÆD
LR

)
ij
= (M2

D
)
iLjR

=m2
~q denote the off-diagonal entries of the (down-type) squark

mass matrix in the super-CKM basis [13] and x
gq

= m2
~g=m

2
~q the ratio of gluino and

(average) squark mass squared. The explicit expression of G0(x) can be found in [10].

The realization of Q�

g
in terms of meson fields, to the lowest order in 1=N

c
and in

the derivative expansion, can be written as

Q�

g
=

11

256�2
f 2
�
M2

K

m
s
+m

d

h
UD

�
U yD�U �D

�
U yD�UU y

i
23
; (8)

where U = exp(i2�=f
�
), f

�
= 132 MeV, � is the octet field of pseudoscalar mesons, and

the overall coupling has been fixed by the chiral quark model estimate of Ref. [14]. Using

Eq. (8) we can derive the following matrix elements

h�0(p)jQ+
g
jK0(p)i = � 11B

g1

32
p
2�2

M2
K
p2

m
s
+m

d

; (9)

ih�+��jQ�

g
jK0i = �11B

g2

32�2
M2

K
M2

�

f
�
(m

s
+m

d
)
; (10)

h�+�+��jQ+
g
jK+i = �11B

g3

16�2
M2

K
M2

�

f 2
�
(m

s
+m

d
)
: (11)

The B-factors, B
gi

, have been introduced to parametrize our ignorance of the precise

overall coefficient in Eq. (8) and of possible higher-order terms. For practical purposes,
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in the following we shall also set m
s
+m

d
= 110 MeV in Eqs. (9)–(11), encoding in the

B
gi

the remaining uncertainty on the true value of the quark masses.1

For the K ! 3� amplitudes defined in (2) we obtain���� Ima

Rea

���� = 3

2M2
K
G8

� 11

16�2
M2

�
M2

K

f 2
�
(m

s
+m

d
)

���B
g3ImC+

g

��� ; Imb

Reb
= 0 ; (12)

where we have used the lowest-order chiral relation between Rea and ReA0, express-

ing the latter in terms of the standard coupling G8 = 9:1 � 10�6 GeV�2 (i.e. Rea =

2M2
K
G8=3). In view of the numerical analysis, it is convenient to introduce the following

simple expression, which can be readily derived from Eq. (12) andHmag in (5)�����g+ � g�

g+ + g�

����� ' 1:97�
"

� �
s
(m~g)

�
s
(500GeV)

500GeV

m~g

G0(xgq)

G0(1)

#
jB

g3ImÆ+j ; (13)

where we have defined Æ� = (ÆD
LR

)21�(ÆDLR)�12 = (ÆD
LR

)21�(ÆDRL)21. We found very useful

to introduce Æ� since these are the natural couplings appearing at first order in any parity

conserving (+) or parity violating (�) observable. In the evaluation of the numerical

coefficient above we have used �
s
(500GeV) = 0:096 and, as anticipated, m

s
+m

d
= 110

MeV. The parameter � ' 0:9 [10] is the correcting factor due to the running of the Wilson

coefficient from m~g to the operator renormalization scale.

3. An important constraint on the couplings Æ� comes from K0– �K0 mixing. Besides the

usual gluino-box amplitudes widely discussed in the literature (see e.g. Refs. [12,16,17]

and references therein) further contributions arise from the single and double insertion of

the CMO. Schematically we can write

Asusy(K0 ! �K0) = Aboxes +A1�mag +A2�mag : (14)

Aboxes, which is dominated by short-distance contributions, can conveniently be written

in the form

Aboxes =
�2
S

m2
~g

1

432

�
M

K

m
s
+m

d

�2
M2

K
f 2
K

h
x2
gq
f6(xgq) (85�2B2 + 3�3B3) (Æ

2
+ + Æ2

�
)

+ x
gq

~f6(xgq) (33�4B4 + 15�5B5) (Æ
2
+ � Æ2

�
)
i
; (15)

where the definitions of f6(x), ~f6(x) and of the B
i

parameters have been taken from

Ref. [16]. In the numerical analysis we will use the simplified expression

Aboxes = 2:9� 10�11GeV2 �
"

�
s
(m~g)

�
s
(500GeV)

500GeV

m~g

#2 �
B+ Æ

2
+ + B� Æ

2
�

�
; (16)

1 For an extensive discussion about the possible chiral realizations of the CMO see Ref. [15]. The factor
Bg3 could in principle be a function of Y , but for simplicity in the following we will ignore this possibility;
Bg2 coincides with the BG of [10] forms +md = 110 MeV.
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where B� are coefficients of O(1), which may vary by a factor of 2 � 3 depending on

the values of the B parameters of the �S = 2 operators, the precise value of x
gq

, the

perturbative QCD corrections, etc. [16].

The single and double insertions of the CMO are expected to be dominated by

long distance contributions. For illustration we give here the expression of the single �0

contribution, already considered in Ref. [19]

A�
0

1�mag = 2 h �K0jH�S=1
SM j�0i 1

M2
K
�M2

�

h�0jHmagjK0i

=
1

M2
K
�M2

�

 
11B

g1

32�

M6
K

m
s
+m

d

G8f
2
�

!
�
S

m~g

�G0(xgq)Æ+ : (17)

One can then generalize the above expression to include the contribution from other one-

meson states, such as the � and �0. In the following we will use the simplified expression

A1�mag = 4:8� 10�13GeV2 �
"

� �
s
(m~g)

�
s
(500GeV)

500GeV

m~g

G0(xgq)

G0(1)

#
�1 Æ+ ; (18)

where the numerical coefficient has been computed from Eq. (17) and we have absorbed

the hadronic uncertainties, namely B
g1 and contributions from intermediate states other

than the �0, in the factor �1. Using the Gell-Mann-Okubo mass formula the �0 and �

contributions would cancel, thus one may argue that �1 should be substantially smaller

than one. We know, however, that a similar argument fails for K
L
! 

, where the

effective coupling, corresponding to our �1, is ofO(1). Note that intermediate states with

parity opposite to the one pseudoscalar-meson state may give contributions proportional

to Æ�. We have neglected these effects in our analysis.

Similarly, in the case of the double insertion one gets

A�
0

2�mag = h �K0jHmagj�0i
1

M2
K
�M2

�

h�0jHmagjK0i ; (19)

that proceeding as before leads to

A2�mag = 1:9� 10�11GeV2 �
"

� �
s
(m~g)

�
s
(500GeV)

500GeV

m~g

G0(xgq)

G0(1)

#2
�2 Æ

2
+ : (20)

4. For the other two quantities which are used in our analysis, namely "0=" and the

BR(K
L
! �0e+e�), rather than giving the explicit analytic expressions, for which we

refer the reader to Ref. [10], we only list here two convenient expressions:

Re

 
"0

"

!
mag

= 92:6�
"

� �
s
(m~g)

�
s
(500GeV)

500GeV

m~g

G0(xgq)

G0(1)

#
B
g2 ImÆ� ; (21)
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BR(K
L
! �0e+e�)mag = 6:1� 10�4

 
~y


(m~g; xgq)G0(xgq)

~y


(500GeV; 1)G0(1)

!2
B2
T
(ImÆ+)

2 ; (22)

where the definitions of B
T

and ~y



can be found in Ref. [10], and in K
L
! �0e+e� we

have neglected the interference with the SM contribution.

Besides the numerical expressions given above, for our study we also use the fol-

lowing experimental inputs:

j"j = (2:28� 0:02)� 10�3 ; Re

 
"0

"

!
= (21:2� 4:6)� 10�4 ; (23)

BR(K
L
! �0e+e�) < 5:6� 10�10 [18] : (24)

We are now ready to discuss the bounds in the ImÆ+–ImÆ� plane imposed by the

experimental measurements and the theoretical expressions given in Eqs. (16), (18), (20)–

(22). As usual, we impose the constraints by requiring that all CP violating observables

are saturated by the supersymmetric effects considered above, i.e. neglecting the SM

contributions. By setting the values of all hadronic parameters (namely the B
i
’s and the

�
i
’s) to one, at our reference values of gluino and squark masses (m~g = 500 GeV and

x
gq

= 1), we find ImÆ� � ImÆ+ � 10�5. According to Eq. (13), this implies that the

K ! 3� asymmetry is of the same order, as found within the SM. It is interesting to

note that values of ImÆ� � 10�5 are consistent with the approximate flavor-symmetry

scenario of Ref. [7], where jÆ�j <

� sin �
c
m

s
=m~q. In this framework one could therefore

find a “natural” supersymmetric explanation for both " and "0.

To obtain larger values of the charge asymmetry in K ! 3� decays one has to relax

the bound on ImÆ+. To this purpose we note that "0=" put an explicit constraint only on

ImÆ� but not on ImÆ+, whereas BR(K
L
! �0e+e�) and Aboxes put upper bounds on

ImÆ+ only at the level of 10�4. The strongest limit is set by the contribution ofA1�mag to

", since this term is linear in ImÆ+ (the quadratic terms may become competitive only for

ReÆ=ImÆ � 1 or if �1 � �2). This contribution is subject to a large uncertainty which is

parametrized by �1. Therefore one can relax the bound by taking for �1 a value sensibly

smaller than one, as for example done in Ref. [19]. In Fig. 1, we display the bounds

obtained for �1 = 1:0, 0:3 and 0:1. Only in the latter (optimistic) case one may obtain

K ! 3� asymmetries in the 10�4 range. This is very similar to what has been found in

Ref. [19] for the CP asymmetries of hyperon decays.

Even accepting values of ImÆ+ � 10�4, it remains to be explained the large can-

cellation between Im(ÆD
LR

)21 and Im(ÆD
RL

)21 necessary to satisfy the 10�5 bound on ImÆ�

imposed by "0=". An underlying mechanism forcing this cancellation exists, however, in

the U(2) models considered in Ref. [9].
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Figure 1: Constraints in the ImÆ+–ImÆ� plane imposed by "0=", " and BR(K
L
!

�0e+e�). All bounds are obtained for x
gq

= 1 and scale linearly with (500GeV=m~g).
The vertical dotted lines correspond to the " constraint on A1�mag for �1 = 1:0, 0:3
and 0:1 (from left to right); the other vertical lines are obtained from the " bound
on (Aboxes + A2�mag) for Æ� = 0, ReÆ+ = ImÆ+ and B+ = �2 = 1 (dashed) or
B+ = ��2 = 1 (dot-dashed). The constraint from BR(K

L
! �0e+e�) is obtained

for B
T
= 1. The limits from "0=" are obtained for B

g2 = 1 and ("0=")SM = 0 (horizontal
dash-dotted line) or the extreme case ("0=")SM � �120�10�4 [20] (horizontal shadowed
region).
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In principle one could relax the "0=" constraint on ImÆ� by allowing other contri-

butions to "0=" to be large. For example if one accept the striking result of Ref. [20],2

("0=")SM � �120 � 10�4, one would need a large supersymmetric contribution, corre-

sponding to ImÆ� � 10�4 to reconcile the theory with the experimental number. This,

however, leads to a new fine tuning problem, because then the natural order of magnitude

of "0=" would be 10�2 rather than 10�3.

5. Large CP violating effects triggered by misalignments between quark and squark

mass matrices are among the most promising phenomena to uncover Supersymmetry at

low energy. Among the possible effects those driven by the chromomagnetic operator

are particularly interesting since they could completely account for the already measured

CP violating parameters, " and "0=". In this paper we have studied the possibility that

effects of the CMO are detectable from the enhanced asymmetry in K ! 3� decays. We

find that this is possible only if several conditions, on which we have a poor theoretical

control, conspire in the same direction. Moreover, even if this were the case, one should

then face a fine-tuning problem in "0=".

Our analysis of supersymmetric CP-violating effects in K ! 3� decays is parallel

to those recently performed in K ! ��
 [21] and hyperon decays [19]. In all these cases

the conclusions are hampered by poor knowledge of some hadronic parameters, which

in the future will hopefully be computed on the lattice. We stress that this problem is

absent (or at least much simpler) in rare K decays like K
L
! �0���(e+e�) [10], whose

experimental investigation will definitely provide useful and unambiguous information

about the nature of CP violation.

We thank I. Mannelli for interesting discussions that stimulated us to start this work.

G.I. thanks LAL and the Laboratoire de Physique Théorique of the CNRS at Université

de Paris XI for hospitality during the completion of this work.
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