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Abstract
We analyze the rare kaon decaysKL ! �0���, K+ ! �+���, KL ! �0e+e� andKL !
�+�� in conjunction with the CP violating ratio"0=" in a general class of supersymmetric
models in whichZ- and magnetic-penguin contributions can be substantially larger than
in the Standard Model. We point out that radiative effects relate the double left-right mass
insertion to the single left-left one, and that the phenomenological constraints on the latter
reflect into a stringent bound on the supersymmetric contribution to theZ penguin. Using
this bound, and those coming from recent data on"0=", we findBR(KL ! �0���) <

�

1:2 � 10�10, BR(K+ ! �+���) <
� 1:7 � 10�10, BR(KL ! �0e+e�)dir <

� 2:0 � 10�11,
assuming the usual determination of the CKM parameters and neglecting the possibility of
cancellations among different supersymmetric effects in"0=". Larger values are possible,
in principle, but rather unlikely. We stress the importance of a measurement of these
three branching ratios, together with improved data and improved theory of"0=", in order
to shed light on the realization of various supersymmetric scenarios. We reemphasize
that the most natural enhancement of"0=", within supersymmetric models, comes from
chromomagnetic penguins and show that in this case sizable enhancements ofBR(KL !
�0e+e�)dir can also be expected.
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1 Introduction

Flavour-Changing Neutral Current (FCNC) processes provide a powerful tool for testing

the Standard Model and the physics beyond it. Of particular interest are the rare kaon

decaysKL ! �0���, K+ ! �+��� andKL ! �0e+e� which are governed byZ-penguin

diagrams. The latter diagrams play also a substantial role in the CP violating ratio"0=".

The most recent experimental results for this ratio,

Re("0=") =

(
(28:0� 4:1) � 10�4 (KTeV) [1]
(18:5� 7:3) � 10�4 (NA48) [2]

(1)

are in the ball park of the earlier result of the NA31 collaboration at CERN,(23:0� 6:5) �
10�4 [3], and substantially higher than the value of E731 at Fermilab,(7:4 � 5:9) � 10�4
[4]. The grand average (according to the PDG recipe) including NA31, E731, KTeV and

NA48 results, reads

Re("0=") = (21:2� 4:6) � 10�4 ; (2)

very close to the NA31 result but with a smaller error. The error should be further reduced

once complete data from both collaborations will be analyzed. It is also of great interest

to see what value for"0=" will be measured by KLOE at Frascati, which uses a different

experimental technique than KTeV and NA48.

The estimates of"0=" within the Standard Model (SM) are generally below the data

but in view of large theoretical uncertainties stemming from hadronic matrix elements one

cannot firmly conclude that the data on"0=" imply new physics [5–9]. On the other hand

the apparent discrepancy between the SM estimates and the data invites for speculations

about non-standard contributions to"0=". Indeed the KTeV result prompted several re-

cent analyses of"0=" within various extensions of the Standard Model (see e.g. [10]) and

particularly within supersymmetry [11,12]. Unfortunately these extensions have many

parameters and if only"0=" is considered the analyses are not very conclusive.

The approach we want to pursue in the present paper is different: we will adopt

a model-independent point of view within a generic supersymmetric extension of the

Standard Model with minimal particle content, and study what are the implications of a

supersymmetric"0=" for the rare decays. To do so we will use the mass-insertion approxi-

mation [13]. Despite the presence of a large number of parameters within this framework,

only a few of them are allowed to contribute substantially to"0=". Phenomenological con-

straints, coming mainly from�S = 2 transitions [14], make the contribution of most of

them to�S = 1 amplitudes very small compared to the Standard Model one. The only

parameters which survive are the left-right mass insertions contributing to the Wilson co-

efficients ofZ- and magnetic-penguin operators. As we will discuss below, the reason
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for this simplification is a dimensional one: these are the only two classes of operators

of dimension less than six contributing to"0=". Supposing that the enhancement of the

Wilson coefficients of either of these two (or both) type of operators is responsible for the

observed value of"0=", a corresponding effect in the rare decays should be observed. In

what follows we will analyze in detail the relations between the size of the effect in"0="

and those in the rare decays.

The same kind of logic was already followed by two of us in [15]. There, this

kind of analysis was carried through under the assumption that the dominant effect in

�S = 1 transitions was only an enhanced�sdZ vertex. This analysis was motivated by an

observation of another two of us [16] that the branching ratios of rare kaon decays could be

considerably enhanced, in a generic supersymmetric model, by large contributions to the

effective�sdZ vertex due to a double left-right mass insertion. This double mass insertion

had not been included in earlier analyses of rare kaon decays in supersymmetry [17,18].

In the latter papers only single mass insertions were taken into account, leading to modest

enhancements of rare-decay branching ratios, up to factors 2-3 at most, as opposed to

the possible enhancement of more than one order of magnitude allowed by the double

mass insertion [16]. The conclusion of the analysis in [15] was that the data on"0="

may constrain considerably the double left-right mass insertion and the corresponding

enhancement of the rare-decays branching ratios.

In the present paper we will improve the analysis in [15] with the aim to answer the

following questions:

� Can the large double mass insertions suggested in [16] be further constrained? As

we will see this is indeed the case.

� What is the impact of these new constraints on the analysis in [15]?

� What is the impact on this analysis of contributions from chromomagnetic and
-

magnetic penguins to"0=" andKL ! �0e+e� respectively?

As we mentioned above, in generic supersymmetric theories a sizable contribution to

"0=" could also be generated by the chromomagnetic-dipole operator. Actually, within

supersymmetric models with approximate flavor symmetries, the latter mechanism seems

to be more natural than a strong enhancement of the�sdZ vertex [11]. Interestingly, if the

Wilson coefficient of the chromomagnetic-dipole operator gets enhanced, one should also

expect a sizable effect in the branching ratio ofKL ! �0e+e�, due to the
-magnetic

penguin. In fact their Wilson coefficients receive contributions from the same type of

mass insertion.
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The paper is organized as follows: In Section 2 we identify the dominant SUSY

contributions toj�Sj = 1 amplitudes as those of dimension less than six. In Section 3

we summarize the effective Hamiltonian forj�Sj = 1 transitions concentrating on the

operators of dimension four (effective�sdZ vertex) and five (magnetic penguins) and their

corresponding Wilson coefficients. Here we introduce three effective couplings which

characterize the supersymmetric contributions to the Wilson coefficients of these opera-

tors: �t for theZ penguin and��
g for the magnetic ones. In Section 4 we collect the

basic formulae for"0=" and rare kaon decays in terms of these effective couplings. In

particular we calculate the magnetic contributions to"0=" andKL ! �0e+e�. In Section

5 we analyze indirect bounds on the effective couplings. The main result of this section

is an improved upper bound onj�tj coming from renormalization group considerations.

In Section 6 we present a detailed numerical analysis of rare kaon decays taking into ac-

count the recent data on"0=", the present information on the short distance contribution to

BR(KL ! �+��) and the bounds on effective couplings derived in Section 5. Analyzing

various scenarios we calculate upper limits onBR(KL ! �0e+e�)dir, BR(KL ! �0���)

andBR(K+ ! �+���). We present a summary and our conclusions in Section 7.

2 SUSY contributions toj�Sj = 1 amplitudes

In the Standard Model FCNC amplitudes are generated only at the quantum level. The

same remains true also in low-energy supersymmetric models with unbrokenR par-

ity, minimal particle content and generic flavour couplings. The flavour structure of a

generic SUSY model is quite complicated and a convenient way to parametrize the vari-

ous flavour-mixing terms is provided by the so-called mass-insertion approximation [13].

This consists in choosing a simple basis for the gauge interactions and, in that basis, to

perform a perturbative expansion of the squark mass matrices around their diagonal. In

the following we will employ a squark basis where all quark-squark-gaugino vertices in-

volving down-type quarks are flavor diagonal.

In the case ofj�Sj = 1 transitions we can distinguish between two large classes of

one-loop diagrams:

� Box diagrams. These are present both inj�Sj = 1 and j�Sj = 2 amplitudes.

In both cases the integration of the heavy degrees of freedom, associated with the

superpartners, necessarily leads to effective four-quark operators of dimension six.

The Wilson coefficients of these operators are therefore suppressed by two powers

of a supersymmetry-breaking scale, that we generically denote byMS. Here1=M2
S

plays a role similar to1=M2
W in the SM case.
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Since any mass-insertion carries at mostj�Sj = 1, the leading contribution to

j�Sj = 2 transitions starts at second order in this expansion. Denoting by� the

generic ratio of off-diagonal terms over diagonal ones in the squark mass matrices,

the coupling ofj�Sj = 2 effective operators turns out to be ofO(�2=M2
S). This

has to be compared with the dominant SM coupling that is ofO(�2t=M2
W ), where

�t = V �
tsVtd. If we then impose that the supersymmetric contribution toj�Sj = 2

amplitudes is at most of the order of the SM one, we find

�=MS
<
� �t=MW : (3)

In the case ofj�Sj = 1 amplitudes, the leading supersymmetric contribution starts

already at first order in�, similarly to the SM one that is linear in�t. However, the

dimensional suppression factor is always1=M2
S in the SUSY case and1=M2

W in the

SM one. Therefore, ifMS � MW , the constraint (3) implies that the supersym-

metric contribution toj�Sj = 1 box diagrams is suppressed with respect to the SM

one. This naive argument is confirmed by the detailed analysis of [14], where it has

been shown thatj�Sj = 2 constraints always dominate overj�Sj = 1 ones, as

long as we consider only dimension-six operators generated by box diagrams with

gluino exchange.

� Penguin diagrams. At the one-loop level this kind of diagrams is present only in

j�Sj = 1 amplitudes. Effective operators with lowest dimension generated by pho-

ton and gluon penguins are the so-called “magnetic” operators of dimension five.

The coupling of these operators is ofO(�=MS) and therefore potentially competing

with the SM contributions even if we impose the bound (3). This naive conclusion

is again confirmed by detailed analyses of gluino mediated amplitudes [14]. In this

context it is found that only the chromomagnetic operator, induced by~dL(R)� ~sR(L)

mixing, could lead to sizable(>� 10�3) contributions to"0=" without violating any

constraints from".

A different situation occurs in the case ofZ-penguin diagrams, where the break-

ing of SU(2)L allows to build an effective dimension-four operator of the type

sL

�dLZ�. Denoting byCZ the dimensionless coupling of this operator, the inte-

gration of the heavyZ field leads to an effective four-fermion operator proportional

to CZ=M
2
Z without any explicit1=MS suppression. This potential enhancement is

partially compensated by the fact that the leading contribution toCZ arises only at

second order in the mass-insertion [16]. However, the absence of any1=MS sup-

pression makes this term particularly interesting both for rare decays [16] and"0="

[15].
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Given the above considerations, in the following we will restrict our attention only to

the dominant SUSY effects inj�Sj = 1 amplitudes: those generated by the “magnetic”

dimension-five operators, induced by gluino exchange, and those generated by the�sdZ

vertex mediated by chargino exchange. Interestingly, under this assumption only the off-

diagonal left-right entries of squark mass matrices are involved, in particular the~dL(R) �
~sR(L) mixing for the magnetic operators and the~u(s;d)L � ~tR one for the�sdZ vertex.

What we will not consider are the gluino and the chargino contributions to irre-

ducible dimension-six operators. The former have been explicitly calculated in [14] and

found to be negligible, the latter are suppressed byO(M2
W=M

2
S) with respect to the cor-

responding contributions mediated by the�sdZ vertex. To control the accuracy of our

approximation, we have explicitly checked that the impact of these terms is below10%,

with respect to the dominant ones, for squark/gaugino masses above� 300 GeV. Finally,

we will completely ignore the neutralino contributions which are known to be negligible

due to the smallness of both electroweak and down-type Yukawa couplings [18].

Since a large�sdZ vertex is already present in the SM, the corresponding SUSY cor-

rections can be easily incorporated without modifying the structure of the SMj�Sj = 1

effective Hamiltonian. On the other hand, the dimension-five operators, neglected within

the SM, require an adequate treatment and will be discussed in detail below.

3 Effective Hamiltonian

3.1 Operators and Wilson Coefficients

On the basis of the discussion in the previous section, we introduce here the effective

Hamiltonian containing all the relevant operators of dimension smaller than six. The only

dimension-four operator of interest is the one given by the�sdZ vertex:

Hd=4
e� = �GFp

2

e

�2
M2

Z

cos �W

sin�W
Zds�sL
�Z

�dL + h:c: ; (4)

where

Zds = �tC0(xt) + ~�tH0(xq�) : (5)

Here the first term on the r.h.s is the Standard Model contribution (evaluated in the ’t

Hooft-Feynman gauge) and the second one represents the dominant supersymmetric ef-

fect. The couplings�t and~�t are defined by

�t = V �
tsVtd ;

~�t = (�ULR)23(�
U
LR)

�
13 ; (6)
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whereVij are the elements in the CKM matrix and, denoting byM2
[U;D] the squark mass

matrices, �
�
[U;D]
AB

�
ij
=
�
M2

[U;D]

�
iAjB

.
hM2

[U;D]i : (7)

Explicit expressions for the functionsC0 andH0 will be given below.

The magnetic operators of dimension five appear in the effective Hamiltonian in the

following way:

Hd=5
e� = (C+


 Q
+

 + C�


 Q
�

 + C+

g Q
+
g + C�

g Q
�
g ) + h:c: ; (8)

where we have chosen the following operator basis:

Q�

 =

Qde

16�2
(�sL�

��F��dR � �sR�
��F��dL) ; (9)

Q�
g =

g

16�2

�
�sL�

��taGa
��dR � �sR�

��taGa
��dL

�
; (10)

Full expressions for the Wilson coefficients generated by gluino exchange at the SUSY

scale can be found in [14]. We are interested here only in the contributions proportional

to 1=m~g, which are given by

C�

 (m~g) =

��s(m~g)

m~g

h�
�DLR

�
21
�
�
�DLR

��
12

i
F0(xgq) ; (11)

C�
g (m~g) =

��s(m~g)

m~g

h�
�DLR

�
21
�
�
�DLR

��
12

i
G0(xgq) ; (12)

where the�ij are defined in (7) and the functionsF0 andG0 are given in (20) and (21).

In the(Q�
g ; Q

�

 ) basis, the leading order anomalous dimension matrix reads


 =

0
B@ 8=3 0

32=3 4=3

1
CA : (13)

Therefore, integrating out SUSY particles at the scalem~g > mt, one has

C�

 (mc) = �2

h
C�

 (m~g) + 8 (1� ��1)C�

g (m~g)
i
; (14)

C�
g (mc) = � C�

g (m~g); (15)

where

� =

 
�s(m~g)

�s(mt)

! 2

21

 
�s(mt)

�s(mb)

! 2

23

 
�s(mb)

�s(mc)

! 2

25

: (16)

The dimension-five operators in (8) in principle mix also withQ2, the leading dimension-

six operator of the SMj�Sj = 1 effective Hamiltonian (see e.g. [19]). However, the effect

of this mixing can be neglected as long as we are interested in large enhancements of the

Wilson coefficients of the dimension-five operators with respect to the SM case (more

than one order of magnitude in the imaginary parts, as suggested in [11]). Therefore, as

first approximation, in the following we will neglect the mixing ofQ�
g(
) with Q2.
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3.2 Basic Functions

The basic functions relevant for our analysis are

B0(x) =
1

4

"
x

1� x
+

x ln(x)

(x� 1)2

#
; (17)

C0(x) =
x

8

"
x� 6

x� 1
+

3x+ 2

(x� 1)2
ln(x)

#
; (18)

H0(x) = �x(x
3 � 6x2 + 3x+ 2 + 6x ln(x))

48(1� x)4
; (19)

F0(x) =
4x(1 + 4 x� 5 x2 + 4 x ln(x) + 2 x2 ln(x))

3 (1� x)4
; (20)

G0(x) =
x(22� 20x� 2x2 + 16x ln(x)� x2 ln(x) + 9 ln(x))

3(1� x)4
; (21)

with the corresponding mass ratios

xt = m2
t =m

2
W ; xq� = m2

~q=m
2
~� ; xgq = m2

~g=m
2
~q : (22)

B0(xt) andC0(xt) are the box andZ0 penguin diagram functions in the Standard Model

respectively. The functionH0(xq�) appears in the SUSY contribution to the�sdZ ver-

tex [16]. The functionsF0(xgq) andG0(xgq) enter the contributions of
-magnetic and

chromomagnetic penguin operators respectively [14].

3.3 Effective couplings

The SUSY Wilson coefficients which we have given above depend explicitly on the spar-

ticle masses via the functionsH0, F0 andG0. The dependence is not very strong, as can

be seen from Fig. 1, where we plot the three functions normalized to their values atx = 1

(H0(1) = �1=96; F0(1) = 2=9; G0(1) = �5=18). On the other hand the relations

between"0=" and the rare decays which we want to investigate here, are almost indepen-

dent from the spectra of the SUSY particles. In fact these relations are most conveniently

described in terms of three effective couplings defined as follows:

�t =
h
(�ULR)23(�

U
LR)

�
13

i
H0(xq�) ;

��
g =

h�
�DLR

�
21
�
�
�DLR

��
12

i
G0(xgq) : (23)

It is worthwhile to point out that most of the results presented in Section 6 are valid also

if these couplings are defined in a more general way, starting from the Wilson coefficients

of Z-penguin and chromomagnetic operators. This way one could efficiently include also

subleading contributions in the mass-insertion approximation. This is however beyond

the scope of the present analysis.
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Figure 1: Dependence onx of the functionsH(x)=H(1) (solid), G(x)=G(1) (dashed),
F (x)=F (1) (dot-dashed).

4 Basic Formulae for"0=" and Rare Decays

In this section we collect the formulae for"0=" and rare K decays which we have used in

our analysis. These formulae can be considered as the generalization of the correspond-

ing expressions in [15] to include contributions of the chromomagnetic and
-magnetic

operators to"0=" andKL ! �0e+e� respectively. However, we stress that here we will

treat the effective�sdZ vertex differently than in [15], separating explicitly SM and su-

persymmetric contributions as shown in (4). The latter will be described in terms of the

effective coupling�t defined in (23).

4.1 Magnetic contributions to"0=" andKL ! �0e+e�

The matrix elements of the magnetic operatorsQ�
g;
 between aK0 and ann-pion state are

difficult to calculate. In the following we will normalize them by using the value obtained

in model calculations, and introduce the correspondingB factors which we will then vary

inside our estimates of the uncertainties. We will use:

h(��)I=0jQ�
g jK0i =

s
3

2

11

16�2
h�qqi
F 3
�

m2
� BG ; (24)

h�0jQ+

 jK0i =

Qde

16�2
i
p
2

mK

p��p
�
KF�� BT ; (25)

h(��)I=0jQ+
g jK0i = h�0jQ�


 jK0i = 0 : (26)
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ForBG = 1 Eq. (24) corresponds to the result of Ref. [20] obtained at leading nontrivial

order in the chiral quark model. We remark that them2
� suppression of the matrix element

is valid only at this order, and that terms proportional tom2
K arise at the next order both

in the 1=Nc and in the chiral expansion. Large corrections toBG = 1 are therefore

rather plausible, and to take them into account we will use in what followsjBGj = 1 �
4. As for BT , a value very close to one can be obtained for instance in the framework

of vector meson dominance, as in [21]. Other estimates give very similar values (see

e.g. [22]). As a conservative range of variation for this parameter we adoptjBT j = 0:5�2.

Concerning the sign ofBT andBG, the above model-dependent considerations indicate

that it is positive in both cases. We stress, however, that this conclusion is not based on

first principles.

Using (24) we write the chromomagnetic contribution to"0=" as1

Re

 
"0

"

!
G

=
11
p
3

64�

!

j"jRe(A0)

m2
�m

2
K

F�(ms +md)

�s(m~g)

m~g

�BG Im��
g ; (27)

where� contains the effect of the scaling fromm~g down tomc (which is the scale at which

the quark masses have to be given) and can be found in (16). Using�s(MZ) = 0:119 we

then obtain

Re

 
"0

"

!
G

' 209Rg Im��
g ; (28)

where

Rg =

"
�s(m~g)

�s(500GeV)

# 23
21 500GeV

m~g

q
RsBG : (29)

As for the magnetic contribution to the direct CP-violating component ofKL !
�0e+e�, we notice that by using Eq. (25) one can write

h�0e+e�jQ+

 jK0i = �Qd�BT

4�mK
h�0e+e�jQ7V jK0i ; (30)

whereQ7V (A) = (�sd)(V�A)(�ee)V (A). Employing the notations of [19] and dropping for a

moment the supersymmetric contribution toZds we get

BR(KL ! �0e+e�)dir = 6:3 � 10�6
�
(Im�t~y7A)

2 +
�
Im�t~y7V + Im�+

g ~y

�2�

; (31)

where �
2�
~y7V (A) is the Wilson coefficients ofQ7V (A) (the numerical values can be found

in [19]) and~y
 is defined by

Im�+
g ~y
 =

QdBTp
2GFmK

Im
h
C+

 (mc)

i
;

~y
 = �19:3BT
500GeV
m~g

R
25

21
�s

"
F0(xgq)

G0(xgq)
+ 8

�
1� 1:13R

� 2

21
�s

�#
; (32)

1In our conventions ReA0 = 3:326 � 10�4 andF� = 131 MeV.
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whereR�s = �s(m~g)=�s(500GeV).

4.2 Supersymmetric"0="

We decompose the SUSY contributions to"0=" as follows:

Re

 
"0

"

!SUSY

= Re

 
"0

"

!
Z

+ Re

 
"0

"

!
G

(33)

where the first term is the contribution from the supersymmetric effective�sdZ vertex and

the second is the contribution of the chromomagnetic penguin operator already discussed

and given in (28).

From [15] we have

Re

 
"0

"

!
Z

=
h
1:2� Rsjr(8)Z jB(3=2)

8

i
Im�t ; (34)

where

Rs =

"
158MeV

ms(mc) +md(mc)

#2
(35)

andB(3=2)
8 is the usual non-perturbative parameter describing the hadronic matrix ele-

ment of the dominant electroweak penguin operator. Finallyjr(8)Z j is a calculable renor-

malization scheme independent parameter in the analytic formula for"0=" in [23] which

increases with�MS
s (MZ) and in the range0:116 � �MS

s (MZ) � 0:122 takes the values

7:1 � jr(8)Z j � 8:4 : (36)

ForRs we will use the range

1 � Rs � 2 ; (37)

which is compatible with the most recent lattice and QCD sum rules calculations as re-

viewed in [5]. Note thatRs is defined as in [15], which differs from [5] where158MeV

has been replaced by137MeV. Correspondingly the updated values ofjr(8)Z j given in [5]

have been rescaled appropriately. We consider the ranges in (36) and (37) as conservative.

Finally we will use as in [5]

0:6 � B
(3=2)
8 � 1:0 : (38)

Our treatment of all the other parameters which enter in the SM estimate of"0=" will be

explained in Section 6.
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4.3 Rare Decays

Following [15] we have

BR(K+ ! �+���) = BR+
SM + 1:55 � 10�4

"
2X0 Re(�t�

�
t ) + 2�c Re�t + j�tj2

#
; (39)

whereBR+
SM is the Standard Model contribution given by

BR+
SM = 1:55 � 10�4

"
(X0 Im�t)

2 + (X0 Re�t +�c)
2

#
; (40)

where

�c = �(2:11� 0:30) � 10�4 (41)

represents the internal charm contribution [24] andX0 = C0 � 4B0 = 1:52 is the com-

bination of penguin and box diagram functions in (17) evaluated atmt(mt) = 166 GeV.

For an updated discussion about the SM estimate of the branching ratio we refer to [25].

Next, following [15] and including the contribution of the
-magnetic penguin to

KL ! �0e+e� we have

BR(KL ! �0���) = BR0
SM + 6:78 � 10�4

h
2X0 Im�t Im�t + (Im�t)

2
i
; (42)

BR(KL ! �0e+e�)dir = BRee
SM + 1:19 � 10�4

�
2Y0 Im�t Im�t + (Im�t)

2

+2:13 Im�t(0:08 Im�t + 0:23 Im�+
g ~y
)

+
�
0:08 Im�t + 0:23 Im�+

g ~y

�2�

; (43)

BR(KL ! �+��)SD = BR��
SM + 6:32 � 10�3

h
2(Y0 Re�t + ��c)Re�t

+(Re�t)
2
i
; (44)

where the Standard Model contributions are given as follows

BR0
SM = 6:78 � 10�4

h
X0 Im �t

i2
; (45)

BRee
SM = 1:19 � 10�4(Im�t)

2
h
Y 2
0 + (1:0 + 0:08C0)

2
i
; (46)

BR��
SM = 6:32 � 10�3

h
Y0 Re�t + ��c

i2
: (47)

HereY0 = C0 �B0 = 0:97, C0 = 0:79 and

��c = �(6:54� 0:60) � 10�5 (48)

represents the charm contribution toKL ! �+�� [24].
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Using (39), (42) and (44) one finds the following useful formula [15]

BR(K+ ! �+���) = 1:55 � 10�4
"
�3:97p� � 10�4 � 3B0 Re�t + �̂c

#2

+0:229 � BR(KL ! �0���) ; (49)

where

�̂c = �c � ��c = �(1:46� 0:30) � 10�4 (50)

and� is defined through

BR(KL ! �+��)SD = � � 10�9 : (51)

In evaluating�̂c we have included the correlation between�c and ��c due to their simul-

taneous dependence on�(4)

MS
andmc [24]. The upper bound onBR(K+ ! �+���) is ob-

tained for negative sign in (49) which corresponds to Re�t < C0jRe�tj (or ReZsd < 0).

5 Indirect bounds on supersymmetric contributions

5.1 Preliminaries

We now discuss the presently available constraints, not directly obtained by"0=" or rare

decays, on the flavour-changing mass insertions introduced in Section 3. A general model-

independent constraint on left-right mass insertions is dictated by vacuum stability. In

particular, the requirement of avoiding charge- or color-breaking minima or unbounded-

from-below directions in the SUSY potential implies [26]

������DLR�12(21)
���� <�

p
3ms

m~q
;

�����ULR�i3
��� <�

p
3mt

m~q
: (52)

Given the large difference between top and strange quark masses, the two constraints in

(52) are numerically very different. However, when translated in bounds for the corre-

sponding contributions to"0=" they look rather similar. Neglecting the dependence on the

sparticles mass ratios, that is rather mild, we obtain

�����
g

��� <� 10�4
 
500GeV

m~q

!
; j�tj <� 3 � 10�3

 
500GeV

m~q

!2

; (53)

which leave open the possibility of large contributions to"0=" (up to� 10�2) both from

Im��
g and Im�t. Concerning the bound on Im�+

g , relevant toKL ! �0e+e�, we further

note that up to unlikely cancellations among(�DLR)12 and(�DLR)21 one expects���Im��
g

��� � ���Im�+
g

��� : (54)
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Indirect bounds on��
g and�t can also be obtained byj�Sj = 2 amplitudes, bar-

ring the possibility of accidental cancellations. In the case of(�DLR)12(21), the indirect

constraints imposed by"K and�mK are rather mild [14] and essentially do not affect the

bound in (52). In the case of�t, the constraints fromj�Sj = 2 amplitudes are of two

types: those imposed by chargino box diagrams [16]2 and those obtained via radiative

corrections, relating(�ULR)23(�
U
LR)

�
13 to (�DLL)12. It turns out that the constraints via ra-

diative corrections using Renormalization Group evolution are more severe than the ones

from chargino box diagrams. We therefore discuss the former constraints in some detail.

5.2 Bounds on�t via Renormalization Group

The presence of a large double mass-insertion of the type(~udL � ~tR) � (~tR � ~usL) could

have a sizable indirect effect on the mixing of the first two generations, that is strongly

constrained in the down sector [14]. Indeed, the trilinear couplingsA
u;d induce at one

loop a flavour-changing mass term for both left- and right-handed squarks, i.e. give a

radiative contribution to the off-diagonal elements of the mass matricesm
2
Q,m2

~u andm2
~d

[27]. The diagram which generates such an effect is depicted in Fig. 2, together with

the diagram with the doubleLR mass-insertion which yields the~dA � ~sA (A = L;R)

transition. A naive order-of-magnitude comparison between the two diagrams (say, at

low momentumq2 flowing along the squark line) would lead one to say that the loop

diagram is suppressed with respect to the tree one by a factorM2
S=(16�

2hvi2) � 10�2,

if we assume thatMS is not much bigger than the electroweak-breaking scale. However,

this suppression factor, which dominates over the finite part of the loop diagram, can be

balanced by a large logarithm arising in the divergent part of the diagram. In particular,

in a scenario withMX � 1016GeV, the loop diagram yields a large logarithm of the form

ln(M2
X=M

2
S) � 64 for MS � 102 GeV, therefore compensating almost completely the

suppression factor.

To bring this discussion on more solid grounds the tools to be used are the renormal-

ization group equations (RGE) for the soft SUSY-breaking couplings [28]. If we neglect

all entries in the Yukawa matrices butyt andyb, the RGE for the (1,2) matrix element of

m
2
Q reads as follows (t = lnM2

X=q
2):

d(m2
Q)12

dt
= � 1

16�2

�
A
u
A
uy +Ad

A
dy
�
12
= � 1

16�2
A
u
13A

u
23
� + : : : ; (55)

2 We note that the chargino contribution toj�Sj = 2 amplitudes has been overestimated in [16] due to
a missing factor1=4 in the r.h.s. of Eq. (3.4). Moreover, though formally correct, Eq. (3.5) of [16] does
not correspond to the expansion ofHj�Sj=2 nearxki = 1 (due to the missing factor1=M2

~qk
). Taking into

account these two corrections, we found that the bounds on~�t in Eqs. (3.6-7) of [16] should be increased
by a factor 3.
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<v> <v>

Figure 2: Diagrams through which the trilinearAu couplings may generate a~sL(R) !
~dL(R) transition.

where the ellipsis stand for terms which, according to the vacuum stability bounds are

suppressed by(mb=mt)
2 at least. Let us now imagine for a moment that theAu matrix

elements do not evolve. Then we get for the radiatively generated part of(m2
Q)12:

(m2
Q)

rad
12(MS) = � ln(M2

X=M
2
S)

16�2
A
u
13A

u
23
� ; (56)

that, when translated into the usual�’s becomes (forMS = 300 GeV andMX = 2 � 1016
GeV, andtan � = 5):

(�
[U;D]
LL )rad

12 = 1:3 � (�ULR)13(�ULR)�23 : (57)

(A similar expression can be obtained for the�[U;D]
RR couplings). If both theLR couplings

were close to the vacuum stability bounds, this contribution would be of order one, and

would violate the bounds which were obtained by comparison to the phenomenology

of the�S = 2 transitions [14]. By reversing the argument, and assuming there is no

cancellation with the initial value of(m2
Q)12 atMX we can obtain a bound on the product

of the twoLR couplings.

In order to obtain the correct numerical value for this bound we have to do a com-

plete calculation and take into account also the evolution of theA
u matrix elements. In

the same approximation as above (i.e. keeping only theyt andyb entries in the Yukawa

matrices, and neglecting all theAu;d matrix elements whose vacuum-stability bound is

not proportional tomt), the RGE for theAu matrix elements read as follows:

dAu
i3

dt
=

1

8�

�
16

3
�3(t) + 3�2(t) +

13

15
�1(t)� 7

4�
jyt(t)j2

�
A
u
i3 (i 6= 3) : (58)

The one-loop evolution of the Yukawa coupling and of the gauge coupling constants in

the MSSM is well-known, and can be found, e.g., in [28]. The boundary conditions which

we have used for these equations are the following (for the scalesMS = 300 GeV and

MX = 2 � 1016 GeV):

yt(MS) = 0:92� 0:03 ;
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yb(MS) = 0:084 ;

�i(MX) = 0:040� 0:001 (i = 1; : : : ; 3) : (59)

For simplicity we have evolved back fromMX all three gauge couplings from their uni-

fication value. With these boundary conditions, the solution of the RGE equation for

(m2
Q)12(MS) is the following:

(m2
Q)12(MS) = (m2

Q)12(MX)�K
ln(M2

X=M
2
S)

16�2
(Au

13A
u
23
�) (MS) (60)

K = (0:67� 0:05) ;

where the uncertainty is mainly due to the top mass. As it is seen, the simplified solution

(56) is numerically not very different from the complete one in (60). It is interesting to

note that also here the large top mass plays an important role: the Yukawa coupling largely

compensates the effect of the gauge couplings in the evolution of theA
u
i3 matrix elements.

Neglecting the Yukawa term in (58), the numerical coefficient�0:67 goes down to�0:34.

Disregarding the unlikely possibility of a strong cancellation between the two terms on

the r.h.s. of (60) we can obtain a bound for�t (for the numerical estimate we use again

tan� = 5 andMS = 300 GeV):

jIm�tj � 16�2 sin2 �

K ln(M2
X=M

2
S)

v2

M2
S

jH0(xq�)jmin
n���Im(�DLL)12

���
max
;
���Im(�ULL)12

���
max

o

� (1:2� 0:1)
���H0(xq�) Im(�DLL)12

���
max

(61)

and analogously for the real part.

The left-left mixing among the first two generations of down-type squarks is strongly

constrained since it appears in gluino-mediatedj�Sj = 2 amplitudes [14]. Since(�DLL)12
enters quadratically inj�Sj = 2 transitions, one gets the following bounds from�MK

and"K respectively [14]:

q
jRe(�DLL)

2
12j � 2:4 � 10�2

vuut����� 4f6(1) + 11 ~f6(1)

4xgqf6(xgq) + 11 ~f6(xgq)

����� m~q

300GeV
; (62)

q
jIm(�DLL)

2
12j � 1:9 � 10�3

vuut����� 4f6(1) + 11 ~f6(1)

4xgqf6(xgq) + 11 ~f6(xgq)

����� m~q

300GeV
; (63)

where the functionsf6 and ~f6 are defined in [14]. The combination4xf6(x)+11 ~f6(x) has

a zero atx = 2:43, so that close to this particular value of the gluino-squark mass ratio

the bounds (62-63) become irrelevant. On the other hand, this value is excluded in the

present scenario whereMX � 1016GeV, because the evolution of the masses via RGE
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down to electroweak scales gives the conditionxgq < 1:3 for the scalars of the first two

families [29]. Moreover, even if the limits coming from gluino exchange could be evaded,

the analogous limits coming from chargino exchange, which are not much weaker, would

still hold.

Using Eqs. (61–63) it is possible to obtain bounds on Im�t that are more stringent

than the one in Eq. (53). However, the precise size of these constraints depends strongly

on the phase of�t: if the double insertion is purely imaginary, the constraint from"K
is ineffective and Im�t can be substantially larger than in the case in which Re�t is

different from zero.

5.3 Scanning of the SUSY parameter space and model-dependent considerations

Taking into account the analytic bounds discussed so far, we will now proceed estimating

the maximal allowed size of Im�t in terms of various SUSY parameters. To do so, one

has to face the usual problem of scanning efficiently the parameter space. In this particular

case, the phases of the relevant FCNC parameters are crucial: as we stressed above, the

stringent constraint from"K is not effective on pure imaginary (double) mass insertions.

To obtain an estimate of model-independent limits on SUSY contributions, we scan

randomly with uniform distribution the parameter space corresponding to a reasonably

natural determination ofMZ . More precisely, we choose the relevant parameters in the

following intervals:�300GeV < � < 300GeV3, 100GeV < M2 < 250GeV, 3M2 <

m ~Q12
< 5M2, M2 < m~L12

< 2M2, 0:4m ~Q12
< m~tR < m ~Q12

. Moreover we assume

unification of gaugino masses and we discard points in which(M3=m ~Q12
)2 > 1:3, the

charginos are lighter than90GeV, the charged sleptons lighter than80GeV or the gluinos

lighter than180GeV. The limits we get however do not significantly depend on the details

of the scanning procedure. We focus here only on the possibility of large enhancements

with respect to the SM due to the double mass insertion contribution to ImZds. Since

the effects of single mass insertions have already been analyzed in detail in Ref. [18] and

have been shown to be smaller, or at most of the same size of the SM contribution, we do

not take them into account in the present analysis.

As we discussed before, the most stringent upper limits on the double mass insertion

come from"K and�mK through the RGE evolution. To estimate the maximal possible

effects, we first choose the double mass insertion phase, then we choose the correspond-

ing absolute value as high as the highest limit found scanning the parameter space. In

Figure 3, we plot the maximal possible value ofj Im�tj as a function ofarg�t. It is ev-

ident that the stringent constraint from"K forces Im�t to be smaller than or of the same

3We use a real� to avoid problems with the electric dipole moment of the neutron.
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Figure 3: Limit on j Im�tj imposed by�mK and "K, through RGE evolution, as a
function of arg �t. The dashed line shows the SM contribution to ImZds for Im �t =
1:33 � 10�4.

order of the SM contribution to ImZds, unlessarg�t is very close to��=2. Therefore a

large enhancement of ImZds with respect to the SM can only happen if the double mass

insertion is large and almost purely imaginary. In this particular case, combining (61) and

(62) we can write

j Im�tj � 3 � 10�4
�����H0(xq�)

H0(1)

�����
vuut����� 4f6(1) + 11 ~f6(1)

4xgqf6(xgq) + 11 ~f6(xgq)

����� 300GeVm~q
: (64)

As we shall discuss in the next section, this particular case can be tested experimentally

in a clear way by studying rareK decays: if for example BR(KL ! �0���) will be found

to agree with the SM expectations, then the possibility of a large Im�t will be ruled out.

The constraints we considered on the relevant mass insertions can be evaded in

corners of parameter space, but this holds only if an unlikely fine-tuning is allowed. For

example the limits from�mK and"K can be evaded if there is a cancellation among the

different supersymmetric contributions to them, or the limit from RGE can be evaded if

there is a cancellation between the initial value of the insertion and the RGE contribution.

Since the insertions are pushed up to their experimental limits the results plotted

should not of course be considered as predictions but just as maximal possible effects.

Our framework is in fact general enough to include any supersymmetric extensions of

the SM with minimal field content. This on one hand insures that we are not missing

potentially large effects. On the other hand, one might ask whether values ofj Im�tj
as large as those ones in the shaded region of Fig. 3 naturally arise in supersymmetric
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models. Unfortunately, within the most common models this is not the case, as we will

now briefly show.

Explicit models account for the strong constraints on soft supersymmetry breaking

terms in different ways. In some cases the mechanism communicating the supersymmetry

breaking guarantees that FCNC and CP-violating processes are under control. This is

the case e.g. of gauge mediated supersymmetry breaking and of minimal supergravity

(SUGRA). In other cases, further ingredients are necessary.

In the minimal situations, a quick estimate yields

�t � 0:3 � 10�2�tH0(xq�)

H0(1)

 
300GeV

m0
S

!2

(65)

��
g � 0:3 � 10�4�tG0(xgq)

G0(1)

 
300GeV

m00
S

!
; (66)

whereMX � 1016 has been used to estimate��
g andm0

S, m00
S are dimensionful combi-

nations of diagonal soft parameters. Eqs. (65) and (66) show that�t and��
g give rise to

negligible effects compared to the SM ones.

On the other hand the universality hypothesis used in minimal SUGRA has not a

compelling justification. In this and other cases in which the mechanism generating the

soft terms does not guarantee that FCNC are under control, the potential FCNC problem

must be solved by further symmetries. From this point of view the issue of why the scalar

mass eigenstates are so degenerate or so aligned with the corresponding fermion eigen-

states is the supersymmetric version of the issue of explaining the structure of fermion

masses and mixings. If the latter is accounted for by flavour symmetries acting on the

fermion generation indices, in a supersymmetric theory the same symmetry acts on the

corresponding scalar indices. As a consequence, whatever is the symmetry, since the

Yukawa and the corresponding soft trilinear interactions have the same quantum num-

bers, the structure of their coupling matrices is the same. Within this class of models it is

therefore possible to show that the LR mass insertions involving the third generation, and

in turn the double insertion, are similar to those obtained in the minimal models. This is

not what happens for(�DLR)12, that can be shown to be of the right order of magnitude to

generate the experimental value of"0=" [11]. Therefore the most likely situation, as far as

the most common SUSY models are concerned, is somewhere between the case of�t ' 0

and�g 6= 0 and the case of�t = �g = 0. We stress, however, that the flavor structure of

the supersymmetry breaking is far from having been established. It is then worthwhile to

investigate also more exotic possibilities, like the one of a large Im�t, as far as these are

not ruled out by phenomenological constraints.
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6 Numerical Analysis

6.1 Strategy

We are now ready to discuss magnitude and relations among possible supersymmetric

contributions to"0=" and rare decays. To this purpose it is useful to distinguish between

three basic scenarios:

Scenario A: [Im�t = 0; Im��
g 6= 0].

This scenario is close to what happens in most SUSY models since, as we have

seen in the previous section, the�sdZ vertex can receive sizable corrections only in

a specific region of the parameter space. In this case"0=" can be affected only by

the chromomagnetic operator and, as shown in Section 4.3, among the rare modes

only KL ! �0e+e� is sensitive to this SUSY contribution. On the other hand if

Re�t is substantially different from zero alsoK+ ! �+��� can be significantly

affected.

Scenario B: [Im�t 6= 0; Im��
g = 0].

In this scenario the possibility of large corrections to"0=" is not favoured from

the point of view of the parameter space, but is an interesting possibility to be

investigated in a model-independent approach. If this is the case, sizable effects are

then expected both inKL ! �0��� andKL ! �0e+e�.

Scenario C: [Im�t 6= 0; Im��
g 6= 0].

This represents the most general case. Note, however, that the requirement of hav-

ing sizable cancellations in"0=", between supersymmetric contributions generated

by the chromomagnetic operator and the�sdZ vertex, implies an additional fine-

tuning with respect to scenarios A and B.

We will also follow [15] and consider three scenarios for�t, which enter Standard Model

contributions and its interference with supersymmetric contributions to rare decays and

"0=". Indeed there is the possibility that the value of�t is modified by new contributions

to " andB0
d;s � �B0

d;s mixings. We consider therefore three scenarios:

� Scenario I: �t is taken from the standard analysis of the unitarity triangle and varied

in the ranges:

1:05 � 10�4 � Im �t � 1:61 � 10�4 (67)

2:3 � 10�4 � �Re�t � 3:8 � 10�4 (68)
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� Scenario II: Im�t = 0 and Re�t is varied in the full range consistent with the

unitarity of the CKM matrix:

1:61 � 10�4 � �Re�t � 5:6 � 10�4 (69)

In this scenario CP violation comes entirely from new physics contributions.

� Scenario III : �t is varied in the full range consistent with the unitarity of the CKM

matrix:

�1:73 � 10�4 � Im�t � 1:73 � 10�4 (70)

This means in particular that Im�t can be negative.

We would like to emphasize that the scenarios II and in particular III are very unlikely and

are presented here only for completeness. We stress that if one uses the Standard Model

expressions forB0 � �B0 mixings, "K and sin 2� one gets results for the CKM matrix

which are compatible with thejVub=Vcbj constraint, which is insensitive to new physics.

In view of the coherence of the Standard Model picture, corrections to the processes in

question so large as to make Im�t negative, or Re�t way outside the range in Eq. (68)

look rather improbable. We believe that if the new physics has an impact on the usual

determination of�t, the most likely situation is between scenarios I and II.

6.2 "0="

We shall now proceed extracting ranges for the effective SUSY couplings from the exper-

imental data on"0=" in the basic scenarios A-C defined above. These will then be used to

estimate the branching ratios of the rare decay modes.

Assuming that the SM contribution to Re("0=") is around its central value, as given

in [5], and therefore much smaller than the experimental result, there is a lot of room

for SUSY to contribute to this quantity. Detailed bounds on Re("0=")
SUSY

depend on

the various parameters entering Re("0=")
SM

, as well as on the experimental result in (2),

however, as a simplified starting point for our discussion, we assume at first

Re

 
"0

"

!SUSY

= 2 � 10�3 : (71)

This value has to be taken only as a reference figure: it could be interpreted either as the

difference between the experimental result and the SM contribution or as the true value

of Re("0=") in the limit of a real CKM matrix.

Since our formula for the SUSY contribution Eq. (33) contains only two free pa-

rameters, Im�t and Im��
g , Eq. (71) defines a straight line in the(Im�t; Im��

g ) plane,
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Figure 4: Linear relation between��
g and�t for Re("0=")

SUSY

= 2 � 10�3. The solid

line is for fB(3=2)
8 ; Rs; r

(8)
Z g = f0:8; 1:5; 7:8g, the dot-dashed forfB(3=2)

8 ; Rs; r
(8)
Z g =

f1:0; 2:0; 8:4g and the dashed forfB(3=2)
8 ; Rs; r

(8)
Z g = f0:6; 1:0; 7:1g. The vertical lines

show the RGE bound (64) form~q = 300 GeV andfxq�; xgqg = f3; 1g (dotted) or
fxq�; xgqg = f9; 1:3g (dashed).

which represents the general solution within scenario C. This is shown in Fig. 4 for three

different sets offB(3=2)
8 ; Rs; r

(8)
Z g. Decreasing the reference value in (71) corresponds to

a translation of the straight lines toward the origin; the intercepts of the lines with vertical

and horizontal axes define the solutions within scenarios A and B, respectively.

As it can be noticed, if��
g = 0, then Im�t must be negative, i.e. the SUSY

contribution to the�sdZ vertex must be opposite to the SM one in order to produce a

positive contribution to"0=". The minimum value ofj Im�tj with ��
g = 0 is found for

the maximum values ofB(3=2)
8 , Rs andr(8)Z . In this case SUSY and SM contributions to

the �sdZ vertex cancel almost completely and the experimental value for"0=" is roughly

reproduced by QCD penguin contributions. On the other hand, the maximum allowed

value of j Im�tj with ��
g = 0 is found for the minimum set offB(3=2)

8 ; Rs; r
(8)
Z g. In

this case the�sdZ vertex has an opposite sign with respect to the SM case and is largely

dominated by SUSY contributions (jZds=ZSM
ds j >� 6). This solution is still allowed by the

RGE constraint (64), provided the sparticle masses are not too high. The situation of

course changes if one allows also Im��
g to be different from zero. In particular, for large
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(>� 10�5) and positive values ofRg Im��
g a positive Im�t is needed in order to avoid too

large effects in"0=".

In the limit where the standard determination of the CKM matrix is valid, a quantita-

tive estimate of the ranges for Im��
g and Im�t, within scenarios A and B, can be obtained

by subtracting the SM contribution from the experimental value in (2). Following [15],

we parametrize the SM result for"0=" using the approximate formula

Re

 
"0

"

!SM

= Im �t

�
�1:4 +Rs

h
1:1jr(8)Z jB(1=2)

6 + (1:0� 0:67jr(8)Z j)B(3=2)
8

i�
(72)

with [5]

Im�t = (1:33� 0:14) � 10�4 : (73)

Varying Im�t and the experimental value (2) within2� intervals, choosingB(3=2)
8 ,Rs and

r(8)Z as discussed in Section 4.2 and, finally, assuming0:7 � B(1=2)
6 � 1:3, we find:

�15:5 � 10�4 � Re
�
"0

"

�SUSY � 30:1 � 10�4 ; (74)

�9:3 � 10�4 � Im�t � 1:7 � 10�4 (Im��
g = 0) ; (75)

�0:7 � 10�5 � Rg Im��
g � 1:4 � 10�5 (Im�t = 0) : (76)

It is interesting to note that the range of Im��
g is well within the bound (52), there-

fore"0=" provides the most stringent bound onj Im��
g j within scenario A. Similarly,"0="

provides the most stringent model-independent upper bound on Im�t within scenario B.

On the other hand, the lower bound on Im�t imposed by"0=" is weaker than the bound

(64) form~q
>
� 200 GeV andxgq < 1:3.

To show the possible improvement due to more precise measurement of"0=" we

show how (74)–(76) are modified if we fix Re("0=")exp = 20 � 10�4. We find

�7:5 � 10�4 � Re
�
"0

"

�SUSY � 19:7 � 10�4 ; (77)

�5:9 � 10�4 � Im�t � 0:8 � 10�4 (Im��
g = 0) ; (78)

�0:4 � 10�5 � Rg Im��
g � 0:9 � 10�5 (Im�t = 0) : (79)

6.3 Rare Decays

The rare decaysKL ! �0��� andKL ! �0e+e� provide in principle a powerful tool to

clearly establish possible SUSY contributions inCP -violating j�Sj = 1 amplitudes, and

also to distinguish among the three scenarios introduced in Section 6.1.
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6.3.1 Scenario A

Within scenario A onlyKL ! �0e+e� among these two modes is affected by SUSY

corrections. SettingR�s = 1 in (32) we can write

Im�+
g ~y
 = 35:5 Rg Im��

g

"
Im�+

g

Im��
g

# "
BT

BG

p
RS

#
; (80)

where the numerical coefficient has been obtained forxgq = 1 and can increase at most

to 37.0 if we imposexgq < 1:3. AssumingRg Im��
g = 10�5, as obtained from Fig. 4,

and fixing to unit the two ratios among square brackets in (80), we obtain Im�+
g ~y
 =

3:5 � 10�4. Using this figure in (43) we find that the additional contribution toBR(KL !
�0e+e�)dir is positive and ranges between 3 and 4 in units of10�12, depending on the

value of Im�t. This effect, which represents the typical size of the SUSY contribu-

tion toKL ! �0e+e� expected within scenario A, is certainly difficult to be observed.

However, we stress that this conclusion depends strongly on the assumptions made for

Im�+
g = Im��

g andBT=(BG

p
RS).

According to the ranges ofBT , BG andRs discussed in Section 4, we expect

0:09 � BT

BG

p
RS

� 2 : (81)

On the other hand, it is more difficult to estimate Im�+
g = Im��

g without specific as-

sumptions on the SUSY soft-breaking terms. In minimal models it is natural to assume

(�DLR)12 � (�DLR)21, that implies
Im�+

g

Im��
g

' �1 ; (82)

but we cannot exclude sizable deviations from this figure in generic scenarios.

In Table 1 we report the upper bounds onBR(KL ! �0e+e�)dir, for different

values of the two ratios. To this end we have used the expressions for"0=" andBR(KL !
�0e+e�)dir given in Section 4 with the Standard Model contribution for"0=" given in (72).

Scanning the parametersB(3=2)
8 , B(1=2)

6 , Rs andr(8)Z as discussed in Section 4.2 and 6.2,

varying Im�t according to (67) (scenario I), we find the results in the third and fourth

column which correspond to two choices of"0=". As it can be noticed, results in the ball

park of10�11 cannot be excluded even under the assumption (82).

The dependence ofBR(KL ! �0e+e�)dir on the value of Im�t is shown in Ta-

ble 2. If the CKM matrix is real andj(Im�+
g = Im��

g )BT=(BG

p
RS)j >

� 1, we find

BR(KL ! �0e+e�)dir � few � 10�12, similarly to the SM case. On the other hand

values substantially larger than10�11 are obtained within scenario III. Note, however,
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Im�+
g = Im��

g BT=(BG

p
RS) BR(KL ! �0e+e�)dir BR(KL ! �0e+e�)dir

-1 1.0 9:4 � 10�12 7:8 � 10�12
-1 0.5 7:8 � 10�12 7:0 � 10�12
-1 1.5 1:1 � 10�11 8:5 � 10�12
-2 1.5 1:8 � 10�11 1:1 � 10�11
1 1.0 1:3 � 10�11 1:0 � 10�11
1 0.5 9:3 � 10�12 8:2 � 10�12
1 1.5 1:8 � 10�11 1:3 � 10�11
2 1.5 3:7 � 10�11 2:3 � 10�11

Table 1: Upper bounds onBR(KL ! �0e+e�)dir within scenario A, for different values
of Im�+

g = Im��
g andBT=(BG

p
RS) consistent with12 � 104 Re("0=") � 30:4 (third

column) and Re("0=") = 20:0 � 10�4 (fourth column). The bounds are obtained setting
xgq = 1:3 in order to maximize the numerical coefficient in (80). To maximize the inter-
ference of SM and SUSY amplitudes,Rg Im��

g is chosen as the maximum (minimum)
value allowed by"0=" for positive (negative) Im�+

g = Im��
g .

Im�+
g = Im��

g BR(KL ! �0e+e�)dir (II) BR(KL ! �0e+e�)dir (III)

-1 1.8 (0.8)�10�12 2.5 (2.1)�10�11
-2 7.3 (3.2)�10�12 5.7 (4.5)�10�11
1 1.8 (0.8)�10�12 1.5 (1.2)�10�11
2 7.3 (3.2)�10�12 2.5 (1.7)�10�11

Table 2: Upper bounds onBR(KL ! �0e+e�)dir within scenario A for Im�t = 0 (II)
andj Im�tj < 1:73 � 10�4 (III). The bounds are obtained settingBT=(BG

p
RS) = 1 and

imposing Re("0=") � 30:4(20:0) � 10�4.
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that the large results quoted for Im�+
g = Im��

g < 0 are very unlikely, since are obtained

for the maximum negative value of Im�t.

ConcerningKL ! �0���, its branching ratio in scenario A stays close to the Stan-

dard Model value provided the usual determination of Im�t is not substantially decreased

through supersymmetric contributions to"K. Because of the unitarity of the CKM matrix

Im�t can only be marginally increased over its SM value. On the other hand if Im�t = 0

a clear signature for scenario A would be a vanishingly smallBR(KL ! �0���) (<� 10�14

[30]).

The case ofK+ ! �+��� is different as it is dominantly governed by Re�t and

Re�t. The upper bound onBR(K+ ! �+���) can be obtained by using equation (49)

together with the bound [16,31,32,15]

BR(KL ! �+��)SD � 2:8 � 10�9 (83)

i.e. � = 2:8. Choosing then(�Re�t)max = 3:8 � 10�4 (scenario I for�t), as obtained in

the Standard Model, or(�Re�t)max = 5:6 � 10�4 (scenarios II and III), we find respec-

tively

BR(K+ ! �+���) � 1:70 � 10�10 + 0:229BR(KL ! �0���) ; (84)

BR(K+ ! �+���) � 2:03 � 10�10 + 0:229BR(KL ! �0���) (85)

As the second terms on the r.h.s of these bounds are very small in this scenario we find

BR(K+ ! �+���) � 1:7 � 10�10 andBR(K+ ! �+���) � 2:1 � 10�10. These results are

also obtained if Re�t is varied in the full range consistent with the bound (83) and with

the RGE constraint (88) with Im�t = 0. Evidently as (84) and (85) have been obtained

without the constraint (88), what matters in this scenario is (83).

6.3.2 Scenario B

Being strongly sensitive to Im�t and insensitive to Im��
g , KL ! �0��� represents the

golden mode to identify scenarios B and C. We first discuss scenario B which corresponds

to the case analyzed in [15]. This time, however, the effective�sdZ vertex is additionally

constrained by the renormalization group analysis of Section 5.

The dependence ofBR(KL ! �0���) on Im�t is shown in the left plot of Fig. 5.

As can be noticed, large enhancements with respect to the SM case are possible, but

on the other hand we cannot exclude a destructive interference among SUSY and SM

contributions leading to strong suppression ofBR(KL ! �0���).

If the standard determination of Im�t is valid, Eq. (42) implies thatBR(KL !
�0���) can be enhanced with respect to the SM case only if

Im�t < �2X0 Im�t or Im�t > 0 : (86)
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Figure 5:BR(KL ! �0���) as a function of Im�t (left) or as a function of("0=")
SUSY

Z

(right). In the left plot the solid (dot-dashed) parabola is for Im�t = 1:33 � 10�4 (0) and
the vertical lines show the RGE bounds as in Fig. 4. In the right plot the three parabola are
for Im�t = 1:33�10�4 andfB(3=2)

8 ; Rs; r
(8)
Z g = f0:6; 1:0; 7:1g (solid),fB(3=2)

8 ; Rs; r
(8)
Z g =

f0:7; 1:0; 7:8g (dot-dashed) orfB(3=2)
8 ; Rs; r

(8)
Z g = f0:8; 1:5; 7:8g (dashed). In both cases

the horizontal lines denote the SM range ofBR(KL ! �0���) for 1:05 < 104 Im�t <
1:61.

The second possibility is excluded within scenario B if we require a positive SUSY con-

tribution to "0=". This is clearly shown by the second plot in Fig. 5, which illustrates

the relation betweenBR(KL ! �0���) and the SUSY contribution to"0=" within sce-

nario B, assuming the standard determination of Im�t. In this case large enhancements of

BR(KL ! �0���) are possible, but only ifRs andB8 are close to their minimum values.

On the other hand, ifRs and/orB8 are large, thenBR(KL ! �0���) is more likely to be

suppressed rather than enhanced with respect to the SM case.

In order to be more quantitative we consider the three scenarios for�t defined at the

beginning of this section. Next, as discussed in Section 6.2, Im�t can be best bounded

by "0=" and the renormalization group analysis of Section 5. Re�t can be bounded by

the present information on the short distance contribution toKL ! �+�� and also by the

RG analysis of Section 5, as we will state more explicitly below. These bounds imply a

bound onBR(K+ ! �+���). SinceBR(K+ ! �+���) depends on both Re�t and Im�t

also the bound on Im�t matters in cases where it is substantially larger than the Standard
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Model contribution to ImZds.

The branching ratiosBR(KL ! �0���) andBR(KL ! �0e+e�)dir are dominated

by (ImZsd)
2. Yet, the outcome of this analysis depends sensitively on the sign of ImZsd.

Indeed, ImZsd > 0 results in the suppression of"0=" and since in the Standard Model

the value for"0=" is generally below the data, substantial enhancements of ImZsd with

ImZsd > 0 are not possible. The situation changes if new physics reverses the sign of

ImZsd so that it becomes negative. Then the upper bound on� ImZsd is governed by

the upper bound on"0=" and with suitable choice of hadronic parameters and Im�t (in

particular in scenario III) large enhancements of� ImZsd and of rare decay branching

ratios are in principle possible. The largest branching ratios are found when the neutral

meson mixing is dominated by new physics contributions which force Im�t to be as

negative as possible within the unitarity of the CKM matrix. As we argued above, this

possibility is quite remote. However, if this situation could be realized in some exotic

model, then the branching ratios in question could be very high as demonstrated in [15].

In this context it is interesting to observe that in the case of supersymmetry such

large enhancements of� ImZsd while allowed by"0=" are ruled out by the renormal-

ization group bound on Im�t considered in Section 5. As we will see in a moment the

imposition of the bound (see Fig. 3)

j Im�tj � 5:0 � 10�4 (87)

has in the case of a negative Im�t a very large impact on the analysis in [15] suppressing

considerably the upper bounds on rare decays obtained there.

In Table 3 we show the upper bounds on rare decays for Im�t > 0 for three scenar-

ios of Im�t in question and two different lower bounds on"0=". To this end all parameters

relevant for"0=" have been scanned in the ranges used in scenario A except that Im��
g

have been set to zero. In Table 4 the case Im�t < 0 for two different upper bounds on

"0=" is considered. In the last column we always give the upper bounds obtained in the

Standard Model.

The inspection of Table 3 shows that only moderate enhancements of branching

ratios are allowed by"0=" if Im �t > 0. Moreover the case Im�t = 0 is excluded by

the positive value of"0=". If Im �t < 0, substantial enhancements ofBR(KL ! �0���)

andBR(KL ! �0e+e�)dir are possible as seen in Table 4. In particular in scenario III

both branching ratios can be enhanced by one order of magnitude over Standard Model

expectations. On the other hand the imposition of the the RGE bound (87) plays an

important role in this analysis. In Table 5 we show what one would find instead of Ta-

ble 4, for Re("0=")max = 30:0 � 10�4, if the bound (87) had not been imposed. Table 5

corresponds to the analysis in [15] and shows very clearly that without the bound (87)
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104 Re("0=")min Scenario for�t: I II III SM
1010 BR(KL ! �0���) 1:2 (0:6) � 1:4 (0:8) 0.4

12.0 1011 BR(KL ! �0e+e�)dir 1:7 (0:9) � 2:1 (1:1) 0.7
1010 BR(K+ ! �+���)� 2:0 (1:8) � 2:4 (2:2) 1.1
1010 BR(K+ ! �+���) 1:7 (1:7) � 2:1 (1:9) 1.1
1010 BR(KL ! �0���) 0:7 (0:4) � 0:9 (0:5) 0.4

20.0 1011 BR(KL ! �0e+e�)dir 1:1 (0:7) � 1:3 (0:8) 0.7
1010 BR(K+ ! �+���)� 1:9 (1:8) � 2:2 (2:2) 1.1
1010 BR(K+ ! �+���) 1:7 (1:7) � 2:0 (1:9) 1.1

Table 3: Upper bounds for the branching ratios of the rare decaysKL ! �0���, KL !
�0e+e� andK+ ! �+��� in the case Im�t > 0, Im��

g = 0. The results have been
obtained in various scenarios for�t by imposing Re("0=") � 12:0 � 10�4 or Re("0=") �
20:0 � 10�4, with B

(3=2)
8 = 0:6(1:0). The � means that theBR(K+ ! �+���) has been

calculated using the bounds (84) and (85). Otherwise, the more stringent bound due to
RGE, Eq. (88), has been used.

104 Re("0=")max Scenario for�t: I II III SM
1010 BR(KL ! �0���) 0:8 (0:8) 1:7 (1:7) 4:0 (4:0) 0.4

30.4 1011 BR(KL ! �0e+e�)dir 2:0 (2:0) 3:0 (3:0) 5:9 (5:9) 0.7
1010 BR(K+ ! �+���)� 1:9 (1:9) 2:4 (2:4) 2:9 (2:9) 1.1
1010 BR(K+ ! �+���) 1:7 (1:7) 2:1 (2:1) 2:7 (2:7) 1.1
1010 BR(KL ! �0���) 0:8 (0:4) 1:7 (0:8) 4:0 (3:8) 0.4

20.0 1011 BR(KL ! �0e+e�)dir 2:0 (0:7) 3:0 (1:4) 5:9 (5:7) 0.7
1010 BR(K+ ! �+���)� 1:9 (1:8) 2:4 (2:2) 2:9 (2:9) 1.1
1010 BR(K+ ! �+���) 1:7 (1:7) 2:1 (1:9) 2:7 (2:6) 1.1

Table 4: Upper bounds for the branching ratios of the rare decaysKL ! �0���, KL !
�0e+e� andK+ ! �+��� in the case Im�t < 0, Im��

g = 0. The results have been
obtained in various scenarios for�t by imposing Re("0=") � 30:4 � 10�4 or Re("0=") �
20:0 � 10�4, withB(3=2)

8 = 0:6(1:0). For an explanation of the� see caption of Table 3.
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Scenario for�t: I II III SM
1010 BR(KL ! �0���) 3:9 6:5 17:6 0.4
1011 BR(KL ! �0e+e�)dir 7:9 11:5 28:0 0.7
1010 BR(K+ ! �+���) 2:6 3:5 6:1 1.1

Table 5: Upper bounds for the branching ratios of the rare decaysKL ! �0���, KL !
�0e+e� andK+ ! �+��� in scenario B, without imposing the RGE constraint (87) and
usingB(3=2)

8 = 0:6.

very large enhancements of branching ratios in question are possible. One should note

the strong sensitivity of the results to the choice ofB
(3=2)
8 in Tables 3 and 5, where the

bounds are governed by"0=". On the other hand this sensitivity is absent in Table 4 for

Re("0=")max = 30:0 � 10�4 and in scenario III for Re("0=")max = 20:0 � 10�4, where the

bounds onKL ! �0��� andKL ! �0e+e� are governed by the renormalization group

bound (87).

Next we should make a few remarks onK+ ! �+���. The bounds onBR(K+ !
�+���) denoted by “*” in Tables 3 and 4 have been obtained by using the bounds (84)

and (85) for scenario I and scenarios (II,III) respectively. It should be emphasized that

these bounds are rather conservative as they take only into account the RGE bound in

Im�t (throughKL ! �0���) and the bound on Re�t from (83). On the other hand, if

�t is almost purely imaginary, as required by the RGE constraints for a large Im�t, the

upper bound on Re�t is generally stronger than the one from (83) and one has milder

enhancements ofBR(K+ ! �+���) than in the “*” case. That is, in order to find the

true bound, the correlation between Im�t and Re�t through RGE should be taken into

account. In order to investigate this correlation we have repeated the analysis forK+ !
�+��� imposing instead of (87) the more general RGE constraints

j�tj � 5:0 � 10�4 ; jRe�t Im�tj � 0:8 � 10�9 ; (88)

derived from (61-63). The results of this analysis are represented byBR(K+ ! �+���)

without “*” in tables. As expected the bounds are stronger than previously obtained.

Moreover the sensitivity to"0=" diminished and the bounds are mainly governed byKL !
�+�� and RGE.

6.3.3 Scenario C

Within this scenario it is possible, in principle, to have a partial cancellation of the SUSY

contributions to"0=" generated byZ-penguin and chromomagnetic operators. Given the
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Scenario for�t: I II III SM
1010 BR(KL ! �0���) 3:8 (3:8) 1:7 (1:7) 4:0 (4:0) 0.4
1010 BR(K+ ! �+���)� 2:6 (2:6) 2:4 (2:4) 2:9 (2:9) 1.1
1010 BR(K+ ! �+���) 1:8 (1:8) 2:1 (2:1) 2:7 (2:7) 1.1
1011 BR(KL ! �0e+e�)dir [+] 10:0 (9:3) 5:7 (5:3) 10:3 (9:7) 0.7
1011 BR(KL ! �0e+e�)dir [�] 5:7 (5:5) 4:9 (4:5) 6:8 (6:1) 0.7

Table 6: Upper bounds for the branching ratios of the rare decaysKL ! �0���,
KL ! �0e+e� andK+ ! �+��� in scenario C, for Im�t > 0 andRg Im��

g > 0,
imposing Re("0=") � 30:4(20:0) � 10�4. The results in the last two lines are obtained for
(Im�+

g = Im��
g )BT=(BG

p
RS) = �1. For an explanation of the� see caption of Table 3.

strong RGE bound (87), this possibility has only a minor impact on the upper bounds

of bothBR(KL ! �0���) andBR(K+ ! �+���), with respect to scenario B. The only

difference is that a sizable enhancement can also occur for Im�t > 0, if Rg Im��
g is pos-

itive and compensate for the negative contribution to("0=") generated by theZ penguin.

This would then allow large values ofK ! ���� widths also within scenario I. This case

is shown in Table 6. As can be noticed, the upper bounds for the two neutrino modes

within scenario II and III are the same as in Table 4 (with Re("0=") � 30:4 � 10�4) but,

as anticipated, sizable enhancements occur also within scenario I. Due to the additional

independent SUSY contribution to"0=", in all cases (I-III) the upper bounds ofK ! ����

widths are insensitive to the experimental constraints on"0=" and depend only on the

maximal value of�t.

More interesting is the case ofKL ! �0e+e�, sensitive to both Im�t and the SUSY

contribution to magnetic operators. Also in this mode the largest enhancements occur

when both Im�t andRg Im��
g are positive, so thatjRg Im��

g j can reach its maximum

value. As shown in Table 6, in this case one can reach values ofBR(KL ! �0e+e�)dir

larger than in scenarios A and B. An evidence ofBR(KL ! �0e+e�)dir >
� 10�10 would

provide a clear signature of this particular (though improbable) configuration.

We finally note that, within scenario C, by relaxing the RGE bound (87) it is possible

to recover the maximal enhancements for the rare decays pointed out in [16]. Needless to

say, this possibility is rather remote, as it requires a few fine-tuning adjustments. However

it is interesting to note that in the near future it could be excluded in a truly model-

independent way by more stringent bounds onBR(K+ ! �+���). Indeed ifBR(KL !
�0���) > 2 � 10�9 one expects from isospin analysis [33] thatBR(K+ ! �+���) >

4:6 � 10�10, not far from the recent upper bound on this mode obtained by BNL-E787
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[34].

7 Summary

In this paper we have analyzed the rare kaon decaysKL ! �0���, K+ ! �+���,

KL ! �0e+e� and the CP violating ratio"0=" in a general class of supersymmetric mod-

els. We have argued that only dimension-4 and 5 operators may escape the phenomeno-

logical bounds coming from�S = 2 transitions and contribute substantially to�S = 1

amplitudes. On this basis we have introduced three effective couplings which characterize

these supersymmetric contributions:�t for theZ penguin and��
g for the magnetic ones.

Im�t enters all rare decays and"0=", Im��
g only "0=" while Im�+

g onlyKL ! �0e+e�.

Re�t is important forK+ ! �+��� andKL ! �+��. Since Im��
g and Im�+

g are ex-

pected to be similar in magnitude, a connection between"0=" andKL ! �0e+e� follows

in models with small Im�t.

We have demonstrated explicitly that

� the size of Im��
g is dominantly restricted by the present experimental range of"0=";

� the size of Im�t > 0 is bounded by the minimal value of"0=";

� the size of Im�t < 0 is bounded by the renormalization group analysis (RGE)

combined with the experimental values on"K and�MK ;

� the size of Re�t is bounded byKL ! �+�� and RGE.

The imposition of the RGE bounds on the effective couplings has a considerable impact

on the upper bounds of rare kaon decays (e.g. compare Table 5 to Tables 3 and 4) so that

the maximal branching ratios are found to be substantially lower than those obtained in

[16,15]. Given the important role of this bound it is worth emphasizing that it requires

more theoretical input than the low-energy phenomenological bounds usually taken into

account within the mass-insertion approximation. Indeed it requires a control on the

degrees of freedom of the theory up to scales of the order of1016 GeV.

In order to accurately describe the relations between"0=" and the rare decays we

have performed a numerical analysis in three basic scenarios:

Scenario A: [Im�t = 0; Im��
g 6= 0].

Scenario B: [Im�t 6= 0; Im��
g = 0].

Scenario C: [Im�t 6= 0; Im��
g 6= 0].
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In each of these scenarios we have considered three scenarios for the CKM factor�t:

Scenario I: �t is taken from the standard analysis of the unitarity triangle.

Scenario II: Im�t = 0 and Re�t is varied in the full range consistent with the unitarity

of the CKM matrix.

Scenario III : �t is varied in the full range consistent with the unitarity of the CKM

matrix.

As we have discussed, scenario A with scenarios I or II for the CKM matrix is most

natural within supersymmetric models with approximate flavour symmetries. However

the other scenarios cannot be excluded at present and we have analyzed them in detail.

Our main findings, collected in Tables 1-4 and 6 are as follows:

� In scenario A there is room for enhancement ofBR(KL ! �0e+e�)dir by up to

one order of magnitude and ofBR(K+ ! �+���) by factors 2-3 over the Standard

Model expectations.BR(KL ! �0���) remains generally in the ball park of the

Standard Model expectations except for scenario II, where it becomes vanishingly

small.

� In scenario B, with the Standard Model values of Im�t (I), enhancements ofBR(KL

! �0���) by factors 2-3 and ofBR(KL ! �0e+e�)dir by factors 3-5 are still pos-

sible, whileBR(K+ ! �+���) can be enhanced by at most a factor of 2. On the

other hand, in scenarios II and III enhancements ofBR(KL ! �0e+e�)dir and

BR(KL ! �0���) by one order of magnitude and ofBR(K+ ! �+���) up to a

factor of 3 over Standard Model expectations are possible. These upper limits are

dictated by the RGE bounds.

� In scenario C enhancements of rare-decay branching ratios larger than in scenarios

A and B are only possible if Im��
g and Im�t have the same sign so that the contri-

butions of the chromomagnetic penguin andZ0-penguin to"0=" cancel each other

to some extent. As a consequence the restrictions from"0=" are substantially weak-

ened and what matters are the RGE constraints. In this rather improbable scenario

one order of magnitude enhancements ofBR(KL ! �0���) are possible even if the

standard determination of�t is valid andBR(KL ! �0e+e�)dir could reach the

10�10 level. On the other handBR(K+ ! �+���), being mainly sensitive to Re�t
and Re�t, stays always below3 � 10�10 as in scenarios A and B.

We observe certain patterns in each scenario which will allow to distinguish be-

tween them, and possibly rule them out once data on rare decays and improved data

32



and theory for"0=" will be available. In particular in the near future with more strin-

gent bounds onBR(K+ ! �+���) the most optimistic enhancements (like those oc-

curring in scenarios C or B.III) could be considerably constrained. In the more distant

future, a clean picture will emerge from the measurements ofBR(KL ! �0���) and

BR(KL ! �0e+e�)dir.
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