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1. Introduction. The description of partial breaking of global supersymmetries (PBGS)

within the coset approach [1] - [3] received much attention [4] - [13]. Its characteristic

feature is that the Goldstone fermionic fields associated with the broken supertranslation

generators [14] come out as components of Goldstone multiplets of unbroken SUSY.

The study of different patterns of PBGS in refs. [4] - [13] revealed a few peculiar-

ities of such theories. As applied to the most elaborated case of the1=2 partial breaking

of N = 2; D = 4 SUSY, these are as follows.

� There are several inequivalentN = 1 Goldstone supermultiplets related with the

partial breakingN = 2 ! N = 1: chiral [9], vector [10] and tensor ones [11,13].

These options correspond to different theories.

� TheN = 1 superfield Goldstone actions can be treated as gauge-fixed, manifestly

worldvolume supersymmetric forms of the actions of some BPS superbranes, along

the line of refs. [5,6]. TheN = 1 chiral Goldstone superfield action is recognized

as that of the Type I super 3-brane in a flatD = 6 background [6]. TheN = 1

vector Goldstone multiplet action describes a super D3-brane and yields the Born-

Infeld (BI) action for the gauge field. In all cases the no-go theorem of [15] is

evaded by the general argument of [5].

� In accord with the general features of nonlinear realizations, one can make different

N = 1 matter actionsN = 2 supersymmetric by coupling them to Goldstone

superfields.

The actions presented in [9] - [11] are nonlinear, “brane” generalizations of familiar

off-shell N = 1 superfield actions. On the other hand, theories withlinearly realized

N = 2; d = 4 SUSY admit a good off-shell description, e.g. in harmonicN = 2

superspace [16]. It is natural to ask whether some of them can be promoted to those with

a nonlinearly realized higher SUSY, sayN = 4 SUSY, by constructing the formalism

of partial breaking of this higher SUSY down toN = 2 and identifying someN = 2

superfields as the Goldstone ones accompanying this breakdown. Related questions are

as to what kind of superbranes could be associated with such theories, whether a brane

generalization of the harmonic analyticity [16] underlying ordinaryN = 2 theories exists,

how many different GoldstoneN = 2 superfields are possible, etc.

In this letter we partly answer these questions. We show that the partial breaking of

N = 1; D = 10 SUSY (amounting to properly central-charge extendedN = 4 SUSY

in d = 4 or N = (1; 1) SUSY ind = 6) down toN = (1; 0); d = 6 SUSY picks out

d = 6 hypermultiplet as the basic Goldstone superfield. Using the coset space techniques,

we find a covariant nonlinear generalization of the standard hypermultiplet constraint in
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N = (1; 0); d = 6 superspace [17]. We argue that the generalized constraint encodes

a gauge-fixed form of the equations of motion of the super 5-brane inD = 10 with

manifest worldvolumeN = (1; 0); d = 6 SUSY. We give an evidence for the existence

of brane extensions of the harmonic analyticity and off-shell hypermultiplet actions. Our

relations admit the dimensional reduction by the worldvolume bosonic dimension up to

the extremeN = 8; d = 1 case corresponding to a superparticle inD = 5. We elaborate

on this simple case in more detail. Finally, we briefly discuss some related questions, in

particular, a possibility to apply the PBGS approach toN = 1; D = 11 SUSY.

2. N = 1; D = 10 Poincaré superalgebra in thed = 6 notation. From thed = 6

viewpoint theN = 1; D = 10 SUSY algebra is a central-charge extendedN = (1; 1)

Poincaré superalgebra:

N = 1; D = 10 SUSY /
n
Qi
�; P��; S

�a; Zia
o
; (1)

where

�; � = 1; :::; 4 ; i = 1; 2 ; a = 1; 2

are, respectively, thed = 6 spinor (Spin(1; 5)) indices and the doublet indices of two

commuting automorphismSU(2) groups realized on the spinorQ andS generators (see

[18] - [20] for thed = 6 spinor notation). The basic anticommutation relations readn
Qi
�; Q

j
�

o
= �ijP�� ;

n
Qi
�; S

a�
o
= ���Z

ia ;
n
Sa�; Sb�

o
= �abP �� : (2)

The d = 6 translation generatorP�� = �P�� = 1
2
�����P

��, together with the ”semi-

central charge” generatorZia, form theD = 10 translation generator.

To the set (1) one should add the generators of theD = 10 Lorentz groupSO(1; 9)

SO(1; 9) /
n
M�� �; T ij; T ab; K��

ia

o
: (3)

The generatorsM andT generate mutually commutingd = 6 Lorentz groupSO(1; 5)

and the automorphism (orR-symmetry) groupSO(4) � SU(2)� SU(2), the generators

K belong to the cosetSO(1; 9)=SO(1; 5)� SO(4).

3. Coset space routine.We are going to construct a nonlinear realization ofN = 1; D =

10 SUSY (together with theD = 10 Lorentz group), such thatN = (1; 0); d = 6 SUSY

remains unbroken. Thus we choose the vacuum stability subgroup to be

H /
n
Qi
�; P��; T

ij; T ab;M�� �

o
: (4)

We put the generatorsQi
�; P�� into the coset and associate with them as the coset param-

eters the coordinates ofN = (1; 0); d = 6 superspace

Qi
� ) ��i ; P�� ) x�� : (5)
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The remaining coset generators,S�a; Zia; Kia
��, correspond to genuine spontaneously bro-

ken symmetries. The corresponding coset parameters are Goldstone superfields

S�a ) 	�a(x; �) ; Zia ) qia(x; �) ; Kia
�� ) ���

ia (x; �) : (6)

An elementg of the coset spaceG= ~H, whereG is the full supergroup ofN = 1; D = 10

SUSY (includingSO(1; 9)) and ~H = SO(1; 5)� SO(4), reads

g = ex
��P��e�

�
i
Qi
�eqiaZ

ia

e	a�S
a�

e�
��
ia

Kia
�� : (7)

Acting on (7) from the left by different elements ofG with constant parameters, one

determines the transformation properties of the coset parameters.

Unbroken supersymmetry(g0 = exp(a��P�� + ��i Q
i
�)):

�x�� = a�� +
1

4

�
�i���i � �i���i

�
; ���i = ��i : (8)

Broken supersymmetry(g0 = exp(�a�Sa�)):

�x�� =
1

4
�����a	a�; �qia = ��a���i ; �	a� = �a� : (9)

BrokenZ-translations(g0 = exp(ciaZia)):

�qia = cia : (10)

The form of brokenK transformations is irrelevant for our consideration. The sub-

group ~H is realized as rotations of theSO(1; 5) spinor andSU(2) doublet indices.

We see thatN = 1; D = 10 supergroup as a whole admits a realization on the

coordinates ofN = (1; 0); d = 6 superspace and Goldstone superfields living on this

superspace.

The next step is the construction of the left-covariant Cartan 1-forms:

g�1dg = 
Q + 
P + 
Z + 
S + 
K + 
 ~H ; (11)

where the subscripts denote the relevant generators. We shall actually need only the form


Z


Z � 
ia
Z Zia =

24(ch
p
')ia

jb
dq̂jb +

 
sh
p
'p
'

!ia

jb

2�jb��dx̂��

35Zia ; (12)

dx̂�� = dx�� � 1

4
�i�d��i +

1

4
�i�d��i �

1

4
�����	a

�d	a� ;

dq̂ia = dqia +	a�d�
�
i ; 'iajb � 2�ia���jb�� : (13)
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4. Inverse Higgs constraints and dynamical equation.By construction, the Cartan form

(12) is covariant under all transformations ofG realized as left shifts ofg. The Goldstone

superfields���
kb and	�a appear inside itlinearly and so can be covariantly eliminated by

the inverse Higgs procedure [21]. This is achieved by imposing the manifestly covariant

constraint


Z = 0 : (14)

It amounts to the following set of equations

e�ia
�� � �2

 
th
p
'p
'

!ia
jb

�jb
�� = (E�1)���� @��q

ia � r��q
ia ; 	a� =

1

2
rk

� qka ; (15)

r(i
� q

k)a = 0 : (16)

Here

rk
� � Dk

� �
1

4
����(	b

�Dk
�	b) r�� ; (17)

E��
�� �

1

2

�
����

�
� � ����

�
� �

1

2
�����	b

�@��	b�

�
; (18)

Dj
� =

@

@��j
� 1

2
�j�@�� ; fDi

�;Dk
�g = �ik@�� : (19)

It is easy to find the full nonlinear algebra of the covariant derivativesri
�;r��. We

explicitly give the anticommutator of spinor derivatives

fri
�;rk

�g � �rik
�� =

�
1

2
(�!��

�
� � ����

!
� )�

ki + �!�� (ri
�	

d
)(rk

�	d� )
�
r!� : (20)

We observe that, besides expressing Goldstone superfields through the only basic

oneqia, eq. (14) imposes the nonlinear constraint (16) on this superfield. We recognize it

as a nonlinear generalization of the well-known hypermultiplet constraint [17]

D(i
� q

k)a = 0 : (21)

The latter reduces the field content ofqia(x; �) to four bosonic and eight fermionic com-

ponents

qia(x; �) ) �ia(x) + ��i a
�(x) + x-derivatives; (22)

and simultaneously puts these fields on shell

2�ia(x) = 0 ; @�� a
� = 0

�
2 � @��@�� =

1

2
�����@��@��

�
: (23)

Eq. (16) is expected to yield a nonlinear generalization of thed = 6 hypermultiplet

irreducibility conditions and equations of motion. It follows from (20) that all superfields
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obtained by the successive action ofri
� on	a� are reduced to ordinaryx-derivatives of

qia and	a�, i.e. these two superfield projections indeed exhaust the irreducible fields

content ofqia(x; �).

Inspecting how the spontaneously broken nonlinear (super)symmetries (9) - (10)

are realized on the components ofqia (at the linearized level), we find that�ia(x) and

 a
�(x) are just Goldstone fields associated with the brokenZ-translations andS- super-

translations, while the Goldstone fields accompanying the spontaneous breakdown of the

SO(1; 9)=SO(1; 5)�SO(4) transformations,@���ia(x), are recognized as the coefficients

of the second-order� monomials in the�-expansion ofqia(x; �).

Thus the only essential Goldstone superfield supporting the partial spontaneous

breaking ofN = 1; D = 10 SUSY down toN = (1; 0); d = 6 within the nonlin-

ear realization scheme is the hypermultiplet superfieldqia(x; �). It is subjected to the

nonlinear dynamical constraint (16) and accommodates all the Goldstone fields associ-

ated with the spontaneously broken symmetry generators including those of theD = 10

Lorentz cosetSO(1; 9)=SO(1; 5)� SO(4).

Note that the Lorentz Goldstone superfield�ia
�� algebraically enters also into the

Cartan form
S � 
S �bS
�b, 
S �b = d	�b � 2�ib�d�

i + : : :. This could mean that

there exists an alternative way to eliminate�ia
��, that time in terms of spinor derivative

of 	�b by equating to zero the appropriate part of the covariantd�-projection of
S.

However, a careful analysis making use of the Maurer-Cartan equations shows that this

part identically vanishes upon using the constraint (14) (or eqs. (15), (16)).

It is worth mentioning that the kinematical and dynamical parts of eq. (14) are

separately covariant with respect to all hidden symmetries. In other words, eq. (16) is not

implied by the formalism of nonlinear realizations, and should be regarded as a dynamical

postulate. In the superembedding approach to superbranes [22,23] a similar postulate

is known as “the geometro-dynamical principle” or “the basic constraint” (see [23] and

references therein). An interplay between the superembedding and PBGS approaches is

discussed, e.g., in [12].

To see which kind of dynamics is hidden in (16), we considered it in the bosonic

limit up to the first non-trivial order in fields, the third order. We found that it amounts to

the following equation for�ia(x) � qia(x; �)j�=0

2�ia +
1

2
(@��� � @���) @��@���ia = 0 ; (24)

where we omitted three-linear terms containing2 as they contribute to the next, 5th order,

and used the notationA � B � AiaBia. It is easy to see that eq. (24) corresponds to the

”static gauge” form of the bosonic5-brane Nambu-Goto (NG) action with the induced
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metric

g�� �� =
1

2
(����� � @��� � @���) � 1

2
(����� � d�� ��) ; (25)

that is

SNG = const
Z
d6x

�q
�detg � 1

�
�

Z
d6x

�
Tr d� 1

8
(Tr d)2 +

1

4
Tr d 2 +O(d 3)

�
: (26)

Though it remains to prove that the higher-order corrections are combined into this nice

geometric form, the above consideration suggests that this is very likely (in sect. 6 we

show this on the simplifiedd = 1 example). Then eq. (16) can be viewed as a manifestly

N = (1; 0); d = 6 worldvolume superymmetric PBGS form of the equations of the scalar

super 5-brane inD = 10 [24](we use the nomenclature of ref. [25]). So the nonlinear

realization description of the partial breakingN = 1; D = 10 ) N = (1; 0); d = 6

admits the natural brane interpretation, much in line of the previous studies [5] - [13].

5. Brane extension of harmonic Grassmann analyticity?For further discussion it will

be convenient to project all the involved quantities on theSU(2) harmonicsu�i; u+iu�i =

1 [16]

��i ) ��� = ��iu�i ; ri
� ) r�� = ri

�u
�
i ; qia ) q�a = qiau�i : (27)

Then the basic eq. (16) can be rewritten as

r+
� q

+a = 0 : (28)

In the standard hypermultiplet case an analogous condition means thatq+a lives on an

analytic subspace of the full harmonic superspace(x; �; u), and this was the starting point

of construction of off-shell actions for the hypermultiplet in [16].

A difficulty with a similar treatment of (28) stems from the fact that the anticom-

mutator of twor+
� is not vanishing, in contrast to its flat prototype

fr+
� ;r+

� g = ����� (r+
�	

d
) (r+

�	d � )r�� � �F++��
�� @�� : (29)

As a result one has an extra integrability condition

F++ ��
�� @��q

+
a = 0 ; (30)

which could be too strong (e.g., implyingqia to be a constant). We have checked that, up

to the seventh order inqia, this condition is satisfiedidenticallyas a consequence of the
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structure ofF++ ��
�� . It is plausible that this holds to any order and in what follows we can

take for granted that (30) produces no new restrictions onq+a.

Then eq. (28) implies, as usual, the existence of an analytic basis in the harmonic

superspace wherer+
� is reduced to the partial derivative with respect to��� (when ap-

plied toq+a) and whereq+a lives as an unconstrained analytic superfield. The coordinate

transformation to this basis should be highly nonlinear in the involved fields.

Instead of trying to find such a change of coordinates, it is easier to seek for a

brane generalization of the standard off-shellq+ action, i.e. for the action yielding in the

bosonic sector the whole NG action (26). The possibility that such an action exists for

the considered case was noticed in [23]. It is curious that there indeed exists a quartic

extension of the standard freeq+ action which correctly reproduces the first terms in (26).

It reads
~Sq �

Z
d�(�4)q+a D++q+a + �

Z
dZ (q+a D��q+a)2 : (31)

HeredZ[du] andd�(�4) are the appropriate integration measures overd = 6 harmonic

superspace and its analytic subspace,

dZ = d�(�4)(D+)4 ; d�(�4) = d6x[du](D�)4 ; (D�)4 = 1

4!
����D��D��D� D�� ; (32)

D�� = @�� � 1=2 ������@�� + ���@=@��� are harmonic derivatives,� is a dimension-

less parameter (we use the same notation for the central-basis and analyticq+a, hoping

that this will not lead to confusion). The first term in (31) is the standard freeq+ action.

We have found that after eliminating auxiliary fields (beyond expectation, they do not

propagate) and making appropriate nonlinear redefinition of the physical bosonic field

'ia(x) (q+aj = 'iau+i + : : :),

'ia = �ia� �

24

�
[(2� � �)� (@� � �)]�ia � 1

4
(�)22�ia +

1

2
(� � @���) @���ia

�
+O(�5) ;

the bosonic part of the component action in (31) in fourth order in fields coincides with

(26) under the choice� = �2=3.

This observation suggests the existence of theq+ action with the whole static-gauge

NG action in the bosonic sector. Clearly, the superfield equations of motion following

from it, together with the analyticity condition, should amount to the basic nonlinear

constraint (16) (or (28)). This action should beN = (1; 0); d = 6 (N = 2; d = 4)

counterpart of the Goldstone chiral superfield action of ref. [9,11]. Possible existence of

such a brane analog of the free off-shellq+ action raises the question what could be brane

analogs ofq+ actions with interaction. The latter yield hyper-K¨ahler sigma models in their

bosonic sector. Presumably, their brane extensions could correspond to super 5-branes on

non-trivial curved backgrounds.
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All such actions, being generalizations of off-shellq+ actions, should necessarily

involve infinite sets of auxiliary fields. They could provide an interesting alternative to the

standard Green-Schwarz-type lagrangian description of superbranes [6,24,26]. It would

be important to find the symmetry principles behind their structure. In the next section

we present further evidence in favour of the existence of such actions.

6. N = 2 ; D = 5 superparticle. All the relations presented so far admit simple dimen-

sional reduction to thed = 5 and furtherd = 4 ; :::1 worldvolumes by neglecting depen-

dence on the corresponding worldvolume coordinates (in the Green-Schwarz approach

this amounts to the “double dimensional reduction”). One gets in this way manifestly

worldvolume supersymmetric superfield equations of super 4-brane inD = 9, super 3-

brane inD = 8, supermembrane inD = 7 and so on, up toN = 2 superparticle inD = 5.

They all have8 manifest and8 nonlinearly realized supersymmetries. Here we illustrate

our consideration on the example ofN = 2 ; D = 5 superparticle.

In this case the basic anticommutation relations (2) becomen
Qi
�; Q

j
�

o
= �ij
��P ;

n
Qi
�; S

a�
o
= ���Z

ia ;
n
Sa�; Sb�

o
= ��ab
��P : (33)

The full automorphism group of (33) is the productSpin(1; 4)� Spin(5); the first factor

is the targetD = 5 Lorentz group which acts on the indicesi; a

SO(1; 4) � Spin(1; 4) /
n
T ij; T ab; Kia

o
; (34)

andSpin(5) acts on the spinor indices. In (33),
�� = �
�� is the invariantSpin(5)

symplectic metric allowing to raise and lower the spinor indices (
�� = �1
2
����
�


��

� = ��), P is the worldline translations operator.

Basically, the reduction to the case at hand is accomplished via the substitution

@�� = 
��@t, wheret = 
��x
�� = �
��x�� is the worldline coordinate. The relations

(15), (16) (in the notation usingSU(2) harmonics) preserve their form,

r+
� q

+a = 0 ; 	a
� = r+

� q
�a = �r�� q+a ; ~��a = E�1@tq

�a ; (35)

with

r�� = D�� �
1

2
	b�D��	b�E

�1@t ; E = 1� 1

2
	a�@t	a� ;

fr+
� ;r�� g = r+�

�� = F��@t ; F�� = �E�1
h

�� +r+

�	
b�r��	b�

i
: (36)

Acting on	a
� in (35) by covariant derivatives, one finds

r+
�	

a
� = �F��@tq+a ; r��	a

� = F��@tq
�a ; (37)
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whence it follows, in particular, that

fr+
� ;r+

� g = 0 : (38)

Looking at the matrixF��, one observes that eqs. (37) are the system of nonlinear

equations for the unknownsr��	a
�. In the given simplified case it can be explicitly solved,

and, further, the explicit expression for	a
� in terms ofq�b can be found. For our purposes

it is enough to give the solution in the bosonic limit, with all fermions discarded

r��	a
� j = D��	a

� = 2
��

1

1 +
p
1� v2

@tq
�a ; (via �

p
2 @tq

ia) : (39)

The constraint in (35) implies the following equation (once again, with all fermions

omitted) h�
r+�

�� r+�
� +r+�

� r+�
�� �r+�

� r+�
��

�
� fr+

� ; [r� ;r+�
�� ]g

i
q+a

+fr+
� ; [r+

� ;r+�
� ]gq�a = 0 : (40)

A straightforward calculation shows that the terms with spinor derivatives in this relation

identically vanish, while the term within the parenthesis yields, modulo an overall scalar

factor, the dynamical equation forqia(t) (we write it in termsvia =
p
2 @tq

ia)

@tv
iaEkb

ia � @tv
ia

 
Ikbia +

@tvia@tv
kb

1� v2 +
p
1� v2

!
= 0 : (41)

After multiplying from the right by the matrixE and using

(E2)iakb = I iakb +
@tv

ia@tvkb
1� v2

; (42)

one rewrites (41), up to a scalar factor, in the form

d

dt

 
viap
1� v2

!
= 0 ; (43)

that is recognized as the equation of motion corresponding to the static-gauge form of the

NG action for the massive particle inM1;4

S �
Z
dt
p
1� v2 : (44)

Although, due to the specificity of thed = 1 case, the above bosonic equation

actually amounts to the free one@tvik = 0, 1 we expect that in the non-triviald > 1

1Nonetheless, the action corresponding to this equation should be just (44), because it is the unique
bosonic action that respects the nonlinearly realizedSO(1; 4)=SO(4) hidden symmetry of the constraint
for qia in (35).
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cases the constraint (35) yields the equation of motion forqia in the form similar to (41),

and it takes the standard NG form only after rotating the free target space index by an

appropriate field-dependent non-degenerate matrix. Actually, when we performed the

lowest-order computation outlined in sect. 4, we met just this peculiarity.

Finally, we address the issue of existence of the off-shell harmonic analytic action

for this simplest system. Since in the present case the integrability condition (38) is valid

generically (not only when applied onq+a), the analytic basis definitely exists. Like in

thed = 6 case, we shall try to construct the action directly in the analytic harmonicd = 1

superspace� = (t; �+�; u�i). We start from thed = 1 reduction of the action (31) (with

d6x! dt in eq. (32))

Sq � S0 + S1 =
Z
d�(�4)q+a D++q+a + �

Z
dZ A2 (45)

A = q+a D��q+a � q+ � D��q+ : (46)

We vary this action with respect to the lowest-order part of the broken SUSY transforma-

tion

�(0)q
+
a = c+a = ��a �

+
� : (47)

The free part in (45) is obviously invariant while the quartic part is not

�(0)S1 = �
Z
dZ

n
L�3 � D++q+ + 2A (q+ � c�)

o
: (48)

Here

L�3a = c�a q+ � (D��)2q+ + q+a c� � (D��)2q+ + 2D��q+a c� � D��q+ ; c�a = ��a �
�
� :

(49)

The second term in (48) vanishes as a consequence of analyticity ofq+, while the first

term can be cancelled by the appropriate analyticity-preserving variation ofq+ in the free

part of the action

�(1)q
+
a = ��(D+)4L�3a : (50)

Thus the first nonlinear term in the variation ofq+ under the hidden SUSY is also uniquely

defined. Already at this step we observe an important phenomenon. Commuting�(1) with

�(0), one immediately finds that, to the first order inq+, the correct closure� @tq
+
a for

the broken SUSY is achieved only modulo equations of motion. In other words, it is

impossibleto keep off shell both hidden and manifest SUSY’s, the best we can gain is the

off-shell world-lineN = 8 SUSY2.
2This situation is quite similar to the formulation ofN = 4 ; D = 4 super Yang-Mills theory via

unconstrained harmonicN = 2 ; D = 4 superfields [27]: only the manifestN = 2 SUSY is off-shell in
such a formulation.
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The next steps in our recursion procedure are to compute the variation�(1)S1 and to

look for the sixth-order correctionS2, such that�(0)S2 cancels�(1)S1. We proceed from

the most general sixth-order Lagrangian density of the dimension�4, local in harmonics

and having zero harmonicU(1) charge. A part of its variation has the form� D++q+a and

hence can be cancelled by the appropriate shift ofq+ in the free action (it is of the fourth

order inq+). The remaining part is required to cancel�(1)S1. This requirement, together

with that of on-shell closure of the hidden SUSY to the third order inq+, uniquely (up to

a freedom in the choice of independent structures in the Lagrangian) fixS2 to be

S2 =
2�2

5

Z
dZ

�
2AB++(D��q+ � D��@t q+)� 3

2
A(D��B++)2

� 7D��AD��B++B++ � 7

2
A@t AD��B++

�
; (51)

where

B++ = q+ � @t q+ : (52)

To simplify this expression, let us treatB++ as the analytic potential of some composite

N = 8 ; d = 1 (dimensionally reducedN = (1; 0) ; d = 6) vector multiplet [16] and

introduce a non-analytic potentialB�� by the standard relation [20]

D��B++ �D++B�� = 0 : (53)

We substitute it into (51), make use of the identity

2B++ = D0B++ = [D++;D��]B++ = (D++)2B�� �D��D++B++ ;

and integrate by parts with respect toD++. In the course of this computation we omit all

terms of the form� (D++q+ � F�3) as they can be absorbed into the redefinition ofq+

(the relevant shift is of the fifth order inq+ and so does not affectS1). The final answer

for S2 is as follows

S2 = 2�2
Z
dZ AB��B++ : (54)

The existence of this sixth-order term is a non-trivial fact and can be regarded as

a strong indication that the full harmonic action for thisD = 5 superparticle (and its

higher-dimensional counterparts) exists. The form ofS2 (54) is rather suggestive: it looks

like the harmonic superspace action of the compositeN = 8 ; d = 1 vector multiplet

B++ in some background specified by the superfieldA, bothB++ andA being functions

of the Goldstone hypermultiplet superfieldq+a . This analogy could provide a hint of how

to construct the full action. Also, it seems to imply a link withN = 8 super D0-brane the

worldline supermultiplet of which is justN = 8 ; d = 1 vector multiplet.
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7. Concluding remarks. Besides the already mentioned problems for the future study,

we list here a few other ones.

It is interesting to inquire whether some otherN = (1; 0); d = 6 supermul-

tiplets can be given the Goldstone interpretation and to which patterns of PBGS they

could be relevant. The simplest one is the vector multiplet [18] comprising the fields

A[��](x); �
�
i (x); Y

(ik)(x). As the fermionic field� (a candidate for Goldstino) is of the

samed = 6 chirality as the Grassmann coordinate�i�, this multiplet can serve as the

Goldstone one for the PBGS patternN = (2; 0); d = 6 ! N = (1; 0); d = 6. By anal-

ogy with ref.[10], one can expect that the related theory is a manifestlyN = (1; 0); d = 6

supersymmetric BI theory with the hidden nonlinearly realized rest ofN = (2; 0); d = 6

SUSY (orN = 4 BI theory with hidden extraN = 2 SUSY inD = 4). It is expected to

yield a manifestly worldvolume supersymmetric PBGS description of super D5-brane in

D = 6 3.

TheN = (1; 0) ; d = 6 hypermultiplet parametrize transverse directions also in

a special kind of super 5-brane inD = 10, the heterotic 5-brane obtained as a solitonic

solution in the heterotic string theory [29]. It was argued in [30] that for quantum consis-

tency of this solitonic 5-brane some extra worldsurface supermultiplets should be added,

in particular, anSU(2) gauge vectorN = (1; 0) d = 6 multiplet. It would be inter-

esting to understand the necessity of such additionald = 6 multiplets within the PBGS

approach. Note that the simple scalar super 5-brane to which our attention was limited

here corresponds to another solution to the equations of the heterotic string theory, the

“neutral solution” [31].

It is intriguing to examine from the PBGS point of viewN = 1; D = 11 (or

the type IIAN = 2; D = 10) SUSY. TheN = (1; 0); d = 6 superfield framework

is suitable for studying the1=4 breaking of this SUSY. Let us see what happens in the

linearized approximation.

From thed = 6 point of view, promotingN = 1; D = 10 SUSY toD = 11

amounts to adding one more bosonic translation generatorP11, two supertranslation gen-

erators of opposite chiralitiesQi�; Sa
� and two extra Lorentz generatorsU ia andW�� =

�W��. The latter extendSO(1; 9) to SO(1; 10) and belong to the cosetsSO(5)=SO(4)

andSO(1; 6)=SO(1; 5). We still wish to haveN = (1; 0); d = 6 SUSY as the only

unbroken one, so we should add to the already incorporated Goldstone superfields several

new ones associated with the extra generators

P11 ) �(x; �) ; Qi� ) �i�(x; �) ; S
a
� ) ��a (x; �) ;

U ia ) uia(x; �) ; W�� ) v��(x; �) : (55)

3These proposals were originally made in [28].
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At the linearized level, the standard coset techniques yield the following expressions for

the covariantd�-projections of the Cartan 1-forms related to the newly introduced (su-

per)translations generators

P11 ) Di
�� + �i� ; Qi� ) Di

��j� + 2�ijv�� ; Sa
� ) Di

��
�
a � ���u

i
a : (56)

One observes that the Goldstone superfields�ia, v��, uia (like �ia
�� and	a

�) can be covari-

antly eliminated by equating to zero appropriate parts of the above projections of Cartan

forms. On the other hand, the superfields�; ��a can be shown to never appear linearly

(without derivatives on them) in any Cartan form. So in the given case the set of un-

removable Goldstone superfields enlarges tofqia;�; ��a g. New superfields are reducible

and we should impose on them proper constraints similar to the constraint (16) forqia. By

analogy with theD = 10 case we assume that the covariant elimination of the redundant

Goldstone superfields and imposing constraints on the essential ones are simultaneously

effected by equating to zero fulld�-projections (56) of the translation and supertransla-

tion Cartan forms (or the covariant nonlinear versions of (56) in the full nonlinear case).

As the result of such a procedure at the considered linearized level one gets the following

expressions for the new redundant Goldstone superfields

v�� = �1

4
@��� ; �i� = �Di

�� ; uia =
1

4
Di
��

�
a ; (57)

and, simultaneously, the following constraints for the new unremovable ones

(a) D(i
�Dk)

� � = 0 ; (b) Di
��

�
a �

1

4
��� Di

�

a = 0 : (58)

The constraint (58a) is immediately recognized as the one defining the self-dual

tensorN = (1; 0); d = 6 supermultiplet in the field-strength formulation [32]. This

constraint leaves the Goldstone fermion�i�(x), a scalar�(x) = �j (it parametrizes the

broken eleventh direction) and a self-dual field strengthF(��)(x) as the only irreducible

fields in�(x; �) and puts all them on shell. The Goldstone superfieldsqia, � are naturally

unified into aN = (2; 0) self-dual multiplet which is known to be the worldvolume

multiplet of the M5-brane [23,26,33]. This nicely matches with the fact that these two

N = (1; 0) multiplets realize the1=2 spontaneous breaking ofN = 1; D = 11 SUSY

down toN = (2; 0); d = 6 SUSY/ fQi
�; S

a
�; P��; so(1; 5)� so(4)g.

It is the remaining Goldstone superfield��a which executes further breaking of this

N = (2; 0); d = 6 SUSY down toN = (1; 0). Surprisingly, the constraint (58b) turns

out to be too strong: it reduces��b (x; �) to a few bosonic and fermionic constants

eq.(47b) ) ��b (x; �) = ��b (x)� ��k ukb � 1
2
(��i��i ) ��b ; (59)

@�� ubi = @�� �b = 0 ; @� �
�
b (x) + ����b � �� ��b = 0 ) ��b (x) = ��b + 2 x��b (60)
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Nevertheless, this constraint is the only one which(i) is linear inDi
� and(ii) enjoys all

linearly realized symmetries. We still do not know how to interpret this. Possible ways out

are, e.g., to impose some alternative constraint of higher order in derivatives, or to retain

the linearity inDi
� but to allow an explicit breaking of theD = 11 Lorentz symmetry and,

simultaneously, of manifestSO(4) symmetry, say, down to the diagonalSU(2) subgroup.

In this case there arises a possibility to impose on��b the constraints identifying it with a

superfield strength ofN = (1; 0); d = 6 Maxwell multiplet [18] (they can be chosen on-

or off-shell). Of course, there remains a difficult problem of correct generalization to the

full nonlinear case [10].

Curiously, the constants in (59), (60) have true conformal dimensions and index

structure for being parameters of some specific coset of superconformal extension of the

N = (2; 0); d = 6 super Poincar´e group, the supergroupOSp(6; 2j4) [33]. Indeed,��b are

going to be the parameters of the second Poincar´e supertranslations,uia the parameters of

the cosetSO(5)=SO(4) and�b the parameters of one of two special supersymmetries.

It is interesting to analyze from a similar standpoint also the type IIBN = 2; D =

10 SUSY. It can be argued that its1=2 breaking should be realized on theN = (1; 0)

hypermultiplet andN = (1; 0) Maxwell field strength superfields as the Goldstone ones.

Together they form an on-shellN = (1; 1) ; d = 6 Maxwell-Goldstone multiplet. Further

breaking toN = (1; 0); d = 6 SUSY in this case requires an extra essential fermionic

GoldstoneN = (1; 0) superfield�b�(x; �) constrained in an appropriate way. We failed

to find a proper candidate for such superfield and constraints among the knownN =

(1; 0) ; d = 6 multiplets.

Finally, it is desirable to further clarify the relationships between the PBGS and

superembedding approaches. They seem to be complementary to each other. The PBGS

approach deals from the beginning with a minimal set of Goldstone superfields accom-

modating the physical brane degrees of freedom and it offers systematic techniques to

deduce the transformation laws of these superfields under hidden nonlinear symmetries.

On the other hand, superembedding approach allows one to classify physical worldvol-

ume supermultiplets related to various superbranes and, under some assumptions (e.g.,

“geometro-dynamical principle”), to learn whether these multiplets are on- or off-shell.

In particular, the linearized analysis of theN = 1; D = 10 super 5-brane in ref. [23] (in

the framework of conventional superspace) picks out just thed = 6 hypermultiplet as a

physical multiplet and predicts it to be on-shell.
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