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Abstract

The wave zone condition for TR produced on the boundary between a metal and vacuum
is examined. It is shown that in both forward and backward directions the wave zone sets
in at the same distance, that is of the order of the formation length for forward TR. The
features of backward TR in the pre-wave zone are considered.
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It is a widely accepted point of view that transition radiation (TR) in the forward

direction is formed over the so-calledformation length, that is the distance needed for

the particle Coulomb field and radiation field to separate due to the difference in their

velocities of propagation [1]. In the relativistic regime the formation length exceeds the

radiation wavelength in orders of magnitude. For TR produced on the boundary between

a metal and vacuum in the optical range, which is only the object under consideration

in this paper, the formation length is roughly�
2, where� is a wavelength and
 is the

relativistic factor. In the case of backward TR the particle and radiation fields overlap

only within a wavelength from the target surface.

Sometimes this argument is exploited to conclude thatwave zone(or far-field) con-

ditions are different for forward and backward TR [2]. Meanwhile, it is actually not true

in regards to the radiation itself. Both backward and forward TR evolve , before reach-

ing the wave zone, over the same distance determined by the transverse dimension of the

electromagnetic field of a moving particle. In fact, while the particle itself can certainly

be considered a point, its Coulomb field Fourier-component, involved in the radiation at

the wavelength�, occupies a finite space, outer border of which scales in the transverse (

to the particle trajectory) plane roughly as�
.

Since, eventually, the source of TR is the atomic electron currents induced on the

metallic surface by the incident particle Coulomb field, its size is that of the field. The last

statement is, however, valid for the infinite boundary. For a target of the finite size this

does not hold if the particle field exceeds the transverse dimension of the target. Then,

strong variations in the radiation properties are expected [3] at wavelengths for which the

parameter�
 is larger than the target radius.

Nevertheless, as long as the target size has no effect on the radiation, one can con-

sider a portion of the target surface with an extension of the order of�
 around the particle

trajectory as the TR source. Though rather artificial for the first view, the concept of the

source for TR was found very useful for making clear the physical arguments determining

the wave zone condition.

The term ”wave zone” is preferred in this paper to the widespread ”far-field” no-

tation mainly to avoid use of the ”near-field” one, which is typically addressed to the

domain of a close vicinity (within a wavelength) to the source, where quasistatical, i.e. of

non-radiation nature, phenomena may occur. Instead, the term ”pre-wave zone” seemed

more appropriate for our purpose, that was to give an outline on the problem of TR in the

pre-wave zone with an emphasis on its physical side.

We shall start from simple phase relations and consider an extended coherent source

of a radiation. LetO andS be two points on the source surface separated by a distance�

( Fig. 1). Generally, waves emitted by these points at the same phase arrive at an arbitrary
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Figure 1: Waves emitted by two different points O and S of the source arrive at any
arbitrary point P with a phase difference�' = k(r2 � r1).

observation pointP with a phase difference�' = k(r2 � r1), wherek = 2�=� is the

wave vector. Assuming the observation point to be reasonably far from the source, so that

r1; r2 � �, it becomes

�' � k

�
�2

2r1
� � � r1

r1

�
: (1)

The second term in Eq. (1) does not dependent onr1 and, hence, defines the phase rela-

tions in the wave zone. Then, the first one gives a first order (with respect to the parameter

�=r1) correction to the wave zone phase map and its contribution increases as the pointP

moves towards the source. For any source points betweenO andS the radiation is in the

wave zone atP if this term is small enough

k
�2

2r1
� � : (2)

Waves emitted by points outside the region of a radius�, given by Eq. (2), exhibit more

or less evident interference, distorting the wave zone behaviour. Thus, for the radiation

of the whole source to be in the wave zone, Eq. (2) must be fulfilled for all the points of

the source. The obvious conclusion is the larger the dimension of the source the farther

the wave zone from it. The distance from the source to the wave zone boundary grows

quadratically with the source size.

In the case of TR the size of the source is of the order of�
. The characteristic

angle of emission is normally small� � 1=
 and sor1 � z. As a result, the wave zone

condition for TR is written as follows

z � �
2 : (3)

One of the properties of the wave zone is that the source is seen as a quasipoint one

from there. This is necessary to represent the radiation field by a simple spherical wave.

Thus, in the wave zone one must require a smallness of the parameter�
 with respect to

the transverse dimension of the TR spot, that isz� � z=
, and we arrive again at Eq. (3).
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However, it should be noted that at anyz the wave zone condition breaks down for the

small range of angles

� � �


z
: (4)

Within this range the size of the TR source plays a role.

Given arguments are equally applicable to the forward and backward cases. This

means that if one ” switched off” the Coulomb field of a particle once it had gone out of

the target material, no difference would be observed in the TR field evolution in the both

forward and backward directions. To avoid complications associated with the contribution

from the Coulomb field, from this moment on, we limit ourselves only to the case of

backward TR.

So, touching upon the mathematical aspect of the problem, let us consider backward

TR emerging when a normally incident particle with a chargeq and a velocityv! c hits

a perfectly conducting infinite boundaryz = 0. In this case only transverse components

of the particle field are essential, which are [1]:

Eq
x;y(z;{; !) = �

4�iq

v

{x;y

{
2 + �2

e�iz!=v ; (5)

where� = !=v
 and{ is the transverse component of the wave vector. The radiation

field is obtained by satisfying the boundary condition for tangential components

Eq
x;y + Er

x;y = 0 : (6)

In the spatial representation:

Er
x;y(z; �; !) = �

2q

v
nx;y

Z 1

0

{
2d{

{
2 + �2

J1({�)e
iz
p
k2�{2

; (7)

wheren is the unit vector lying in the x,y- plane and directed from the z-axes to the

observation point andJ1 is the Bessel function of the first kind. The spatial-spectral

distribution of TR, that is the radiation power per unit of the frequency and per unit of the

transversal area valid at any distance (except, perhaps, very short ones) can be written in

the form

d2W

d!du
=

q2

�2c
j�(u;w; 
)j2 ; (8)

where dimensionless variablesu = k� andw = kz are used and

�(u;w; 
) =

Z 1

0

t2dt

t2 + 
�2
J1(ut)e

iw
p
1�t2 : (9)
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It is very convenient and even useful to consider the integral in Eq. (9) in the context of

the stationary phase method. According to this method, at large distancesw � 1, it can

be approximated by the contribution from the close vicinity of a single point where the

derivative of the phase function (with respect tot) in the integral vanishes. The phase of

the Bessel function must be included in the phase function at that. The size of the domain

around this so-called ”stationary” pointts, giving the dominant contribution to the inte-

gral, is of the order of1=
p
w. Evaluation of the integral essentially depends on whether

this quantity is much smaller compared to1=
, which is a measure of the variation rate of

the fractional term. If this holds true the fraction may be approximated by its value atts

and the rest integral is readily evaluated resulting in the classical wave zone expression.

It is easy to see that the condition1=
p
w� 1=
, is fully equivalent to Eq. (3).

At shorter distancesw � 
2, i.e. in the pre-wave zone, the situation is different

because the polest = �i=
 of the fraction turn out to interfere with the contribution

from the stationary point. Therefore, a proper account of these singularities should be

taken in the complex plane. Furthermore, the poles are close to the integration domain

boundary. In terms of the stationary phase method this case is classified as three close

critical points in the two-fold integral problem [4], consideration of which anyway goes

beyond the scope of this paper.

~

∼λγ

Figure 2: The waves propagating in different directions in the pre-wave zone strongly
overlap and interfere. In the wave zone they are well separated similar to those from the
point source.

Though the stationary phase method does not provide an easy way to evaluate the

problem it allows a very clear geometrical interpretation (Fig. 2). At first we note that

the integration variable is actually an angular variablet = sin � � � referring to an

angle which rays (or wave vectors) make with the z- axes. The fact, that the value of

the integral of Eq. (9) is essentially determined by the contribution of the stationary point

and its vicinity, can be interpreted in a way that the field at an observation point P(u,w)

is created by a bundle of rays with an angular spread�� � 1=
p
w passing through this
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point. In the pre-wave zone�� is large and waves propagating in different directions are

strongly overlap and interfere. On the contrary, in the wave zone��� 1=
 and the rays

are well separated similar to those from a point source, though in a given direction there

is not a single ray but a bundle of parallel ones with a transverse dimension� �
, small

compared to the TR spot� z=
.

Figure 2 also aids to clarify the angular features of TR in the pre-wave zone. First

of all we draw attention to the point that two definitions may be formally applied to the

radiation angular distribution. These are the energy emitted in the given direction and the

energy emitted in the given cone (solid angle). Being equivalent in the wave zone, they

differ in the pre-wave one. This fact is crucial for understanding though it can be a source

of confusion. The classical Frank formula

d2W

d!d

=

q2

�2c

� sin2 �

(1 � �2 cos2 �)
; (10)

� = v=c, gives the energy emitted in a fixed direction. It can be obtained from Eq. (8) by

integrating over the variableu across any infinite transverse plane. Thus, the TR energy

flux in a given direction proves to be invariant at any distance from the source. But as a

consequence of such the integration, the information about the spatial distribution of the

radiation turns out to be lost. In other words, from only Eq. (10) it is impossible to find

out how TR evolves in the space within the pre-wave zone.

The energy emitted in a given cone is obtained from Eq. (8) upon integrating over

t and introducing corresponding angular variables instead of spatial ones. The angular

distribution derived in this way keeps all the spatial information but, as shown below, it

varies with the distance from the source approaching Eq. (10) in the wave zone.

A direct analytical evaluation of Eq. (9) seems to be a complex problem. Alter-

natively to the evaluation of the integral, the following approximate procedure can be

suggested. First of all we note that, in spite of the infinite upper limit of integration, the

dominant contribution to the integral is given by the range oft from 0 to a few times of

1=
 � 1 and the function� can be written as

� � eiw
Z 1

0

t2dt

t2 + 
�2
J1(ut)e

iwt2=2 : (11)

Then we expand the fraction as the Taylor series around a pointt = k=
, werek is a

positive real number.

t2

t2 + 
�2
� k2

1 + k2
+

1X
n=1

nX
p=0

Ap
nt

n�p ; (12)
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Ap
n =

n�1X
m=0

(�1)n+m+p�1
�
n

p

��
n+1

n�2m

�
kn+p�2m
n�p

(1 + k2)
n+1

: (13)

In Eq. (13) the symbol
�
n

m

�
stands for the binomial coefficients.

After the substitution of Eq. (12) into Eq. (11), the remaining integral can be evalu-

ated in terms of the hypergeometric function1F1 resulting in the following expression for

�:

� � eiw

8>><
>>:

k2

1 + k2
1 � eiu

2=2w

u
+ u

1X
n=1

nX
p=0

Bp
n

1F1

�
n� p

2
+ 1; 2; i

u2

2w

�

(iw)
(n�p)=2+1

9>>=
>>;

; (14)

Bp
n = Ap

n 2
(n�p)=2�1�

�
n� p

2
+ 1

�
: (15)

In a practical realization of the above algorithm a due attention should be paid to

the proper choice of thek value and the number of terms to retain in the sum overn.

The following results of numerical calculations do illustrate the properties of back-

ward TR in the pre-wave zone. Fig. 3 shows the energy flux in the unit solid angle at

different distances from the source versus an angular variablex = u=w
. In the relativis-

tic regimex � �
 . Since the distance is given in units of
2, the results are independent

of the particle energy. The strong change in the form of the curves is clearly observed
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Figure 3: TR energy flux in an unit solid angle�
2c
q2

d2W
d!dx

. Numbers by the curves are
distancesw from the source in units of
2.

with the variation of either the distance from the source or the wavelength. Distributions
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become wider at shorter distances and longer wavelengths revealing a clear interference

structure.

The well-known wave zone property of the TR angular distribution is that it peaks

at an anglex = 
. This is no longer the case in the pre-wave zone if one considers the

energy emitted in a cone. In Fig. 4 the peak positionxpeak with respect to the centerx = 0

is given as a function of the distance from the source.
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Figure 4: Peak position versus the parameterw=
2.

The spectrum of TR in the wave zone does not depend on any parameters: the

wavelength, angle of emission, particle energy. In the pre-wave zone the spectrum varies

from point to point in space being a complex function of many factors. Fig. 5 shows

spectra of TR calculated for ”detectors” of different apertures. All the spectra exhibit a

reduction in the intensity for long wavelengths. The effect is weaker for larger detector

apertures and becomes clearly marked for higher particle energies. The dependence on

the aperture size indicates that low frequencies are not fully lost. A redistribution of the

frequency contents, as a result of interference, rather takes place; the central part of the

radiation fan is depleted of low frequencies.

In the conclusion we note that the TR properties in the pre-wave zone are very dif-

ferent from those in the wave zone. The wave zone sets in at quite macroscopic distances

moving away from the TR source linearly with the wavelength and quadratically with the

particle energy. Therefore, the pre-wave zone effects may be of practical importance at

long wavelengths, e.g. in experiments on far-infrared coherent TR [5,6], or in measure-

ments at high particle energies [7].
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Figure 5: Normalized pre-wave zone TR spectra a distance of 1 m from the source inte-
grated over the ”detector” apertures given in millimeters next to the curves.
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