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Abstract

Using improved theoretical calculations of the decay form factors in the Light Cone-QCD
sum rule approach, we investigate the decay rates, dilepton invariant mass spectra and the
forward-backward (FB) asymmetry in the decays B ! (K;K�)`+`� (`� = e�; ��; ��)
in the standard model (SM) and a number of popular variants of the supersymmetric
(SUSY) models. Theoretical precision on the differential decay rates and FB-asymmetry
is estimated in these theories taking into account various parametric uncertainties. We
show that existing data on B ! X

s

 and the experimental upper limit on the branching

ratio B(B ! K��+��) provide interesting bounds on the coefficients of the underlying
effective theory. We argue that the FB-asymmetry in B ! K�`+`� constitutes a pre-
cision test of the SM and its measurement in forthcoming experiments may reveal new
physics. In particular, the presently allowed large-tan � solutions in SUGRA models,
as well as more general flavor-violating SUSY models, yield FB-asymmetries which are
characteristically different from the corresponding ones in the SM.
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1 Introduction

The flavor-changing-neutral-current (FCNC) transitionsB ! (X
s
; X

d
)
 andB ! (X

s
; X

d
)`+`�,

withX
s
(X

d
) being hadrons with overall strangeness S = �1(S = 0), provide potentially

stringent tests of the SM in flavor physics. FCNC transitions are forbidden in the SM

Lagrangian and are induced by the GIM-amplitudes [1] at the loop level, which makes

their effective strengths small. In addition, these transitions may also be parametrically

suppressed in the SM due to their dependence on the weak mixing angles of the quark-

flavor rotation matrix — the Cabibbo-Kobayashi-Maskawa matrix VCKM [2]. These two

circumstances make the FCNC decays relatively rare and hence vulnerable to the pres-

ence of new physics. In the context of the SM, the potential interest in rare B-decays is

that they would provide a quantitative determination of the quark-flavor rotation matrix,

in particular the matrix elements V
tb

, V
td

and V
ts

[3–6]. A beginning in that direction

has already been made by the measurement of the branching ratio B(B ! X
s

) [7,8],

yielding jV
ts
V �

tb
j = 0:035 � 0:004 [9], in agreement with the expectations based on the

CKM-unitarity [10]. Since complementary information will also be available from the

B0
s
-B0

s
- and B0

d
-B0

d
-mixing induced mass differences �M

s
and �M

d
, respectively, and

from a number of rare kaon decays [11], the parameters of the CKM matrix, which are

already fairly constrained in the SM [12–14], will be multiply determined. This will re-

sult either in precise determination of the SM parameters in the flavor sector, comparable

to the precision of the electroweak parameters of the SM [15], or, more optimistically,

in the discovery of new physics. Thus, FCNC processes are potentially effective tools in

searching for new physics, with the supersymmetric theories receiving special attention

in this context [12,16–24].

Inclusive decay rates and distributions are relatively robust theoretically, making

them well-suited to search for new physics which may result in distortions of the SM-

distributions. Concerning rare B-decays, we recall that the shape of the photon energy

spectra in the radiative decays B ! (X
s
; X

d
)
 depends on the underlying physics. How-

ever, deviations from the SM-based normalized photon-energy distributions are expected

only for the low-to-intermediate photon energies, where the individual contributions from

the various operators in the underlying effective theory are comparable. Measuring the

low-E



spectrum is, however, a formidable task in the present experimental set-up. More

promising from the point of view of observing new-physics-induced distortions in the dis-

tributions are the decays B ! (X
s
; X

d
)`+`�, which provide the possibility of measuring

Dalitz-distributions in a number of variables, which in turn could be used to determine the

coefficients of the effective vertices in the underlying theory [17]. This program is some-

what handicapped by the fact that heavy quark expansion in 1=m
b

breaks down near the
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end-points of the spectra [25,26], near the c�c-threshold and in the resonant region. Thus,

a certain amount of modeling is unavoidable for the complete phenomenological profile

of the decays B ! X
s
`+`�. A number of studies has been undertaken to assess the non-

perturbative effects [25,27–32], allowing to define limited kinematic regions where the

short-distance physics in the SM and alternative theories can be quantitatively studied.

While the inclusive rare decays discussed above are theoretically cleaner than exclu-

sive decays, which require additionally the knowledge of form factors, they are also more

difficult to measure. Present best limits from the CLEO collaboration on B ! X
s
�+��

and B ! X
s
e+e� [33] decays are typically an order of magnitude larger than the corre-

sponding SM-based estimates [25]. Moreover, inclusive rare decays are a challange for

experiments operating at hadron machines. However, it is encouraging that the FCNC ex-

clusive semileptonic decays, in particular the B ! (K;K�)�+�� modes, are accessible

to a wider variety of experiments. As we will argue quantitatively in this paper, some of

the present experimental bounds on these (and related e+e� modes) [34,35] are already

quite stringent. With the advent of the Fermilab booster, HERA-B, experiments at the

LHC, and also the ongoing experiments at CLEO and the B-factories, the decays of in-

terest B ! (K;K�)`+`� will be precisely measured. It is therefore worthwhile to return

to a comparative study of these decays in the SM and some candidate theories of physics

beyond the SM to ascertain if these modes could be meaningfully used for searches of

beyond-the-SM physics.

In the context of the SM, exclusive FCNC semileptonic B-decays have been stud-

ied in a number of papers [36–44] with varying degrees of theoretical rigor and emphasis.

The main purpose of this paper is twofold: First, we would like to report on an improved

calculation of the decay form factors using the technique of the Light cone-QCD sum

rules (LCSR) [45,46]. Early studies of exclusive B decays in the LCSR approach were

restricted to contributions of leading twist and did not take into account radiative cor-

rections (see Refs. [47,48] for a review and references to original publications). In the

present paper, we use the results of [49] for vector form factors, which include NLO ra-

diative corrections and higher twist corrections up to twist 4 [50,51]. For B ! K form

factors we improve on the results obtained in [52] by including the twist 4 mass correc-

tion terms calculated in [53]. Second, we apply this technology to the SM and some

popular variants of the SUSY models to determine the phenomenological profiles of the

decays B ! (K;K�)`+`� in these scenarios. For the latter, we choose minimal- and

non-minimal SUGRA models, minimal flavor violating supersymmetric (MFV) model,

and a general flavor-violating supersymmetric framework, studied in the mass insertion

approximation (MIA). While all these models have been studied quite extensively in the

literature for the inclusive decays B ! X
s

 and B ! X

s
`+`� [16–24], we are not aware
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of corresponding studies for the exclusive decays. We strive to fill this gap in this paper.

With our goals clearly stated, we turn to the main issues in the inclusive and exclu-

sive rare B-decays. Using the language of effective theories and restricting ourselves

to the SM and SUSY, the short-distance contributions in the decays B ! X
s

 and

B ! X
s
`+`�, and the exclusive decays of interest to us, are determined by three co-

efficients, called C7
e� , C9 and C10 [54,55].1 Of these, jC7

e� j — the modulus of the

effective coefficient of the electromagnetic penguin operator — is bounded by the present

experimental measurements of the B ! X
s

 branching ratio [7,8]. Using the 95% C.L.

upper and lower bounds from the updated CLEO measurements [7]:

2:0� 10�4 < B(B ! X
s

) < 4:5� 10�4 ; (1)

one gets in the next-to-leading precision the bounds,

0:28 � jC7
e�(m

B
)j � 0:41 : (2)

The magnitude of C7
e�(m

B
) in the SM [56] is well within the CLEO bounds but there

is no experimental information on the phase of C7
e�(m

B
). It is imperative to determine

this sign experimentally, as it is model-dependent. In particular, in SUGRA-type theories,

both positive and negative-valued solutions for C7
e�(m

B
) are allowed in different SUSY-

parameter regions.

Despite the present lack of direct information on the sign of C7
e�(m

B
), the bound

in Eq. (2) is quite stringent and effectively limits possible new-physics effects due to the

inherent correlations among the branching ratio B(B ! X
s

) and other observable quan-

tities such as the B0-B0 mixing, �
K

and the mass of the CP-even Higgs boson, m
h
. In

particular, in the context of the mSUGRA-models, present data on B(B ! X
s

) [7,8]

and lower bounds on m
h

[57] do not allow the effective coefficient C7
e�(m

B
) to have a

positive sign [22]. However, relaxing the GUT mass constraints on the parameters of the

scalar superpotential, large-tan � solutions exist, which are compatible with all present

experimental constraints and predict a range of m
h
-values which are beyond the reach of

LEP experiments [22]. Interestingly, these large-tan �-solutions in non-minimal SUGRA

models do admit positive values for C7
e�(m

B
) which are compatible in magnitude with

the CLEO bounds. In a more general SUSY framework, the allowed parameter space

for flavor-violating transitions is much larger. Thus, in the MIA-approach [23], not only

the sign of C7
e� but also that of C10 may have either value. As different dilepton in-

variant mass regions in B ! X
s
`+`�, the coefficients C7

e�(m
B
), C9

e�(m
B
) and C10

1In general, more operators are present in supersymmetric theories and we discuss their possible effects
later in this paper.
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are weighted differently, a detailed knowledge of the invariant mass distribution and the

FB-asymmetry [28], together with the decay rate B ! X
s

, is completely sufficient to

determine these effective coefficients [17].2 With obvious changes, these remarks apply to

the exclusive decays B ! (K;K�)`+`� as well with the proviso that form factor depen-

dence introduces an additional uncertainty, which we estimate in this paper. A relatively

stable quantity is the value of the dilepton invariant mass for which the FB-asymmetry

becomes zero in the SM. This has been discussed in the context of a number of phe-

nomenological models for the form factors [44]. We argue here that using the results of

the large-energy expansion technique (called LEET) [58], the uncertainty in the zero of

the FB-asymmetry in the decaysB ! K�`+`� due to the form factors can be shown to be

minimal. This yields a strikingly simple relation between the coefficients C7
e� and C9

e�

which we present in this paper.

This paper is organized as follows: In section 2, we introduce the effective Hamil-

tonian formalism for semileptonic rare B-decays. Section 3 contains the definitions and

derivations of the form factors in the decays B ! (K;K�)`+`� using the Light cone-

QCD sum rule approach. In section 4, we display the decay distributions for the invariant

dilepton mass spectra for B ! (K;K�)`+`� and the FB-asymmetry for B ! K�`+`�.

Section 5 contains our numerical results for the branching ratios and the FB-asymmetry in

the SM, including comparison with the available data. Comparative studies in a number

of variants of the supersymmetric models are presented in section 6. Section 7 contains a

brief summary and some concluding remarks.

2 Effective Hamiltonian

At the quark level, the rare semileptonic decay b ! s`+`� can be described in terms of

the effective Hamiltonian obtained by integrating out the top quark and W� bosons:

He� = �4GFp
2
V �

ts
V
tb

10X
i=1

C
i
(�)O

i
(�) : (1)

In this paper, we use the Wilson-coefficients C
i

calculated in the naive dimensional regu-

larization (NDR) scheme [59].

The above Hamiltonian leads to the following free quark decay amplitude:

M(b! s`+`�) =
G
F
�p
2�

V �

ts
V
tb

n
C9

e� [�s

�
Lb]

h
�̀
�`

i
+ C10 [�s
�Lb]

h
�̀
�
5`

i

2Note that C7
e� , C9 and C10 are Wilson coefficients (numbers), but C9

e� is a function of the dilepton
invariant mass and encodes also the information from the long-distance contribution. We assume that new
physics leaves the long-distance part largely intact.
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�2m̂
b
C7

e�

"
�si�

��

q̂�

ŝ
Rb

# h
�̀
�`

i)
: (2)

Here, L=R � (1� 
5)=2, s = q2, q = p+ + p� where p� are the four-momenta of the

leptons, respectively. We put m
s
=m

b
= 0, but keep the leptons massive. The hat denotes

normalization in terms of the B-meson mass, m
B

, e.g. ŝ = s=m2
B

, m̂
b
= m

b
=m

B
. Here

and in the remainder of this work we shall denote by m
b
� m

b
(�) the MS mass evaluated

at a scale � and by m
b;pole

the pole mass of the b-quark. To NLO in perturbation theory,

they are related by:

m
b
(�) = m

bpole

"
1� 4

3

�
s
(�)

�

(
1� 3

4
ln(

m2
bpole

�2
)

)#
: (3)

Note that M(b! s`+`�), although a free quark decay amplitude, contains certain long-

distance effects from the matrix elements of four-quark operators, h`+`�sjO
i
jbi, 1 � i �

6, which usually are absorbed into a redefinition of the short-distance Wilson-coefficients.

To be specific, we define, for exclusive decays3, the effective coefficient of the operator

O9 = e2=(16�2)(�s

�
Lb)(�̀
�`) as

C9
e�(ŝ) = C9 + Y (ŝ) ; (4)

where Y (ŝ) stands for the above-mentioned matrix elements of the four-quark operators.

A perturbative calculation yields [54,55]:

Ypert(ŝ) = g(m̂
c
; ŝ) (3C1 + C2 + 3C3 + C4 + 3C5 + C6)

� 1

2
g(1; ŝ) (4C3 + 4C4 + 3C5 + C6)�

1

2
g(0; ŝ) (C3 + 3C4)

+
2

9
(3C3 + C4 + 3C5 + C6) : (5)

We work in leading logarithmic (LLog) approximation with the values of C
i

given in

Table 1. Formulae can be seen in [54]. For the decays B ! X
s
`+`� (likewise, for

B ! (K;K�)`+`�), and with ŝ far below the c�c threshold, perturbation theory, aug-

mented by power corrections, is expected to yield a reliable estimate. The power correc-

tions in 1=m2
c

can not be calculated near the threshold s = 4m2
c

and in the resonance re-

gions, as the heavy quark expansion breaks down [27]. So, a complete profile of the FCNC

semileptonic decays can not at present be calculated from first principles. Several phe-

nomenological prescriptions for incorporating the nonperturbative contributions to Y (ŝ)

3For inclusive decays one has in addition to take into account the O(�s) virtual and bremsstrahlung
corrections to the matrix element h`+`�sjO9jbi as calculated in [60]. For exclusive decays, one can de-
fine an effective coefficient by including only the virtual corrections. We do not include any perturbative
corrections to the partonic matrix elements. However, corresponding corrections are included in the non-
perturbative matrix element over mesons.
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C1 C2 C3 C4 C5 C6 Ce�
7 C9 C10 C(0)

�0:248 +1:107 +0:011 �0:026 +0:007 �0:031 �0:313 +4:344 �4:669 +0:362

Table 1: Values of the SM Wilson coefficients used in the numerical calculations, cor-
responding to the central values of the parameters given in Table 6. Here, Ce�

7 � C7 �
C5=3�C6, and forC9 we use the NDR scheme andC(0) � 3C1+C2+3C3+C4+3C5+C6.

exist in the literature [28,29,31]. The resulting uncertainties on C9
e� and various distribu-

tions in the inclusive decays have been worked out in [5,32,30] to which we refer for de-

tailed discussions. In the present paper we use the two parametrizations due to Krüger and

Sehgal [29] and Ali, Mannel and Morozumi [28], and interpret the difference in results

for C9
e� as an estimate of the theoretical uncertainty. Nonperturbative effects originate in

particular from resonance corrections to the perturbative quark-loops included in Ypert(ŝ).

Light-quark loops are suppressed by small Wilson-coefficients, so it is essentially only the

charm-loop that matters. Ref. [28] suggests to add the c�c resonance-contributions from

J=	;	0; : : : ;	(v) to the perturbative result, with the former parametrized in the form of

a phenomenological Breit-Wigner Ansatz [36]. Y is then given by

Yamm(ŝ) = Ypert(ŝ) +
3�

�2
C(0)

X
Vi= (1s);:::; (6s)

�
i

�(V
i
! `+`�)m

Vi

m
Vi
2 � ŝ m

B

2 � im
Vi
�
Vi

(6)

with C(0) � 3C1+C2+3C3 +C4 +3C5+C6. The phenomenological factors �
i

correct

for the factorization approximation which with N
C
= 3 (also called naive factorization

[61]) gives a too small branching fraction for B ! K(�)V
i
. They can be fixed from

B(B ! K(�)V
i
! K(�)`+`�) = B(B ! K(�)V

i
)B(V

i
! `+`�) ; (7)

where the right-hand side is given by data [15]. While in the literature for inclusive

B ! X
s
`+`� decays, one comes across a universal �

i
(X

s
) � �1(Xs

) = 2:3 [62], we

have evaluated the individual factors for the lowest two c�c resonances, shown in Table 2.

In our numerical analysis we use for the higher resonances 	(ii); : : : ;	(v) the average of

J=	 and 	0. We have averaged over charged and neutral B mesons if data are available.

Concentrating on J=	 only and assuming that the inclusive caseX
s

is saturated byK and

K�, we get �1(Xs
) = 1:9. Note that only the combination jC(0)�

i
j can be fixed from the

J= ;  0-data. However, we treat the phase of the �
i

as fixed to the one in the factorization

approach. This is substantiated by data in which the Bauer-Stech-Wirbel parameters a1
and a2 [63] are consistently determined, with a1 coming out close to its perturbation

theory value and the sign of a2=a1 is the one given by the factorization approach [64,61].
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In the AMM-approach, it is tacitly assumed that the extrapolation of the Breit-

Wigner form away from the resonances could be used to estimate these power corrections

reliably.

The KS-approach [29], on the other hand, bypasses the perturbative/non-perturbative

dichotomy by using the measured cross-section �(e+e� ! hadrons) together with the as-

sumption of quark-hadron duality for large ŝ to reconstruct Y (ŝ) from its imaginary part

by a dispersion relation. However, perturbative contributions in �(e+e� ! hadrons) and

B ! X
s
`+`� are not identical. In particular, the perturbative part of Y (ŝ) has genuine

hard contributions proportional to m2
b
, which can neither be ignored nor taken care of by

the quark-duality argument. The issue in this approach remains as to how much of the

genuine perturbative contribution in B ! X
s
`+`� arising from the c�c-continuum should

be kept and there is at present no unique solution to this problem, as argued in [31] to

which we refer for further discussion of this point. As stated earlier, we shall take the

difference between the AAM-based and KS-based approaches for the long-distance con-

tributions as a theoretical systematic error.

3 Form factors from QCD sum rules on the light-cone

Exclusive decays B ! (K;K�)`+`� are described in terms of matrix elements of the

quark operators in Eq. (2) over meson states, which can be parametrized in terms of form

factors.

Let us first define the form factors of the transition involving the pseudoscalar

mesons B ! K. The non-vanishing matrix elements are (q = p
B
� p)

hK(p)j�s

�
bjB(p

B
)i = f+(s)

(
(p
B
+ p)

�
� m2

B
�m2

K

s
q
�

)
+
m2
B
�m2

K

s
f0(s) q�; (1)

and

hK(p)j�s�
��
q�(1 + 
5)bjB(pB)i � hK(p)j�s�

��
q�bjB(p

B
)i

= i
n
(p
B
+ p)

�
s� q

�
(m2

B
�m2

K
)
o f

T
(s)

m
B
+m

K

:(2)

� J=	 	0

K 2.70 3.51
K� 1.65 2.36

Table 2: Fudge factors in B ! K(�)J=	;	0 ! K(�)`+`� decays calculated using the
LCSR form factors.
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For the vector mesonK� with polarization vector �
�
, we can define the semileptonic form

factors of the V � A current by

hK�(p)j(V � A)
�
jB(p

B
)i = �i��

�
(m

B
+m

K
�)A1(s) + i(p

B
+ p)

�
(��p

B
)

A2(s)

m
B
+m

K
�

+iq
�
(��p

B
)
2m

K
�

s
(A3(s)� A0(s)) + �

����
���p

�

B
p�

2V (s)

m
B
+m

K
�

: (3)

Note the exact relations

A3(s) =
m
B
+m

K
�

2m
K
�

A1(s)�
m
B
�m

K
�

2m
K
�

A2(s);

A0(0) = A3(0);

hK�j@
�
A�jBi = 2m

K
�(��p

B
)A0(s): (4)

The second relation in (4) ensures that there is no kinematical singularity in the matrix

element at s = 0. The decay B ! K�`+`� is described by the above semileptonic form

factors and the following penguin form factors:

hK�j�s�
��
q�(1 + 
5)bjB(pB)i = i�

����
���p

�

B
p� 2T1(s)

+ T2(s)
n
��
�
(m2

B
�m2

K
�)� (��p

B
) (p

B
+ p)

�

o

+ T3(s)(�
�p
B
)

(
q
�
� s

m2
B
�m2

K
�

(p
B
+ p)

�

)
(5)

with

T1(0) = T2(0): (6)

All signs are defined in such a way as to render the form factors positive. The physical

range in s extends from smin = 0 to smax = (m
B
�m

K;K
�)2.

Lacking a complete solution of non-perturbative QCD, one has to rely on certain

approximate methods to calculate the above form factors. In this paper, we choose to

calculate them by the QCD sum rules on the light-cone (LCSRs). The method of LCSRs

was first suggested for the study of weak baryon decays in [45] and later extended to heavy

meson decays in [46]. It is a nonperturbative approach which combines ideas of QCD sum

rules [65] with the twist expansion characteristic for hard exclusive processes in QCD [66]

and makes explicit use of the large energy of the final state meson at small values of the

momentum transfer to leptons s. In this respect, the LCSR approach is complementary to

lattice calculations [67], which are mainly restricted to form factors at small recoil (large

values of s) and at present require the scaling behavior found in the context of the LCSRs

to extrapolate to smaller values of s [68]. Of course, the LCSRs lack the rigor of the

lattice approach. Nevertheless, they prove to provide a powerful nonperturbative model

which is explicitly consistent with perturbative QCD and the heavy quark limit.

9



Early studies of exclusiveB decays in the LCSR approach were restricted to contri-

butions of leading twist and did not take into account radiative corrections. These correc-

tions, included in the estimates presented here, turn out shift the form factors by � 10%.

In previous works [69,52,49], the resulting form factors have been parametrized by

a modified single pole formula,

F (ŝ) =
F (0)

1� a
F
ŝ+ b

F
ŝ2
;

obtained from a fit to the LCSR result in the region ŝ < 0:54. The extrapolation of this

parametrization to maximum ŝ is prone to spurious singularities below the physical cut

starting at s = m2
B
�

s
. In the present work we thus choose a different parametrization which

avoids this problem:

F (ŝ) = F (0) exp(c1ŝ+ c2ŝ
2 + c3ŝ

3): (7)

The term in ŝ3 turns out to be important in B ! K transitions, where ŝ can be as large

as 0.82, but can be neglected for B ! K� with ŝ < 0:69. The parametrization formula

works within 1% accuracy for s < 15GeV2. For an estimate of the theoretical uncertainty

of these form factors, we have varied the input parameters of the LCSRs, i.e. the b quark

mass, the Gegenbauer-moments of the K and K� distribution amplitudes and the LCSR-

specific Borel-parameters M2 and continuum threshold s0 within their respective allowed

ranges specified in [52,49] and obtain the three sets of form factors given in Tabs. 3–

5, which represent, for each ŝ, the central value, maximum and minimum allowed form

factor, respectively. We plot the form factors in Figs. 1 and 2.

Our value of T1(0) is consistent with the CLEO measurement ofB(B ! K�
)
exp

=

(4:2� 0:8� 0:6) � 10�5 [70]. From the formula for the decay rate,

�(B ! K�
) =
G2
F
�jV �

ts
V
tb
j2

32�4
m2
b
m3
B
(1�m2

K�
=m2

B
)3jC7

e� j2jT1(0)j2 ; (8)

the central values of the parameters given in Table 6, T1(0) = 0:379 and with �
B
= 1:61 ps

we find B(B ! K�
)
th
= 4:4 � 10�5:

4 Decay Distributions

In this section we define various decay distributions whose phenomenological analysis

will be performed in the next section.

Eq. (2) can be written as

M =
G
F
�

2
p
2�

V �

ts
V
tb
m
B

h
T 1
�

�
�̀
� `

�
+ T 2

�

�
�̀
� 
5 `

�i
; (1)

10



f+ f0 f
T

A1 A2 A0 V T1 T2 T3

F (0) 0:319 0:319 0:355 0:337 0:282 0:471 0:457 0:379 0:379 0:260

c1 1:465 0:633 1:478 0:602 1:172 1:505 1:482 1:519 0:517 1:129

c2 0:372 �0:095 0:373 0:258 0:567 0:710 1:015 1:030 0:426 1:128

c3 0:782 0:591 0:700 0 0 0 0 0 0 0

Table 3: Central values of parameters for the parametrization (7) of the B ! K and
B ! K� form factors. Renormalization scale for the penguin form factors f

T
and T

i
is

� = m
b
. c3 can be neglected for B ! K� form factors.

f+ f0 f
T

A1 A2 A0 V T1 T2 T3

F (0) 0:371 0:371 0:423 0:385 0:320 0:698 0:548 0:437 0:437 0:295

c1 1:412 0:579 1:413 0:557 1:083 1:945 1:462 1:498 0:495 1:044

c2 0:261 �0:240 0:247 0:068 0:393 0:314 0:953 0:976 0:402 1:378

c3 0:822 0:774 0:742 0 0 0 0 0 0 0

Table 4: Parameters for the maximum allowed form factors.

f+ f0 f
T

A1 A2 A0 V T1 T2 T3

F (0) 0:278 0:278 0:300 0:294 0:246 0:412 0:399 0:334 0:334 0:234

c1 1:568 0:740 1:600 0:656 1:237 1:543 1:537 1:575 0:562 1:230

c2 0:470 0:080 0:501 0:456 0:822 0:954 1:123 1:140 0:481 1:089

c3 0:885 0:425 0:796 0 0 0 0 0 0 0

Table 5: Parameters for the minimum allowed form factors.
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Figure 1: LCSR form factors with theoretical uncertainties for the B ! K transition as
a function of ŝ. Solid, dotted and dashed curves correspond to f+; fT ; f0, respectively.
Renormalization scale for f

T
is � = m

b
.

(a) (b)

Figure 2: LCSR form factors with theoretical uncertainties for the B ! K� transition as
a function of ŝ. In (a), the solid, dotted, dashed and short long dashed curves correspond
to V;A0; A1; A2 and in (b), the solid, dotted and dashed curves correspond to T1; T2; T3,
respectively. Renormalization scale for T

i
is � = m

b
.
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where for B ! K`+`�,

T 1
�

= A0(ŝ) p̂
�
+B0(ŝ) q̂

�
; (2)

T 2
�

= C 0(ŝ) p̂
�
+D0(ŝ) q̂

�
; (3)

and for B ! K�`+`�,

T 1
�

= A(ŝ) �
����

���p̂�
B
p̂
�

K
� � iB(ŝ) ��

�
+ iC(ŝ) (�� � p̂

B
)p̂
�
+ iD(ŝ) (�� � p̂

B
)q̂
�
;(4)

T 2
�

= E(ŝ) �
����

���p̂�
B
p̂
�

K
� � iF (ŝ) ��

�
+ iG(ŝ) (�� � p̂

B
)p̂
�
+ iH(ŝ) (�� � p̂

B
)q̂
�
;(5)

with p � p
B
+ p

K;K
�. Note that, using the equation of motion for lepton fields, the terms

in q̂
�

in T 1
�

vanish and those in T 2
�

become suppressed by one power of the lepton mass.

This effectively eliminates the photon pole in B0 for B ! K.

The auxiliary functions above are defined as

A0(ŝ) = C9
e�(ŝ) f+(ŝ) +

2m̂
b

1 + m̂
K

C7
e�f

T
(ŝ) ; (6)

B0(ŝ) = C9
e�(ŝ) f�(ŝ)�

2m̂
b

ŝ
(1� m̂

K
)C7

e�f
T
(ŝ) ; (7)

C 0(ŝ) = C10 f+(ŝ) ; (8)

D0(ŝ) = C10 f�(ŝ) ; (9)

A(ŝ) =
2

1 + m̂
K
�

C9
e�(ŝ)V (ŝ) +

4m̂
b

ŝ
C7

e�T1(ŝ) ; (10)

B(ŝ) = (1 + m̂
K
�)

"
C9

e�(ŝ)A1(ŝ) +
2m̂

b

ŝ
(1� m̂

K
�)C7

e�T2(ŝ)

#
; (11)

C(ŝ) =
1

1� m̂2
K
�

"
(1� m̂

K
�)C9

e�(ŝ)A2(ŝ) + 2m̂
b
C7

e�

 
T3(ŝ) +

1� m̂2
K
�

ŝ
T2(ŝ)

!#
;(12)

D(ŝ) =
1

ŝ

h
C9

e�(ŝ) ((1 + m̂
K
�)A1(ŝ)� (1� m̂

K
�)A2(ŝ)� 2m̂

K
�A0(ŝ))

�2m̂
b
C7

e�T3(ŝ)
i
; (13)

E(ŝ) =
2

1 + m̂
K
�

C10V (ŝ) ; (14)

F (ŝ) = (1 + m̂
K
�)C10A1(ŝ) ; (15)

G(ŝ) =
1

1 + m̂
K
�

C10A2(ŝ) ; (16)

H(ŝ) =
1

ŝ
C10 [(1 + m̂

K
�)A1(ŝ)� (1� m̂

K
�)A2(ŝ)� 2m̂

K
�A0(ŝ)] : (17)

Note that the inclusion of the full s-quark mass dependence into the above formulae can

be done by substitutingm
b
! m

b
+m

s
into all terms proportional to C7

e�T1 and C7
e�f

T

and m
b
! m

b
�m

s
in C7

e�T2;3, since O7 � �s�
��
[(m

b
+m

s
) + (m

b
�m

s
)
5] q

�b.
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We choose the kinematic variables (ŝ; û) to be

ŝ = q̂2 = (p̂+ + p̂�)
2 ; (18)

û = (p̂
B
� p̂�)

2 � (p̂
B
� p̂+)

2 (19)

which are bounded as

(2m̂
`
)2 � ŝ � (1� m̂

K;K
�)2 ; (20)

�û(ŝ) � û � û(ŝ) ; (21)

with m̂
`
= m

`
=m

B
and

û(ŝ) =

s
�(1� 4

m̂2
`

ŝ
) ; (22)

� � �(1; m̂2
K;K�

; ŝ) = 1 + m̂4
K;K�

+ ŝ2 � 2ŝ� 2m̂2
K;K�

(1 + ŝ) : (23)

Note that the variable û corresponds to �, the angle between the momentum of the B-

meson and the positively charged lepton `+ in the dilepton CMS frame, through the rela-

tion û = �û(ŝ) cos � [28]. Keeping the lepton mass, we find the double differential decay

widths �K and �K
�

for the decays B ! K`+`� and B ! K�`+`�, respectively, as

d2�K

dŝdû
=

G2
F
�2m5

B

211�5
jV �

ts
V
tb
j2

�
n
(jA0j2 + jC 0j2)(�� û2)

+ jC 0j24m̂
`

2(2 + 2m̂2
K
� ŝ) +Re(C 0D0�)8m̂

`

2(1� m̂2
K
) + jD0j24m̂

`

2ŝ
o
; (24)

d2�K
�

dŝdû
=

G2
F
�2m5

B

211�5
jV �

ts
V
tb
j2

�
(
jAj2
4

�
ŝ(�+ û2) + 4m̂2

`
�
�
+
jEj2
4

�
ŝ(�+ û2)� 4m̂2

`
�
�

+
1

4m̂2
K
�

h
jBj2

�
�� û2 + 8m̂2

K
�(ŝ+ 2m̂2

`
)
�
+ jF j2

�
�� û2 + 8m̂2

K
�(ŝ� 4m̂2

`
)
�i

� 2ŝû [Re(BE�) + Re(AF �)]

+
�

4m̂2
K
�

h
jCj2(�� û2) + jGj2

�
�� û2 + 4m̂2

`
(2 + 2m̂2

K
� � ŝ)

�i

� 1

2m̂2
K
�

h
Re(BC�)(1� m̂2

K
� � ŝ)(�� û2)

+Re(FG�)
�
(1� m̂2

K
� � ŝ)(�� û2) + 4m̂2

`
�
�i

� 2
m̂2
`

m̂2
K
�

�
h
Re(FH�)� Re(GH�)(1� m̂2

K
�)
i
+ jHj2 m̂

2
`

m̂2
K
�

ŝ�

)
: (25)
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4.1 Dilepton mass spectrum

We now give formulas for the dilepton invariant mass spectra. Integrating over û in the

kinematical region given in Eq. (21) we find

d�K

dŝ
=

G2
F
�2m5

B

210�5
jV �

ts
V
tb
j2 û(ŝ)

�
(
(jA0j2 + jC 0j2)(�� û(ŝ)2

3
)

+ jC 0j24m̂
`

2(2 + 2m̂2
K
� ŝ) +Re(C 0D0�)8m̂

`

2(1� m̂2
K
) + jD0j24m̂

`

2ŝ
o
; (26)

d�K
�

dŝ
=

G2
F
�2m5

B

210�5
jV �

ts
V
tb
j2 û(ŝ)

�
(
jAj2
3
ŝ�(1 + 2

m̂2
`

ŝ
) + jEj2ŝ û(ŝ)

2

3

+
1

4m̂2
K
�

"
jBj2(�� û(ŝ)2

3
+ 8m̂2

K
�(ŝ+ 2m̂2

`
)) + jF j2(�� û(ŝ)2

3
+ 8m̂2

K
�(ŝ� 4m̂2

`
))

#

+
�

4m̂2
K
�

"
jCj2(�� û(ŝ)2

3
) + jGj2

 
�� û(ŝ)2

3
+ 4m̂2

`
(2 + 2m̂2

K
� � ŝ)

!#

� 1

2m̂2
K
�

"
Re(BC�)(�� û(ŝ)2

3
)(1� m̂2

K
� � ŝ)

+ Re(FG�)((�� û(ŝ)2

3
)(1� m̂2

K
� � ŝ) + 4m̂2

`
�)

#

�2 m̂
2
`

m̂2
K
�

�
h
Re(FH�)� Re(GH�)(1� m̂2

K
�)
i
+

m̂2
`

m̂2
K
�

ŝ�jHj2
)
: (27)

Both distributions agree with the ones obtained in [42]. In the limit m
`
! 0 the form

factors f0 (or f�) and A0 do not contribute. Furthermore, since jC7
e� j � jC9

e� j; jC10j,
the influence of f

T
; T3 on the distributions is subdominant. That means that roughly

d�K=dŝ � jf+j2 for ` = e; � in the low ŝ region below the J=	, with a � �12% effect

coming from C7
e�f

T
terms. For B ! K�, the b ! s
 transition is more important: for

s < 1GeV2 the photon pole is the dominant contribution, and it still contributes� �30%

around s � 3GeV2.

4.2 Forward-backward-asymmetry

The differential forward-backward-asymmetry (FBA) is defined as [28]

dAFB

dŝ
= �

Z
û(ŝ)

0
dû

d2�

dûdŝ
+
Z 0

�û(ŝ)
dû

d2�

dûdŝ
: (28)
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The FBA vanishes in B ! K`+`� decays as can be seen from Eq. (24), since there is no

term containing û with an odd power. For B ! K�`+`� decays it reads as follows

dAFB

dŝ
=

G2
F
�2m5

B

210�5
jV �

ts
V
tb
j2 ŝû(ŝ)2 [Re(BE�) + Re(AF �)]

=
G2
F
�2m5

B

28�5
jV �

ts
V
tb
j2 ŝû(ŝ)2

�C10

"
Re(C9

e�)V A1 +
m̂
b

ŝ
C7

e�(V T2(1� m̂
K
�) + A1T1(1 + m̂

K
�))

#
:(29)

The position of the zero ŝ0 is given by

Re(C9
e�(ŝ0)) = �m̂b

ŝ0
C7

e�

(
T2(ŝ0)

A1(ŝ0)
(1� m̂

K
�) +

T1(ŝ0)

V (ŝ0)
(1 + m̂

K
�)

)
; (30)

which depends on the value ofm
b
, the ratio of the effective coefficientsC7

e�=Re(C9
e�(ŝ0)),

and the ratio of the form factors shown above. It is interesting to observe that in the

Large Energy Effective Theory (LEET) [58], both ratios of the form factors appearing in

Eq. (30) have essentially no hadronic uncertainty, i.e. , all dependence on the intrinsically

nonperturbative quantities cancels, and one has simply:

T2

A1

=
1 + m̂

K
�

1 + m̂2
K
� � ŝ

 
1� ŝ

1� m̂2
K
�

!
;

T1

V
=

1

1 + m̂
K
�

: (31)

With these relations, one has a particularly simple form for the equation determining ŝ0,

namely

Re(C9
e�(ŝ0)) = �2m̂b

ŝ0
C7

e� 1� ŝ0

1 +m2
K
� � ŝ0

: (32)

Thus, the precision on the zero-point of the FB-asymmetry in B ! K�`+`� is

determined essentially by the precision of the ratio of the effective coefficients and m
b
,

making it at par with the corresponding quantity in the inclusive decaysB ! X
s
`+`�, for

which the zero-point is given by the solution of the equation Re(C9
e�(ŝ0)) = � 2

ŝ0

C7
e� .

We find the insensitivity of ŝ0 to the decay form factors in B ! K�`+`� a remarkable

result, which has also been discussed in [44]. However, the LEET-based result in Eq. (31)

stands theoretically on more rigorous grounds than the arguments based on scanning a

number of form factor models. With the coefficients given in Table 1 and m
b
= 4:4 GeV,

we find ŝ0 = 0:10 (i.e. s0 = 2:9GeV2) in the SM. From Eq. (30) it follows that there is no

zero below the c�c reonances if both C9 and C7
e� have the same sign as predicted in some

beyond-the-SM models.
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From the experimental point of view the normalized FB-asymmetry is more useful,

defined as
d �AFB

dŝ
=

dAFB

dŝ
=
d�

dŝ
(33)

which is equivalent to the energy asymmetry [18,25]. A slightly different definition is

dA0

FB

dŝ
=

dAFB

dŝ
=� (34)

whose integral gives the global energy asymmetryA0

FB
= A

FB
=�.

We summarize the characteristics of our observables:

� dB

ds

(B ! K`+`�) and dB

ds

(B ! K�`+`�) get maximal for maximal jC7
e� j; jC9j; jC10j

and sign(C7
e�Re(C9

e�)) = +1.

� d
�AFB

ds

(B ! K�`+`�) is proportional to C10 and has a characteristic zero (barring

the trivial solution C10 = 0, which we do not entertain here) if Eq. (30) is satisfied,

which requires

sign(C7
e�Re(C9

e�)) = �1 : (35)

The condition in Eq. (35) provides a discrimination between the SM and models having

new physics. For example, this condition is satisfied in the SM and the SUGRA models

with low-tan�, in which case the actual position of ŝ0 would provide the further dis-

criminant. However, it turns out that the allowed parameter space of the SUGRA models

with large-tan � yield sign(C7
e�Re(C9

e�)) = +1 [22], leading to the result that the FB-

asymmetry in these models is parametrically different. In particular, in all such cases,

there is no zero of the FB-asymmetry.

5 Branching Ratios and FB-Asymmetry in SM

The input parameters that we use in our numerical analysis are given in Table 6. The

parameters which are either well-known or have a small influence on the decay rates have

been fixed to their central values, but we vary four of the listed parameters, m
t
; �; m

b;pole

and �
s
(m

Z
), in the indicated range. Furthermore, in the evaluation of the various distribu-

tions we use for m̂
b

the MSbar mass evaluated at the scale � = m
b;pole

, see Eq. (3). In the

SM we obtain the following non-resonant branching ratios, denoted by B
nr

, (` = e; �):

B
nr
(B ! K`+`�) = 5:7 � 10�7; �B

nr
= (+27

�15;�6;+7�6 ;�1;�2)%; (1)

B
nr
(B ! K�+��) = 1:3 � 10�7; �B

nr
= (+22

�6 ;�7;+4�3 ;+0:4�0:2 ;�1)%; (2)

B
nr
(B ! K�e+e�) = 2:3 � 10�6; �B

nr
= (+29

�17;
+2
�9 ;+12;

+4
�1 ;�3)%; (3)

B
nr
(B ! K��+��) = 1:9 � 10�6; �B

nr
= (+26

�17;�6;+6�4 ;�0:7+0:4 ;�2)%; (4)

B
nr
(B ! K��+��) = 1:9 � 10�7; �B

nr
= (+4

�8;�4;+13�11 ;
+0:6
�0:3 ;�3)%: (5)
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m
W

80:41 GeV
m
Z

91:1867 GeV
sin2 �

W
0:2233

m
c

1:4 GeV
m
bpole

4:8� 0:2 GeV
m
t

173:8� 5:0 GeV
� m

b;pole

+mb;pole

�mb;pole=2

�
(5)
QCD

0:220+0:078
�0:063 GeV

��1 129
�
s
(m

Z
) 0:119� 0:0058

jV �

ts
V
tb
j 0.0385

jV �

ts
V
tb
j=jV

cb
j 1

Table 6: Default values of the input parameters and the �1 � errors on the sensitive
parameters used in our numerical calculations.

The first error in the �B
nr

consists of hadronic uncertainties from the form factors. The

other four errors given in the parentheses are due to the variations of m
t
; �; m

b;pole
and

�
s
(m

Z
), in order of appearance. In addition, there is an error of �2:5% from the life-

times �
B

[15]. The scale-dependence of the branching ratio B
nr
(B ! K�e+e�) gives

+12% and +1:4%, as � is varied from � = m
b;pole

to � = m
b;pole

=2 and � = 2m
b;pole

,

respectively, and we have taken the larger of the two errors in this case to estimate the

scale-dependence of this branching ratio. The largest parametric errors are from the un-

certainties of the scale � and the top quark mass, m
t
. The large scale-dependence of

the branching ratios reflects essentially that of the effective coefficients. To remedy this,

one has to calculate the virtual corrections to the matrix elements of the partonic decays

b! s`+`� to obtain perturbatively improved effective coefficients which are both scale-

and scheme-independent [71]. The exclusive decay form factors, obtained in the LCSR

method including the radiative corrections, depend also onm
b
; �

s
and the renormalization

scale �. However, the various dependencies of the form factors are inadequate to com-

pensate for the corresponding dependencies in the effective coefficients being used. We

present in Fig. 3 the exclusive branching ratios calculated in the LCSR approach, obtained

by adding the stated errors in quadrature. We also give, for the sake of completeness, the

branching ratios for the inclusive decays B ! (X
s
; X

d
)`+`�. In calculating the theoreti-

cal dispersion onB ! X
d
`+`�, we have varied the CKM parameters in the allowed range

obtained from the CKM unitarity fits [12]. We have also listed the present experimental

bounds on the exclusive decaysB ! (K;K�)e+e� andB ! (K;K�)�+��, obtained by
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the CDF [34] and CLEO [35] collaborations. Experimental upper limits on the inclusive

decays B ! X
s
e+e� and B ! X

s
�+�� are from the CLEO collaboration [33]. All

experimental limits are 90% C.L., and for the sake of this figure we have averaged the

branching ratios for the charged and neutral B-meson decays, as the differences in their

branching ratios are expected to be minimal theoretically.

Figure 3 shows that the exclusive decays B ! K��+�� and B ! K�e+e� pro-

vide at present the most stringent bounds on the effective coefficients. While none of the

experimental bounds has reached the SM-sensitivity, they do provide interesting upper

limits on the parameter space of models with physics beyond the SM. We will discuss this

point in detail below in the context of the SUSY models we are studying in this paper.

We have also estimated the present theoretical precision on the quantity s0 (zero of the

FB-asymmetry) in the decay B ! K�`+`� for `� = e� and `� = ��. Note, that due

to the kinematics, there is no zero for the FB-asymmetry for the case B ! K��+��.

Theoretical uncertainties from the form factors and the four parameters discussed above,

m
t
; �; m

b;pole
and �

s
(m

Z
), on the s0 are estimated as: �1%;�0:3%;+14%=�7%;�6%;�4%,

respectively. As discussed above, the form factor-dependent uncertainty for this quantity

is minimal, and the main sources of errors are � and m
b;pole

. The reason of the marked

scale dependence is again the lack of compensating perturbative corrections, in the ab-

sence of which the scale-dependence of the Wilson coefficients reflects itself in rendering

s0 rather imprecise. Adding the stated errors in quadrature, we estimate in the SM (fixing

m
b

while varying � and �
s
(m

Z
)):

s0 = 2:88+0:44
�0:28GeV2 : (6)

The actual dilepton mass distributions and the FB-asymmetry for the decays of interest in

the SM will be given later, together with the corresponding estimates in some variants of

SUSY.

6 The decays B ! (K;K�)`+`� in SUSY Models

First studies of rare B-decays B ! X
s

 and B ! X

s
`+`� in the context of MSSM were

carried out in [16–18].4 Since then, these studies have been updated by taking into ac-

count progress in theory and experiments. We employ the following models to study the

rare B ! K(�)`+`� decays: (i) Minimal supergravity (mSUGRA), (ii) Relaxed SUGRA

(rSUGRA), obtained from mSUGRA by relaxing the universal scalar mass condition at

4There is a wrong sign in the chargino and neutralino box matching condition in [16]. This sign dis-
crepancy between [16] and [18] has already been mentioned by the latter. We are grateful to T. Goto and
F. Krüger for clarifying this point.
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Figure 3: Theoretical expectations for the exclusive decay branching ratios B(B !
K�`+`�), B(B ! K`+`�), `� = e�; ��; ��, calculated in the LCSR method in the
SM. For the sake of completeness, we also give the branching ratios for the inclusive
decays B ! X

s
`+`� and B ! X

d
`+`� in the SM, including the CKM dependence of

the latter. Experimental upper limits (at 90% C.L.) are also shown: solid squares are
from the charged B+ decays (and charge conjugate), circles from the decays of B0 (and
charge conjugate), and the empty squares are from the inclusive decays, averaged over
the charged and neutral B decays. All experimental limits are from the CLEO [35,33]
and CDF [34] collaborations.

20



the GUT scale [19,20,22], (iii) Minimal flavor violating supersymmetric model (MFV)

(in the sense that the flavor violation is solely due to the standard CKM mechanism and

resides in the charged current sector) [21], and (iv) the Mass insertion approximation

(MIA) [23]. The last of these models serves as a generic supersymmetric extension of the

SM having non-CKM flavor violations. We do not consider models with broken R-parity

and assume that there are no new phases from new physics beyond the SM, or, equiva-

lently, that the constraints from the electric dipole moments of the neutron and charged

lepton and indirect constraints from the decay B ! X
s

 as well as other FCNC pro-

cesses render these phases innocuous. This covers an important part of the supersymmet-

ric parameter space, but not all. The issue of supersymmetric phases having measurable

consequences in CP-violations in B and K decays and EDMs of the neutron and charged

lepton is still far from being settled. As we have not studied CP-asymmetries in the de-

cays B ! (K;K�)`+`�, the neglect of additional CP-phases is not crucial to the analysis

of the decay rates being presented here.

The strongest constraint on the MSSM parameter space is coming from data on

B ! X
s

 [7], given in Eq. (1). In terms of the Wilson coefficients, this puts a bound on

the modulus of C7
e� , given in Eq. (2) in the NLO approximation. The SM-based estimate

of C7
e� in the NLO precision is well within this range, which then restricts the otherwise

allowed parameter space in the supersymmetric models we are considering. To be consis-

tent with the precision of other contributions in B ! X
s
`+`�, and for comparison with

the rates and distributions in the SM, we work with C7
e�(m

b;pole
) in the LLA accuracy.

This yields the bounds (at 95% C.L.)

0:249 � jCeff;LLA

7 (� = 4:8 GeV)j � 0:374 : (1)

We remind at the outset that the theoretical uncertainties in the decay rates are estimated

by us to be typically �35%. Hence SUSY-searches in B ! (K;K�)`+`� will be unam-

biguous only for drastic SUSY effects.

To illustrate generic SUSY effects in B ! (K;K�)`+`�, we start by assuming

jC7
e� j ' jC7

e�
SM
j allowing for two possible solutions, C7

e� < 0 (SM-like) and C7
e� > 0

(allowed in SUSY models). We also fix the other two coefficients C9 and C10 to their re-

spective SM values. We show the dilepton invariant mass distributions for B ! K�+��

and B ! K��+�� decays in Figs. 4 and 5(a), respectively. The FB-asymmetry for

B ! K��+�� is shown in Fig. 5(b). These figures present a comparative study of the

SM- and SUSY-based distributions, and the attendant theoretical uncertainties associated

with the long-distance effects. For the latter, we have used the KS-approach [29] and the

AMM-approach [28] to estimate the resonance-related uncertainties. These figures illus-

trate that despite non-perturbative uncertainties, it will be possible to distinguish between
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the SM and a theoretical scenario in which the magnitude of the effective coefficients are

similar, but C7
e� has the ”wrong sign”. For the dilepton invariant mass, this reverses the

sign of the interference term involving Re((C7
e�)� � C9

e�) which leads to significant dif-

ference in the decays B ! K�`+`�. More striking deviation from the SM prediction is

found inA
FB

for the models in which the condition Eq. (35) is not satisfied, resulting in a

FB-asymmetry which remains negative below the J= -resonance region. This would be

a drastic deviation from the SM, which can not be fudged away due to non-perturbative

effects. Interestingly, the situation C7
e� ' �C7

e�
SM

is met in a number of SUSY mod-

els as discussed below. In addition, in a general flavor-violating supersymmetric model,

also the other two Wilson coefficients (C9 and C10) may have either sign. In this case,

the FB-asymmetry in B ! K�`+`� may have a functional dependence on the dilepton

mass which is characteristically different than the ones obtaining in the SM and SUGRA

models, as shown below.

More elaborate changes from new physics (NP) in the values of the relevant Wilson

coefficients can be taken into account by the (correlated) ratios, (i = 7; 9; 10):

R
i
(�) � CNP

i
+ CSM

i

CSM
i

=
C
i

CSM
i

; (2)

which depend on the renormalization scale (except for C10), for which we shall always

take � = m
b;pole

. The experimental constraint from B ! X
s

 given in Eq. (1) now

translates into the bound

0:80 < jR7(� = 4:8 GeV)j < 1:20 ; (3)

where the coefficients are understood to be calculated in the LLA precision. In the numer-

ical estimates, we have used B
sl
= (10:4� 0:4)% for the average semileptonic branching

ratio, and have set the heavy quark expansion parameters to the values �1 = �0:20 GeV2

and �2 = 0:12 GeV2. The allowed values of the other two ratios R9 and R10 are taken

from the literature for the mSUGRA and rSUGRA models [20,22], and for the other two

models, MFV and MIA, we have calculated them. In particular, in the MIA approach,

large enhancements are anticipated in the branching ratio B(B ! X
s
`+`�) in some al-

lowed region of the parameter space [23]. These enhancements, suitably modified by

the form factors, are also present in the branching ratios for the exclusive decays B !
(K;K�)`+`�. However, as shown in Fig. 3, some of these branching ratios are bounded

quite stringently, in particular, for the decays B ! K�e+e� and B ! K��+��[34,35].

Assuming R7 in the allowed range, we shall work out the constraints on the effective co-

efficients C9 and C10 (equivalently R9 and R10). Based on this analysis, we shall show

the dilepton invariant mass spectra and the FB-asymmetry in some representative cases.
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Figure 4: The dilepton invariant mass distribution in B ! K�+�� decays, using the
form factors from LCSR as a function of s. Solid curve: SD + LD using Ref. [29], dashed
curve: SD + LD using Ref. [28]; dotted: pure SD; long-short dashed curve: SD + LD
using Ref. [29] with C7

e� = �C7
e�
SM

.
(a) (b)

Figure 5: The dilepton invariant mass distribution (a), and the normalized FB-asymmetry
(b) in B ! K��+�� decays, using the form factors in LCSR as a function of s in the
SM. Solid curves: SD + LD according to Ref. [29], dashed curves: SD + LD using
Ref. [28]; dotted: pure SD; long-short dashed curves: SD + LD using Ref. [29] with
C7

e� = �C7
e�
SM

.
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6.1 B ! (K;K�)`+`� in SUGRA models

We shall consider here both the minimal and restricted SUGRA models (mSUGRA,

rSUGRA). The parameter space of these models may be decomposed into two qualita-

tively different regions, which can be characterized by tan � values. For small tan�, say

tan� � 2, the sign of C7
e� is the same as in the SM. Here, no spectacular deviations

from the SM can be expected in the decays B ! (K;K�)`+`�. Given the theoretical

uncertainties shown earlier by us, we think that it would be very difficult to disentangle

any SUSY effects for this scenario in these decays. For large tan �, the situation is more

interesting due to correlations involving the branching ratio for B ! X
s

, the mass of

the lightest CP-even Higgs boson, m
h
, and sign(�

susy
), appearing in the Higgs superpo-

tential. In this case, there are two branches for the solutions for m
h

and B(B ! X
s

).

The interesting scenario for SUSY searches in B ! (K;K�)`+`� is the one in which

sign(�
susy

) and m
h

admit C7
e� to be positive. For example, this happens for tan � � 10,

in which casem
h
= (115–125)GeV andC7

e� is positive and obeys theB ! X
s

 bounds

[22]. Following the generic case shown earlier, one expects a constructive interference of

the terms depending on C7
e� and C9 in the dilepton invariant mass spectra. For the sake

of illustration, we use

R7 = �1:2; R9 = 1:03; R10 = 1:0 ; (4)

obtained for tan � = 30 [20], as a representative large-tan � solution, to study the effects

on our observables. We find that in the low-q2 region the branching ratio forB ! K�+��

is enhanced by about 30% compared to the SM one, as shown in Fig. 6. This enhancement

is difficult to disentangle from the non-perturbative uncertainties attendant with the SM-

distributions (shown as the shaded band in this figure). The dilepton mass distribution for

B ! K��+�� is more promising, as in this case the enhancement is around 100%, see

Fig. 7, and this is distinguishable from the SM-related theoretical uncertainties (shown as

the shaded band in this figure). Note that the resulting branching ratios are consistent with

the present experimental upper bounds on these decays given earlier. The supersymmetric

effects presented here are very similar to the ones worked out for the inclusive decays

B ! X
s
`+`� [20], where enhancements of (50–100)% were predicted in the low-q2

branching ratios. The effect of R7 being negative is striking in the FB asymmetry as

shown in Fig. 8, in which the two SUGRA curves are plotted using Eq. (4) (for R7 < 0)

and by flipping the sign of R7 but keeping the magnitudes of R
i

to their values given

in this equation. Summarizing for the SUGRA theories, large tan � solutions lead to

C7
e� being positive, which implies that FB-asymmetry below the J= -resonant region

remains negative (hence, no zero in the FB-asymmetry in this region) and one expects an
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enhancement up to a factor two in the dilepton mass distribution in B ! K�e+e� and

B ! K��+��.

6.2 B ! (K;K�)`+`� in MFV-SUSY Model

The MFV-SUSY model is based on the assumption of minimal flavor violation. Here,

quarks and squarks are aligned so there is no flavor-changing q � ~q0 � ( ~Z; ~
; ~g) vertex

and the charged one, d � ~u � ~��, is governed by the CKM matrix. As a consequence,

in this model neutralino-down-squark and gluino-down-squark graphs do not contribute

to either b ! s
 or b ! s`+`� transitions. In addition to the charged Higgs-top graphs,

chargino-up type squarks loops with a light stop ~t1, and the W�-top quark loops, present

in the SM, give the dominant contribution. While not holding generally, the assumptions

in the MFV-SUSY model are valid over an important part of the minimal supersymmetric

parameter space [21]. They have the simplifying feature that the dominant supersym-

metric effects remain confined to charged current transitions and relatively easy to test

experimentally due to well-defined correlations in several measurable quantities involv-

ing FCNC transitions [21,12].

As is well-known [72], in the two-Higgs doublet model of type II (2HDM model

II), which is embedded also in the MFV-SUSY construct, the charged-Higgs contribution

is always additive to the SM, i.e., C7
e�(2HDM) < 0, yielding a lower bound on the

charged Higgs mass m
H
� (almost) independent of tan�, above tan� > 1. In MFV, the

~�� � ~t1 loop can compensate the H� � t contribution, with a large positive contribution

to C7
e� . We scan over the parameter space in the range 55 GeV < m

H
� < 1 TeV, 0 <

M2; j�susyj < 500 GeV, where �
susy

is the bilinear Higgs coupling in the superpotential

and M2 is the gaugino soft breaking mass. We use m~q = m~t2
= 1 TeV, where m~q denotes

the (degenerate) masses of other than top squarks, and fix m~� = 50 GeV to its lower

bound. We reject too light charginos, demanding m~�� > 70 GeV, and also solutions

which do not satisfy the bounds from the branching ratio on B ! X
s

. The chargino

contribution to C7
e� decreases for larger values of m~t1

and we therefore keep it to its

minimal value m~t1
= 70 GeV. We have chosen a stop mixing angle �~t = �2�=5, i.e. the

light stop ~t1 = cos �~t~tL + sin �~t~tR is almost right handed.

For small tan �, for which we again take tan� = 2, we find that the ratio R7

remains positive, i.e. C7
e� < 0, and lies within the experimentally allowed bounds from

B ! X
s

, and the other two ratios are in the range 0:98 < R9 < 1:07 and 0:79 < R10 <

1:15. For large tan �, taken to be 30, just as in the SUGRA models discussed earlier, C7
e�

changes sign (R7 < 0). The ratios R9 and R10 are again always positive but now R9 is

almost identical to 1, and R10 tends to lie below the SM-value. Numerically, we find the
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Figure 6: The dilepton invariant mass distribution in B ! K�+�� decays, using the
form factors from LCSR as a function of s. All resonant c�c states are parametrized as
in Ref. [29]. The solid line represents the SM and the shaded area depicts the form
factor-related uncertainties. The dotted line corresponds to the SUGRA model with R7 =
�1:2; R9 = 1:03 and R10 = 1. The long-short dashed lines correspond to an allowed
point in the parameter space of the MIA-SUSY model, given by R7 = �0:83, R9 = 0:92
and R10 = 1:61. The corresponding pure SD spectra are shown in the lower part of the
plot.

Figure 7: The dilepton invariant mass distribution in B ! K��+�� decays, using the
form factors from LCSR as a function of s. All resonant c�c states are parametrized as in
Ref. [29]. The legends are the same as in Fig. 6.
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Figure 8: The normalized forward-backward asymmetry in B ! K��+�� decay as a
function of s, using the form factors from the LCSR approach. All resonant c�c states
are parametrized as in Ref. [29]. The solid line denotes the SM prediction. The dotted
(long-short dashed) lines correspond to the SUGRA (the MIA-SUSY) model, using the
parameters given in Eq. (4) (Eq. (11)) with the upper and lower curves representing the
C7

e� < 0 and C7
e� > 0 case, respectively. The dashed curves indicating a positive

asymmetry for large s correspond to the MIA-SUSY models using the parameters given in
Eq. (12), i.e. the ”best depression scenario” with C10 > 0.

ranges 0:99 < R9 < 1, 0:93 < R10 < 1:02. The maximal (minimal) value of tan� found

for R7 > 0(< 0) is 5 (20). In contrast, a no mixing choice �~t = ��=2 or ~t1 ' ~t
R

yields,

for both tan� = 2 and 30, C7
e� < 0 or equivalentlyR7 > 0.

In general, in the MFV model, SUSY effects on C9 and C10 are much smaller

than the corresponding one on C7
e� . A large value of tan� helps C7

e� to satisfy the

B ! X
s

 bounds but admits a sign opposite to the one in the SM. Dominant SUSY

contributions to C9 and C10 are due to the charged Higgs exchange and are suppressed as

� 1= tan2 �, for large tan �. Chargino effects in C9 and C10 increase for larger values

of the ratio M2=j�susyj > 1. Using the central values of the parameters and the LCSR

form factors, the maximal non-resonant branching ratios in the MFV are found for the

ratios R7 = �1:2, R9 = 1:0 and R10 = 1:02: BmaxMFV

nr
(B ! K�+��) = 7:5 � 10�7

and BmaxMFV

nr
(B ! K��+��) = 3:2 � 10�6. While larger than the corresponding

branching ratios in the SM, they are compatible with the present experimental bounds
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[34,35]. Our findings in the MFV-SUSY model are very similar to the SUGRA case and

in agreement with [19] for the inclusive decays. As the values of R
i

for the maximal non-

resonant branching ratios in the MFV model are almost identical to their SUGRA-model

counterparts given in Eq. (4), for which we have shown the dilepton invariant mass spectra

and FB-asymmetry, we refrain from showing the corresponding figures for the MFV case.

6.3 B ! (K;K�)`+`� in the MIA Approach

The minimal insertion approach aims at including all possible squark mixing effects in a

model independent way. Choosing a q; ~q basis where the q�~q� ~�0 and q�~q�~g couplings

are flavor diagonal, flavor changes are incorporated by a non-diagonal mass insertion in

the ~q propagator, which can be parametrized as (A;B =Left, Right) [73]

(�up;down
ij

)
A;B

=
(mup;down

ij
)2
A;B

m2
~q

; (5)

where (mup;down

ij
)2
A;B

are the off-diagonal elements of the up(down) squark mass squared

matrices that mix flavor i and j, for both the right- and left-handed scalars, and m2
~q is the

average squark mass squared. The sfermion propagators are expanded in terms of the �s.

The Wilson coefficients have the following structure (k = 7; 9; 10):

C
k
= CSM

k
+ Cdiag

k
+ CMIA

k
; (6)

where CMIA is given in terms of (�up;down
ij

)2
A;B

up to two mass insertions [23], and Cdiag
k

being the SUSY contribution in the basis where only flavor-diagonal contributions are

allowed. It is tacitly assumed that the �s are small and this defines the theoretical consis-

tency of this approach which has to be checked a posteriori.

The MIA-SUSY approach has been recently used in the analysis of the decays B !
X
s
`+`� [23], taking into account the present bounds on the coefficient C7

e�(m
B
) follow-

ing from the decay B ! X
s

. The other two coefficients CMIA

9 and CMIA

10 are calculated

by scanning over the allowed supersymmetric parameter space [23]. For �
susy

' �160
GeV, m~g ' m~q ' 250 GeV, m~t1

= 90 GeV, m~� ' 50 GeV, these coefficients are ex-

pressed as:

CMIA

9 (m
B
) = �1:2(�u23)LL + 0:69(�u23)LR � 0:51(�d23)LL ;

CMIA

10 = 1:75(�u23)LL � 8:25(�u23)LR : (7)

Of these, the mass insertions (�d23)LL and (�u23)LL are related by a CKM rotation and the

bound on one implies a similar bound on the other. One may have marked enhance-

ment or depletion in the branching ratios for the decay B ! X
s
`+`�. Note also the
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large numerical coefficient of (�u23)LR in the expression for CMIA

10 . For the parameters for

which Eq. (7) holds, the diagonal-SUSY contributions to C9 and C10 are: C9
diag(m

B
) =

�0:35; C10
diag = �0:27. Depending on the value of (�u23)LR and (�u23)LL, the coefficient

CMIA

10 may easily overcome the SM- and the diagonal-MSSM-contributions in this coeffi-

cient, changing the overall sign of the FB-asymmetry. This feature is a marked difference

between this scenario and the competing ones, namely SUGRA and MFV, where C10 re-

mains close to the SM value (see Table 1). This feature has been noted already in [23] in

the context of the FB-asymmetry in the inclusive decay B ! X
s
`+`�.

To maximize the effects in this general flavor-violating supersymmetric context,

several special cases have been studied in Ref. [23] in detail. We shall discuss the follow-

ing three scenarios from this work:5

1. ”Best enhancement scenario” for the branching ratio B(B ! X
s
`+`�), which cor-

responds to the choiceC7
e� = 0:445, (�d23)LL = (�u23)LL = �0:5 and (�u23)LR = 0:9;

2. ”Best enhancement scenario with C7
e� < 0”, corresponding to using C7

e� =

�0:445, (�d23)LL = �0:5; (�u23)LL = �0:1 and (�u23)LR = 0:9;

3. ”Best depression scenario”, corresponding toC7
e� = �0:25, (�d23)LL = 0:5; (�u23)LL =

0:1 and (�u23)LR = �0:6.

With these choices, drastic effects in the branching ratios and the FB-asymmetry have

been predicted for the decays B ! X
s
`+`�, as displayed in Figs. 5–8 in Ref. [23]. To

wit, in the first scenario listed above, enhancements as large as a factor 5 are admissible

in B(B ! X
s
e+e�) and even higher, 6.5, in B ! X

s
�+��.

We shall largely follow this analysis here in discussing the decay characteristics of

the exclusive decays B ! (K;K�)`+`� but would like to add a dissenting remark con-

cerning the coefficient C7
e�(m

B
). We recall that the extremal values used for C7

e�(m
B
)

in [23] correspond to using the 99% C.L. limits on B(B ! X
s

), which give the bounds

0:252 < jC7
e� j < 0:445 in the NLO approximation. This procedure allows a much larger

range for the ratio R7 than the one given in Eq. (3), which is then partly reflected in the

branching ratios for B ! X
s
`+`�.

We argue that even with this more restricted range of C7
e� , the two ”Best enhance-

ment scenarios for B ! X
s
`+`�” of Ref. [23] alluded to above give too large branching

ratios for the exclusive decays being studied here. To be specific, in the first scenario, the

5The specific values given above for the mass insertion parameter (�d23)LL have been kindly provided
to us by Ignazio Scimemi. We also draw attention to several misprints in the Tables given in [23] and trust
that an Erratum is being issued by the authors of Ref. [23].
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parameters given above translate into R9 = 1:26 and R10 = 2:84.6 The central values of

the form factors calculated here in the LCSR approach then lead to the following branch-

ing ratio: Bmax;MIA

nr
(B ! K��+��) = 11:5 � 10�6, which is approximately 3 times

larger than the recent CDF (90% C.L.) upper limit on this quantity [34],

B(B0 ! K�0�+��) < 4:0� 10�6 : (8)

The B ! K transition in this scenario is likewise enhanced, yielding a branching ratio

Bmax;MIA

nr
(B ! K�+��) = 3:2 � 10�6, which is typically a factor 5 larger than the

SM branching ratio, but still compatible with the experimental upper limit, B(B+ !
K+�+��) < 5:2 � 10�6 [34]. Hence, the present experimental upper bound on B !
K��+�� provides non-trivial bounds on C9 and C10, equivalently on R9 and R10, which

we now proceed to work out.

6.4 Bounds on C9 and C10 from present data

The branching ratios B ! (K;K�)`+`� can be expressed as quadratic equations in the

coefficients C7
e� , C9 and C10. Given the branching ratios (equivalently upper bounds),

these equations can be solved numerically and yield the allowed contours in the C9-C10

plane. For working out the constraints numerically, we use the experimental bound in

Eq. (8) to write down the following equation:

C2
10 = a1 (C9 + a2 C7

e� + a3)
2 + a4 B(B ! K� �+ ��) ; (9)

where
a1 = �1:12+0:08

�0:04 ;

a2 = 12:86+2:52
�1:71 ;

a3 = �1:38+0:55
�0:35 ;

a4 =
�
11:1+2:0

�2:2

�
� 106 :

(10)

The central numbers correspond to using the B ! K� form factors in Table 3 and the

errors represent the deviations from these numbers for a
i

by using the values given in

Tables 4 and 5.

The quadratic equation in (9) is solved numerically for the two distinct situations

C7
e� < 0 (SM-like) and C7

e� > 0 (new physics scenario) in the experimentally allowed

range for C7
e� given in Eq. (1). The resulting 90% C.L. allowed contours are shown in

Fig. 9 and Fig. 10, respectively. The solid curves in these figures are obtained by using

the central values of the form factors and the inner and outer dashed curves represent the

maximal and minimal allowed values of the form factors, respectively, encoded above in

6We neglect the effect from the RG running from � = mB (used in [23]) to � = mb;pole used by us.
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the coefficients a
i
. Note that the loosest bounds emerge from the minimal allowed values

of the form factors. Also, in working out the constraints shown in these figures, we have

fixed jC7
e� j = jC7

e�
min
j = 0:249 in the allowed range given in Eq. (1), as this gives for

both the cases (C7
e� < 0 and C7

e� > 0) the loosest bounds on C9 and C10. This can be

seen in Figs. 11 and Fig. 12 drawn for C7
e� < 0 and C7

e� > 0, respectively, where we

show the dependence of the bounds in the C9-C10 plane on the experimentally allowed

range for jC7
e� j given in Eq. (3). In these figures, we use the minimum values of the form

factors given in Table 5 for reasons given above. In Figs. 9 and 11, we also show the SM-

point (see Table 1) and the SUSY-MIA points for the ”Best enhancement scenario with

C7
e� < 0”, corresponding to C9(mB

) = 5:0; C10 = �12:5, and the ”Best depression

scenario with C7
e� < 0”, corresponding to C9(mB

) = 3:2; C10 = 0:2, [23]. We note that

the ”Best enhancement scenario with C7
e� < 0” is ruled out by data. The other MIA-

SUSY point, as well as the SM, are both well within the experimental bound. The SUSY-

MIA point corresponding to the ”Best enhancement scenario with C7
e� > 0” of Ref. [23]

is shown in theC9–C10 plane in Figs. 10 and 12. This corresponds to the pointC9(mB
) =

5:5; C10 = �13:2. As anticipated, this ”Best enhancement scenario with C7
e� > 0”

is convincingly ruled out by the experimental upper bound on B(B ! K��+��). The

analysis shown in Figs. 9-12 holds for all models discussed here in this paper in which

the SD-physics can be encoded in terms of the three real Wilson coefficients C7
e� , C9 and

C10. The point we wish to stress is that existing data on B ! K��+��, in conjunction

with the branching ratio B(B ! X
s

) provides non-trivial constraints on C9 and C10.

Illustrative examples of the dilepton invariant mass spectrum in the decays B !
K�+�� andB ! K��+�� in the MIA approach are shown in Figs. 6 and 7, respectively.

They have been calculated for the following values:

R7 = �0:83; R9 = 0:92; R10 = 1:61 ; (11)

which are allowed by the present experimental bounds. The characteristic difference in

this case, as compared to the SUGRA and MFV-SUSY models, lies in the significantly

enhanced value of C10.

As already mentioned, a characteristic of the MIA approach is that the sign of C10

(CSM

10 < 0) depends on the quantities (�u23)LR and (�u23)LL. In particular, the large number

in front of (�u23)LR in C10, obtained for the specific values of the SUSY parameter space,

could change the sign of this Wilson coefficient. This has no effect on the dilepton invari-

ant mass distributions, as they depend quadratically on C10, but it would change the sign

of A
FB

in B ! K�`+`�. To illustrate this, we use the parameters close to the so-called

”Best depression” scenario [23], corresponding to the following values

R7 = �0:83; R9 = 0:79; R10 = �0:38 ; (12)
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Figure 9: Bounds on the coefficients C9(mB
) and C10 resulting from the experimental

upper bound B(B0 ! K�0�+��) < 4:0 � 10�6 (at 90% C.L.) [34] and C7
e�(� =

4:8 GeV) = �0:249 from the bounds given in Eq. (1).The SM-point and two representa-
tive points in the SUSY-MIA approach from Ref. [23] are also shown. The three curves
correspond to using the central values of the form factors (solid curve), the minimum
(outer dashed curve) and maximum (inner dashed curve) allowed values discussed in
Sec. 3.
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Figure 10: The same as Fig. 9 but for the solution with C7
e� = 0:249. The point MIA

best

corresponds to the ”best enhancement scenario” of Ref. [23], discussed in the text.
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Figure 11: The same as Fig. 9, but showing the dependence of the bounds on the experi-
mentally allowed range for jC7

e� j, 0:249 � jC7
e� j � 0:374, with the form factors fixed to

their minimum values given in Table 5.
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Figure 12: The same as Fig. 11, but with C7
e� > 0.
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a b c d e f g h j k

K 0.193 0.068 0.068 0.230 0.163 0.097 0.045 - - -
K� 13.119 0.197 0.196 1.760 0.995 0.236 0.083 0.943 0.089 0.061

Table 7: Coefficients in units of 10�7 defined in Eqs. (14) and (15) in the KS prescription
[29].

and plot the resulting normalized FB asymmetry in Fig. 8. The positive FB-asymmetry in

B ! K�`+`� (as well as in B ! X
s
`+`� shown in [23]) for the dilepton invariant mass

below the resonant J= region is rather unique, as none of the other models considered

here (SM, SUGRA and MFV) admit solutions with positive C10.

Finally, to facilitate a model independent determination of the coefficients C7
e� ,

C9, and C10 from the decays B ! (K;K�)`+`�, we write down a parametrization of the

partially integrated branching ratios and FBA in the low s region. Using, for the sake of

definiteness, s
min

= 0:25 GeV2, s
max

= 8:0 GeV2, the partial branching ratios �B
X

and

the corresponding FB-asymmetry �A
FB

can be expressed as (X = K;K�):

�B
X

�
Z
smax

smin

ds
dB(B ! X�+��)

ds
(13)

= a
X
jC7

e� j2 + b
X
jC9j2 + c

X
jC10j2 + d

X
C7

e�C9 + e
X
C7

e� + f
X
C9 + g

X
(14)

�A
FB

� �
B

Z
smax

smin

ds
dA

FB
(B ! K��+��)

ds
= C10(hXC7

e� + j
X
C9 + k

X
) (15)

Numerical values of the coefficients are given in Table 7. They have been obtained

by using the central values of the form factors and other parameters given in Table 3

and Table 6, respectively. Specifying a model by the effective coefficients C7
e�(m

B
),

C9
e�(m

B
) and C10 enables one to obtain readily the predictions for �B

X
and �A in

this model. In the SM, we estimate �B
K

= 2:90 � 10�7, �B
K
� = 7:67 � 10�7 and

�A
FB

= �0:71�10�7, yielding� �A
FB

= �A
FB
=�B

K
� = �9:2%. The branching ratios

for the decays B ! (K;K�)e+e� are practically identical. Typical theoretical errors on

these quantities, obtained by varying the form factors and the parameters m
t
, m

b
, � and

�
QCD

in the ranges discussed earlier and adding the individual errors in quadrature are

�30% for �B and �38% for �A. However, the branching ratios and the FB-asymmetry

may be significantly enhanced (or depressed) in some variants of the supersymmetric

models discussed. With O(108) B �B events anticipated at the B-factories and HERA-B,

and much higher yields at the Tevatron and LHC experiments, these rates and asymmetries

will allow precision tests of the SM and may indicate the presence of new physics.
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7 Summary and Concluding Remarks

Before summarizing our results, we would like to comment on the contributions from the

helicity-flipped counter-parts of the SM operators O7; O9 and O10:

O0

7 =
e

16�2
�s�

��
m
b
LbF �� ; (16)

O0

9 =
e2

16�2
�s
R

�b

R

�̀

�
` ; (17)

O0

10 =
e2

16�2
�s
R

�b

R

�̀

�

5` : (18)

In an enlarged operator basis including these and the SM-operators, the various distri-

butions for the decays of interest can be obtained from the substitutions C
i
! C

i
+ C 0

i

(i = 7; 9; 10) in the matrix elements and the auxiliary functions Eqs. (6)–(17) forB ! K,

and for B ! K� in the terms which are proportional to the form factors V and T1. In the

remainder of the B ! K� amplitude, the contribution of the helicity-flipped operators

enters with the opposite sign, i.e., C
i
! C

i
� C 0

i
.

We note that in all models with minimal flavor violation, like the SM, 2HDM, and

MFV, the contributions of the flipped operators O0

7;9;10 vanish in the m
s
! 0 limit. In

the general non-diagonal MSSM scenarios, there are finite contributions even for a van-

ishing s-quark mass due to the neutralino-gluino-down-squark loops. However, under

the assumption that no large cancellations happen, we can conclude from the data on

B(B ! X
s

) which bounds jC7

e� + Ce� 0
7 j2 that Ce� 0

7 must be small compared to C7
e� .

Further, neglecting box diagrams, the helicity structure of the (penguin)-loops responsi-

ble for C 0

9;10 can be related to the ones of the flipped photon penguin Ce� 0
7 and hence is

suppressed as well. We also note that we have neglected the effects of the neutral Higgs

exchanges, which may lead to some inaccuracies for the decay B ! (K;K�)�+�� in

some parts of the SUSY parameter space. They are insignificant for the decays involving

the (K;K�)�+�� and (K;K�)e+e� states, where most of the experimental searches will

be concentrated.

We summarize our results: We have undertaken an improved calculation of the

form factors in the decays B ! (K;K�)`+`� in the light cone QCD sum rule approach.

Using this framework, we have calculated the partial branching ratios, dilepton invariant

mass spectra and the forward-backward asymmetry for these decays in the context of the

SM. We have also undertaken a comparative study of the phenomenological profiles of

these decays in a number of supersymmetric models. These include the SUGRA models,

minimal-flavor-violation SUSY model, and a general flavor-violating SUSY framework

using the mass insertion approximation. The role of the forward-backward asymmetry

in the decays B ! K�`+`� in searching for new physics is emphasized. We show that
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the large-(tan�) solution in the SUGRA models, but also some parameter space of the

MIA model, yield FB-asymmetries, which are strikingly different from the SM. In partic-

ular, the value of the dilepton invariant mass for which the FB-asymmetry may become

zero, s0, may provide a precision test of the SM. A simple analytic expression for s0 is

derived, and we have argued that the form factor dependence in s0 cancels in the large

energy expansion approximation. We have analyzed the present data on B ! X
s

 and

existing limits on the decays B ! (K;K�)`+`� to put bounds on the coefficients C9 and

C10. While these bounds do not yet probe the SM, they do provide non-trivial constraints

on extensions of the SM. In particular, the ”Best enhancement SUSY-MIA scenarios ”for

the branching ratios B(B ! X
s
`+`�), shown for some chosen supersymmetric param-

eters in Ref. [23], are ruled out by the existing upper limit on the exclusive branching

ratio B(B0 ! K�0�+��) [34]. Finally, we show the dilepton mass spectra and the FB-

asymmetry for illustrative values of the supersymmetric parameters and argue that the

decays B ! (K;K�)`+`� hold great promise in unraveling new physics.
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