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Abstract

We present a new analysis of the ratigs which measures the direct CP violation in

K — nr decays. We use the/ N, expansion within the framework of the effective chiral
lagrangian for pseudoscalar mesons. Th#&. corrections to the hadronic matrix ele-
ments of all operators are calculated at leading order in the chiral expansion. Performing
a simple scanning of the input parameters we obtain 10~* < &'/e < 31.6 - 107,

We also investigate, in the chiral limit, thg/ NV, corrections to the operat@ys at next-
to-leading order in the chiral expansion. We find large positive corrections which further
enhance’/s and can bring the standard model prediction close to the measured value for
central values of the parameters. Our result indicates that at the level ofXheorrec-

tions aAl = 1/2 enhancement is operative Qg similar to the one of); and(@- which
dominate the CP conserving amplitude.
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1 Introduction

There are two types of CP violation which appear in the neutral kaon system: direct
and indirect. Direct CP violation occurs in the amplitudes and will be the subject of
this paper. Indirect violation occurs in the physical states and is characterized in a phase
convention independent way by the parameténdirect CP violation has been observed
and is incorporated in the standard model, as a restriction to the CKM phase. Direct CP
violation is described by the parametémwhose predictions require greater attention and
has been the subject of several investigations. The superweak theory [1] pré&ditts

be exactly zero. In the standard model the predictions for the ratio cover a wide range
of values. Until recently, the experimental evidence 49 was inconclusive. While

the value Rés'/s) = (23 + 7) - 10~ * reported by the NA31 collaboration at CERN

[2] indicated direct CP violation, the result of the E731 collaboration at Fermilab [3],
(7.4 £5.9) - 107*, was still compatible with a vanishing value. The new measurement of
the KTeV collaboration [4],

Re(e'/e) = (28.0+£4.1)-107*, 1)

is in agreement with the CERN experiment NA31 and rules out the superweak models.
Additional information will be provided in the near future by the NA48 collaboration
and by the KLOE experiment at BANE. In view of the new experimental result, whose
statistical uncertainty will be further reduced in the future, it is particularly interesting to
investigate whether the quoted range and the weighted average can be accommodated in
the standard model.

Direct CP violation measures the relative phases of the decay amplitudes for

K — 79" and K> ntn.

The two pions in these decays can be in two isospin states) (A7 = 1/2) and] = 2

(Al = 3/2). The two amplitudes acquire phases through final state strong interactions
and also through the couplings of weak interactions. We can use Watson’s theorem [5] to
write them as

(mm, I Hw |K°) = Are®™, (@)
(mm, I|Hw |K®) = Aje®™ 3)

with §; being a phase of strong origin which is extracted from 7 scattering. The
remaining amplituded; contains a phase of weak origin. Throughout the paper we use
the following isospin decomposition:

AK® = ntr™) = \/ngewo + %Agei(h , 4)



2 . 2 ,
AKO 0.0y _ ZA 7,60__A 102 5
( — T ) 3 0€ \/3 2€ ) ( )
AKY — 770 = \/§A26i62 : (6)
The parameter of direct CP violation can be written as
g’ w ImA2 ImAO
- = - ) (7)
£ \/5 |5| REAQ ReAO

with w = ReAd,/Red, = 1/22.2. In Eq. (7) we used the fact that, to a large degree of
accuracy, the strong interaction phases’ainds cancel in the ratio (see e.g. Ref. [6]).
In order to obtain the numerical value gf/= it is now necessary to calculate the two
amplitudes (I, and ImA,) including their weak phases.

Using the operator product expansion, fie— 77 amplitudes are obtained from
the effective low-energy hamiltonian foA S| = 1 transitions [7-9],

8
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=1
ci(p) = zi(p) + 7yi(p) T==N/ M, A=V Via - 9)

The arbitrary renormalization scaleseparates short- and long-distance contributions to
the decay amplitudes. The Wilson coefficient functieyig) contain all the information

on heavy-mass scales. The terms with 4}i& contribute to the real parts of the ampli-
tudesA, and A,. They;’s, on the other hand, contribute to the imaginary parts and are
relevant for CP violating processes. The coefficient functions can be calculated for a scale
i 2 1 GeV using perturbative renormalization group techniques. They were computed in
an extensive next-to-leading logarithm analysis by two groups [10,11]. The Wilson coef-
ficients depend on the CKM elements; this are multiplied byA; which introduces CP
violation in the amplitudes. Finally, the calculation of the decays depends on the hadronic
matrix elements of the local four-quark operators

(Qi(u)r = (mm, 1| Qi(p) |K?) (10)

which constitute the non-perturbative part of the calculation. This is the main subject of
this paper. The hadronic matrix elements will be calculated usingd fh& expansion
within the framework of the effective chiral lagrangian for pseudoscalar mesons [12-14].
In a previous article [14] we already reported the resuli®@f’ /N, for the operatorg)s
andQs. In this article we investigate one-loop corrections for all matrix elements relevant
fore'/e.



The local four-quark operato€g; (1) can be written, after Fierz reordering, in terms
of color singlet quark bilinears:

Q1 = 45,9"dg vy, Q2 = 45y ur tpyudy, (11)

Qs = 4 Z spy'dr qryuar Qi = 4 Z styar auypde,  (12)
q q

Qs = 43 sy'dr Gryudr Qs = -8 siqr qrdy, (13)
q q

Q; = 4 Z §e spyY*dr GrYuqr Qs = -8 Z §€ S1qr Grdr , (14)
q 2" o q 2" |

where the sum goes over the light flavays< «, d, s) and

qr,.L = %(1 + v5)q, e, = (2/3,-1/3, —1/3). (15)

Q3 - Qg arise from QCD penguin diagrams involving a virtlieland ac or ¢ quark, with
gluons connecting the virtual heavy quark to light quarks. They transfor(8;as r)
underSU(3)., x SU(3)r and contribute, in the isospin limit, only th] = 1/2 transitions.
Q7 and()g are electroweak penguin operators [15,16].

The imaginary parts of the amplitudes occurring in Eq. (7) are those produced by
the weak interaction. Thus we obtain the amplitudes

Zyz

Since the phase originating from the strong interactions is already extracted in Eq. (2),
absolute values for the’. v; (Q;); should be taken. We shall return to this point later on.
Collecting all terms together we arrive at the general expression

ImA; = ——— Im)\t

(16)

g - %kmﬁ Im), [Ho - éng} , (17)
with

M = | 30 wiln) (@do] (1= Qo) (18)

M= |3 wil) (@i (19)

where(,.,, ~ 0.25 & 0.10 takes into account the effect of the isospin breaking in the
quark massesif, # my) [16—18]. We have written Eq. (17) as a product of factors in
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order to emphasize the importance and uncertainty associated with each of them. The first
factor contains known parameters and takes the numerical Gglue/ (2 || Red,) =

346 GeV~2. The remaining terms are discussed in the following sections. Especially
important to this analysis are the operatQgsand@s which dominate thé = 0 andl =

2 contributions in Egs. (18) and (19), respectively. The teyni®);)» are enhanced by the
factor1/w, and a crucial issue is whether the enhancement is strong enough to produce
an almost complete cancellation with the(®;), terms, leading to an approximately
vanishinge’/e even in the presence of direct CP violation, or whether the cancellation
of the two terms is only moderate and a large value’gf can be obtained within the
standard model.

The paper is organized as follows. In Section 2 we briefly recall the numerical
values of the CKM elements relevant to this analysis. In Section 3 we review the general
framework of the effective low-energy calculation and discuss the matching of short- and
long-distance contributions to the decay amplitudes. The next two sections contain our
results, which we present in two steps. As the chiral theory is an expansion in momenta,
we keep the first two terms in the expansion and calculate one-loop corrections to each
term of the expansion separately. Loop corrections to the lowest terms, in the momentum
expansion, are presented in Section 4; they a®(@f /N..) for the density operators and
of O(p?/N.,) for the current operators. In Section 5 we extend the one-loop corrections
to the next order in momentum by calculating corrections to the density opéyatofr
O(p*/N.). Numerical results foe’ /e are included in both of these sections. Finally, our
conclusions are contained in Section 6.

2 The CKM Elements

The second factor in Eq. (17) originates from the CKM matrix. In the Wolfenstein para-
metrization [19]

Im\, = Im (V5 V,,) = AN = Vi, [Val?n, (20)

since\ = V., andA = |V,,|/\2. Numerical values for the matrix elements are taken from
the particle data group [20] and from Ref. [21]:

[Vus| = 0.2196 £ 0.0023, (21)
V| = 0.040£0.002, and (22)
V| = (3.56£0.56) - 1073, (23)

The last parameter we need is the phasehich is obtained from an analysis of the
unitarity triangle whose overall scale is given by the valu8gj. Suchn versusp plots



are now standard [22—-26] and are obtained, primarily, ffofp/V.,| which produces a
circular ring and from a hyperbola defined from the theoretical formula féhe position

of the hyperbola depends on,, |V,,|, and By. The intersection of the two regions,
together with constraints from the obsergti— BY mixing parameterized by M/, and

the lower bound omB? — B? mixing, defines the physical ranges ferandp. A very
recent analysis can be found in Ref. [27]. The remaining theoretical uncertainties in this
analysis are the values of the non-perturbative paramégerisl e, Fp, \/37 in (AM)g,

and¢ = Fp, \/BTS/FBd\/Bj in (AM)q/(AM),. By has been calculated by various
methods which, unfortunately, give a large range of values. Two recent calculations are
found in Refs. [28,29]. Takingg, = 0.80£0.15, Fs, v/ By = 200+ 40 MeV [30,31] and

¢ =1.14 £ 0.08 [31,32], the authors of Ref. [27] obtain the following range for\km

1.04 - 107* < Im), < 1.63 - 107*, (24)

where the experimentally measured values and the theoretical input parameters are scanned
independently of each other, within the ranges given above. In Section 4 we shall use this
range in the numerical analysis ©f <.

3 General Framework

The method we use is the' N, expansion introduced in Refs. [12,13]. In this approach,
we expand the hadronic matrix elements in powers of external momertag the ratio
1/N.. In an earlier article [14] we investigated one-loop corrections to lowest order in the
chiral expansion for the operatag and@s. The calculation of the one-loop corrections
for current-current operators was done in Ref. [29], where predictions fakthe 1/2

rule were reported.

To calculate the hadronic matrix elements we start from the effective chiral la-
grangian for pseudoscalar mesons which involves an expansion in momenta where terms
up to O(p*) are included [33]. Keeping only (non-radiative) termscfp*) which are
leading in/V,, for the lagrangian we obtain:

2 (6]

— I T
Loy = 4<(DMUD U)+ v

C

+L,(D,U'D*UY? + Ly(D,U'D,UY(D"U'D"U)

(InUt — InU)? + r(MU" + UMT>)

+L3(D, U D*UD,U'D"U) + rLs(D, U D*U (MU + U M))

+r2 Ly (MIUMIU + MUT MUY + r? Hy(MTM) | (25)

with D,U = 0,U—ir, U+iUl,, (A) denoting the trace ol and M = diag(m,,, mg, m).
l, andr, are left- and right-handed gauge fields, respectivélgndr are parameters



related to the pion decay constdnt and to the quark condensate, with= —2(gq)/ f*.
The complex matriX/ is a non-linear representation of the pseudoscalar meson nonet:

U = exp %H, M= 71%\,, ay) = 200, (26)
where, in terms of the physical states,
70+ %an + \/gbn’ V2t V2K
1= Vor™ —70 + %an + \/gbn' V2K° , (27)
VK- VaK? —Zby+ [ 2af
with
a = cosf —/2sinf, V2b = sinf + v/2 cos 8, (28)

The conventions and definitions we use are the same as those in Refs. [14,29]. In partic-
ular, we introduce the singlef, in the same way and with the same value for &hg1)
symmetry breaking parameter,= m% + m?], —2m?2 ~ 0.72 GeV?, corresponding to the

n — n' mixing anglef = —19° [34]. The bosonic representations of the quark currents
and densities are defined in terms of (functional) derivatives of the chiral action and the
lagrangian, respectively:

85 f?
Fotg., = — = — 2L (torn) ..
LY 4L = 5(lu(x))m L 2 (U a U)jz
+ir Ls (0" UM — M'0"U + 0" UTUM'U — UTMUO*U) ;;, (29)
_ o 5£eff f2 i
¢irqiL. = _Wij = _Tz(U )ji
—r(Ls0, U 0" UUT + 2r LsU' MU' + rHy M) (30)

and the right-handed currents and densities are obtained by parity transformation. Egs.
(29) and (30) allow us to express the four-fermion operators in terms of the pseudoscalar
meson fields. The low-energy couplings, L,, and L3 do not occur in the mesonic den-
sities in Eg. (30). Furthermore, at tree level they do not contribute to the matrix elements
of the current-current operators and have been omitted in Eq. (29). It is now straightfor-
ward to calculate the tree level (leading) matrix elements from the mesonic form of
the 4-quark operators.

For thel/N. corrections to the matrix elemen(t9;); we calculated chiral loops as
described in Refs. [14,29]. The factorizable contributions, on the one hand, refer to the



strong sector of the theory and give corrections whose scale dependence is absorbed in
the renormalization of the effective chiral lagrangian. This property is obvious in the case
of the (conserved) currents and was demonstrated explicitly in the case of the bosonized
densities [14,35]. Consequently, the factorizable loop corrections can be computed within
dimensional regularization. The non-factorizable corrections, on the other hand, are UV
divergent and must be matched to the short-distance part. They are regularized by a finite
cutoff which is identified with the short-distance renormalization scale [13,14,23,29,36].
The definition of the momenta in the loop diagrams, which are not momentum translation
invariant, was discussed in detail in Refs. [14,35]. A consistent matching is obtained
by considering the two currents or densities to be connected to each other through the
exchange of a color singlet boson and by assigning the same momentum to it in the long-
and short-distance regions [14,37-41].

For the short-distance coefficient functions, we use both the leading logarithmic
(LO) and the next-to-leading logarithmic (NLO) valuesThe published values for the
Wilson coefficients are tabulated for scales equal to or larger tieV [10,11,42]. In
Appendix A we present tables for the coefficient functions at sc¢ates ;1 < 1.0 GeV
calculated with the same analytic formulas and communicated to us by M. Jamin [43].
The NLO values are scheme dependent and are calculated within naive dimensional reg-
ularization (NDR) and in the 't Hooft-Veltman scheme (HV), respectively. The absence
of any reference to the renormalization scheme dependence in the effective low-energy
calculation, at this stage, prevents a complete matching at the next-to-leading order [22].
Nevertheless, a comparison of the numerical results obtained from the LO and NLO co-
efficients is useful in order to estimate the uncertainties associated with it and to test the
validity of perturbation theory.

4 Analysis ofe’ /e

In the twofold expansion in powers of external momenta antl/iN. we must investi-
gate, at next-to-leading order, the tree level contributions frontxg€) and theO(p*)
lagrangian, and the one-loop contribution from thé&?) lagrangian, that is to say, the
1/N, corrections at lowest order in the chiral expansion. In this section we combine our
results and report values fef/= up to these orders.

lWe treat the Wilson coefficients as leading orderljfV. since the large logarithms arising from
the long renormalization group evolution frofm;, M) to u ~ O(1GeV) compensate for thé/N,
suppression.



| A, [0.6GeV][0.7GeV]0.8GeV][0.9GeV|1.0GeV| Im(Q:)o |

(Qi)o | —332 | —40.2 | —48.2 | —57.3 | —67.4 | —5.55i
(Qa2)o || 58.8 68.8 79.9 92.4 106 11.1i
(Qs)o || 0.05 0.03 | —0.02 | —0.12 | —0.26 0
(Qu)o | 921 109 128 150 173 16.6i
(Qs)o | —0.05 | —0.03 | 0.02 0.12 0.26 0
(Qedo || —38.6 | —33.7 | —29.4 | —255 | —21.9 0
Q7Y | 40.1 46.6 54.1 62.6 72.2 8.32i
(Qs)o || 119 119 119 118 117 36.7i

Table 1: Real and imaginary parts (last column) for the hadronic matrix elements of
Q1,57 (in units of 10° - MeV?) andQg s [in units of k% - MeV, with R = 2m? /(m; +

myg)]. The values are for thé = 0 amplitudes in the isospin limit¢, = my) and for
various values of the cutoff,.

4.1 Long-Distance Contributions

The hadronic matrix elements for all the operators are calculated following the method
described in the previous section. As mentioned above, we consider the bilinear quark
operators to be connected to each other through the exchange of a color singlet boson,
whose momentum is chosen to be the variable of integration. This is our matching pro-
cedure described in Ref. [14]. For current-current operators, the tree level contributions
from the O(p?) and O(p*) lagrangian and the one-loop contribution from thé&?) la-
grangian ared(p?), O(p*), and O(p?/N,), respectively. For density-density operators
they areO(p®), O(p?), andO(p°/N,), respectively. The numerical results for the ma-
trix elements to these orders are given in Tabs. 1 and 2 as a function of the cutoff scale.
These values were obtained in Refs. [14,29] using the following values for the various
parameters [20]:

my = (mgo+mg+)/2 = 137.3MeV,  F, = 92.4 MeV,
mix = (mgo+mg+)/2 = 495.7MeV,  Fx = 113 MeV,
m, = 547.5MeV, ) = —19°,
my = 957.8 MeV.

Note that the matrix elements generally contain a non-vanishing imaginary part (cutoff
independent at the one-loop level) which comes from the on-shellf) rescattering.

It is customary to parameterize the hadronic matrix elements in terms of the bag
factors B\'/? and B®**, which quantify the deviations from the values obtained in the



| A, [0.6GeV][0.7GeV]0.8GeV][0.9GeV|1.0GeV| Im(Q:), |

(@) | 251 | =226 | —7.77 | —14.0 | —21.1 | —3.45i
(@) | 251 | —226 | —7.77 | —14.0 | —21.1 | —3.45i
Q)2 | —10.7 | —6.27 | —1.15 | 4.67 11.2 5.18i
(Qs)2 || 35.3 31.2 27.2 23.2 188 | —11.5i
Table 2: Same results as in Tab. 1 for the: 2 amplitudes.
| A, [[0.6GeV]|0.7GeV][0.8GeV]|0.9GeV|1.0GeV|
B || 824 9.98 12.0 14.2 16.6
BM 201 3.41 3.96 457 5.23
B{MP | 0.004 | 0.002 | —0.002 | —0.010 | —0.021
B || 254 3.00 3.53 413 475
BEYP || 0.0009 | 0.0005 | —0.0003 | —0.0014 | —0.0020
B&MY || 1.10 0.96 0.84 0.72 0.62
BYP | 0.16 0.18 0.21 0.23 0.26
B 1.21 1.21 1.21 1.20 1.19

Table 3: Bag parameters for tlhe= 0 amplitudes, shown for various values of the cutoff.

Bélﬂl depend onk ~ 2m? /m, and are calculated for a running,(z = A.) at the
leading logarithmic orderXqc, = 325 MeV) with m, (1 GeV) = 175 MeV.

vacuum saturation approximation [44]:

Re(Q; ,
B = % ie{1,...,8}, (31)
B&¥Y = % i€ {1,2,7,8}. (32)

The VSA expressions for the matrix elements are taken from Egs. (X1X.11) - (X1X.28)
of Ref. [42], and the corresponding numerical values can be found in Refs. [14,29]. We
list the bag parameters in Tabs. 3 antl @ne might note that the values of tiefac-
tors contain the real parts of the matrix elements and not their absolute values. For the

2The definition of the bag parameters in Egs. (31) and (32) refers to the complete sum of the factorizable
and non-factorizable terms in the hadronic matrix elements. Therefore we are free of any of the infrared
problems discussed in Ref. [28], which occur &y with other definitions of3{"/?.

10



| A. [[0.6GeV]|0.7GeV][0.8GeV][0.9 GeV]|1.0GeV |

B(3/2) 0.11 —0.10 | —034 | —061 | —0.92
B/ 0.11 —0.10 | —034 | —0.61 | —0.92
B¥? | —0.10 | —0.06 | —0.01 0.04 0.09
B(3/ 20 .64 0.56 0.49 0.42 0.34

Table 4. Same results as in Tab. 3 for the: 2 amplitudes.

amplitudes appearing in Egs. (17)-(19) we need both real and imaginary parts for the
matrix elements. We calculated the imaginary parts inl{h€. expansion and included
their values in Tabs. 1 and 2. They are produced by the imaginary parts of the one-loop
diagrams, as required by unitarity. In order to study the sensitivity of the results on the
imaginary part we calculated the matrix elements by two methods (for a discussion of
this point see Ref. [29]). In the first method, we obtain the absolute values by correcting
the real parts using the phenomenological phases. This procedure has also been followed
in Refs. [45,46]. In the second method we assume zero phases and use the real parts of
the matrix elements. The second method, to a large degree of accuracy, corresponds to
adopting the phases obtained in theév. expansion.

Analytical formulas for all matrix elements are given in Refs. [14,29]. Among them
four are particularly interesting and important, and we repeat them here:

1 4L’" 1
(@i = = H (mie —mo) 11+ e+ e
1
x | 6A2 — <2mK+6m )logA2 >] , (33)
2 oo ALL . 1
- -~ 1
(Q2)o N Fr (mi —mz) |1+ F2 w+ (47)2F?
15 11 15
(ZAzwL(Sm%(—Zm)logAz—i----)] : (34)
43 m2 2\ | 7r 3 2
(Qs)o = T <m5+md> my — my) [Ls) 16 (4n)? log A7 + ] , (35)
\/_ 2mK SmK r T 4m2 r Tr
(@) = 202 " (ms —i—md) [ N F? (L 2L8> P2 <3L 8L8>
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1 2 2 2 2
where the ellipses denote finite terms, which for brevity are not written explicitly here, but
have been included in the numerical analysis (in particular, they provide the mass terms
which make the logarithms dimensionless). The constahtand L} are renormalized

couplings and defined through the relations [14]

Fy ALY
T =1+ F25 (mf —m3) (37)
and ) (m? 2)
m m+ myg 8(myx —mz) , -, .
= o |V (L 2Ly (38)

Their values ard;, = 2.07- 10 andLj = 1.09 - 10%. L} has a small dependence on
the ratiom,/m, and we shall use the (central) value (of) /m, = 24.4 + 1.5 [47].

In Egs. (33)-(36) we have summed the factorizable contributions [first two terms
on the r.h.s. of Egs. (33) and (34), first term on the r.h.s. of Eq. (35), and first three
terms on the r.h.s. of Eq. (36) ] and the non-factorizable contributions. Factorizable terms
originate from tree level diagrams or from one-loop corrections to a single current or
density whose scale dependence is absorbed in the renormalization of the effective chiral
lagrangian (i.e., inF, Fy, Eg, Eg, and in the renormalization of the masses and wave
functions). Finite terms from the factorizable loop diagrams{€g), and(Qs)» are not
absorbed completely and must be included in the numerical analysis [14]. We note that
the couplingsl,, Ly, and L3 do not contribute to the matrix elements@f and Qg to
O(p?) and toO(p*) for the current-current operators. The non-factorizable contributions,
on the other hand, are UV divergent and must be matched to the short-distance part. As
we already discussed above, they are regularized by a finite cifpfihich is identified
with the renormalization scaje of QCD.

We discuss next Egs. (33) - (36) which have several interesting properties [14,29].
First, the VSA values fofQ;), and (@), are far too small to account for the large
AI = 1/2 enhancement observed in the CP conserving amplitudes. Using the large-
N, limit [ B{"? = 3.05, B{"/? = 1.22] improves the agreement between theory and
the experimental result, but it still provides a gross underestimate. However, the non-
factorizablel /N, corrections in Egs. (33) and (34) contain quadratically divergent terms
which are not suppressed with respect to the tree level contribution, since they bring in a
factor of A = A%/(4nF,)? and have large prefactors which, in some cases, can be as large
as six in Eq. (33). Quadratic terms (@, ), and((Q-), produce a large enhancement (see
Tab. 3) which brings th&\/ = 1/2 amplitude in agreement with the observed value [29].

12



Corrections beyond the chiral limit{, = 0) in Egs. (33) - (34) are suppressed by a factor
of 0 = m¥ /(4w Fy)* ~ 20 % and were found to be numerically small.

The case of(Q)s)o and(Qs)- is different from that ofQ; »2)o. The leading¥, val-
ues are very close to the corresponding VSA values. Moreover, the non-factorizable loop
corrections in Egs. (35) and (36), which are®@fp”/N.), are found to be only logarith-
mically divergent [14]. Consequently, in the cas€@f), they are suppressed by a factor
of § compared to the leadin@(p°) term and are expected to be of the ordee®f% to
50 % depending on the prefactors. We note that Eq. (36) is a full leading plus next-to-
leading order analysis of thgs matrix element. The case (b]‘él/Q) is more complicated
since theD (p”) term vanishes fof)s;. Nevertheless, the non-factorizable loop corrections
to this term remain and have to be matched to the short-distance part of the amplitudes.
TheseO(p"/N.) non-factorizable corrections must be considered at the same level, in the
twofold expansion, as th@(p?) tree contribution. Consequently, a valueBéf/ 2 around
one [which corresponds to thte(p?) term alone] is not a priori expected. However, nu-
merically it turns out that thé&(p°/N..) contribution is only moderate (see Tab. 3). This
property can be understood from tié"),,(U), structure of the)s operator which van-
ishes taO(p”) implying that the factorizable and non-factorizabléy° /V,) contributions
cancel to a large extent [14]. The fact that the factorizable and non-factorizable terms to
this order have infrared divergences which must cancel in the sum of both contributions
gives another qualitative hint for a value 5‘@1/2) remaining around one [28]. This ex-
plains why forQs to O(p°/N,) we do not observe A7 = 1/2 enhancement similar to
the one for; and(), in the CP conserving amplitude. The leadiNgvalues forBél/z)
andB§3/ ?) are therefore more efficiently protected from possible laygé. corrections of
the O(p?) lagrangian tharBSz,/Q). The effect of theD(p"/N.) term is however important
for B as for B{*’* because it gives rise, in general, to a noticeable dependence on
the cutoff scale [14], which is relevant for the matching with the short-distance part (see
below). We note thaB§3/2) shows a scale dependence which is very similar to the one
of B{'/? (see Tabs. 3 and 4) leading to a stable r&@jt® /B{*’* over a large range of
scales around the valug§'/? /B{*® ~ 1.7740.05 where the error refers to the variation
of A. between600 MeV and1GeV. TheO(p®/N.) corrections consequently make the
cancellation of9s andQs in &'/« less effective.

Finally, B*/? and B{** were found to be too small to account for the measured
value of theAT = 3/2 amplitude for small values of the cutoff and even become negative
for large values of\. (see Tab. 4). Due to an almost complete cancellation of the two
numerically leading terms [295{*? and B{** are expected to be sensitive to correc-
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tions from higher order terms and/or higher resonandesr. this reason, even though the
effect of BE’Q/Z) is small, in the analysis of /e we will not use the values listed in the
table but we will extract the parametaB$*’® and B{*® from the experimental value of

ReA,. This point is further discussed in the next section.

4.2 Numerical Results

Collecting together the values of the matrix elements in Tabs. 1 and 2 and the values of the
Wilson coefficients in Appendix A we can give now the numerical results’flar. As we
already mentioned above, we use the real parts of the matrix elements and consider two
cases. In the first case, we use the real part of our calculation and the phenomenologically
determined values for the final state interaction pha&ess (34.2 &+ 2.2)° andd, =

(—6.9 4+ 0.2)° [48], in order to arrive from Egs. (18) and (19) to

Iy, = Zyz Re<Qz ( 77+77) (39)

The factorl /cos 0; enhances thAl = 1/2 termin Eq. (17) by abou5 % with respect to
the AT = 3/2 one and consequently makes the cancellation betweepgthad()s oper-
ators even less effective. It allows us to estimate the effect of multipler) rescattering
on the imaginary part. In the second case, we assume zero phases and use the equations:

1_[0 = Z ()Re<Q>( n+n) (41)

M = > i) REQi):. (42)
The comparison of the two cases provides, in part, an estimate for higher order effects.
The latter case gives numerical results very close to those we would get if we used the
imaginary parts from Tabs. 1 and 2. As we already mentioned, we extract the values of
B and BS*/? from the experimental value for Re. This procedure has also been
followed in the phenomenological approach of the Munich group (last reference of [10]).

3As explained in Ref. [29], the sensitivity GB‘SQ/Z) to corrections from higher order terms is expected
to be smaller. Therefore, the fact that theV, expansion, at this stage, does not reproduce\the= 3/2
amplitude does not imply that th&7 = 1/2 amplitude cannot be calculated to a sufficient degree of
accuracy. This point was also illustrated in Ref. [28] where it was shown that higher order corrections
investigated with a Nambu Jona-Lasinio model are much larger foAthe= 3/2 channel than for the
AI =1/2one.
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Then

V2cosdy  Red,  8.42-10°MeV?

T Ve ) - Gt P

R&(Q1)2 (1) = RE(Q2)2 (1)

with Re4, = 1.5 - 1075 MeV. The values of, andz,, for 600 MeV < u < 1GeV, are
listed in Appendix A of Ref. [29]. All otheB factors are taken from Tabs. 3 and 4. In
particular, forB{*? and B{"/? we use the values listed in Tab. 3. These numbers were
obtained in Ref. [29] where it was shown that they saturate the observed valuelpf Re
and are in good agreement with the phenomenological result of Ref! [M@].note that

()1 and @, do not give a direct contribution tg/ /e sincey; andy, are zero. Rather,
(Q1)0,2 and((Q)2),» are used to sum up the contributions from the operafars),, and

(210 Which are redundant below the charm threshold (see below).

The elimination of the scale dependence of QCD in the numerical result is an im-
portant criterion and we discuss it in some detail. The Wilson coefficients in the ef-
fective hamiltonian in Eq. (8) depend on the renormalization sgal@ his should be
matched with the scale dependence of the chiral operators and their respective matrix
elements. The bosonization of the density-density operators introduces masses which
are also scale dependent. In particuld@s)o and (Qs). are proportional tok* =
[2m%/(ms + mq)]> ~ 4m’/m? which brings in ayu dependence through the quark
masses already for the tree level (factorizable) contributions. This is different from the
matrix elements of the current-current operators whichuarelependent in the largar.
limit. In the products ofys andyg with the corresponding matrix elements, fhdepen-
dence from the running quark mass is exactly cancelled by the diagonal evolution of the
Wilson coefficients taken in the larg®: limit [12,22]. This property is preserved at the
two-loop level [10]. Furthermore, the dependence beyond the, evolution, i.e., the
1 dependence oB{"? and B{** was shown in QCD to be only very weak for values
abovel GeV [10]. This requires that the (non-factorizablé)V, corrections to the matrix
elements of thé€)s andQs operators (which produce the scale dependence aBtfae-
tors) should not show a large dependence on the cutoff scale. The fact tidagthev.)
terms in Egs. (35) and (36) have only a logarithmic cutoff dependence is for this reason
welcome. Finally, the decrease of baBhfactors withA. = p in Tabs. 3 and 4 which
is due to these logarithms is qualitatively consistent with theilependence found for
i > 1GeVin Ref. [10], i.e., it has the correct slope. As shown below the residual scale

“Even though not fully consistent from a theoretical point of view, the vaIueBﬂf) in Tab. 3 can be
used together with the experimental value fordgen the prefactor of Eq. (17), since the numbers in the

table produce a value for Rig close to the experimental one [29]. In addition, the effecB{a}fz/z) ing'/e
is rather small.
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dependence oB{"/? and B{*? even if moderate is still too large to allow an exactly
scale independent result foy/c.

Throughout the numerical analysis of direct CP violation we takg = A%’ =
325 + 80 MeV corresponding roughly ta, (A7) = 0.118 £ 0.005. For(,,,, we adopt
the range given after Eq. (19). The status of the strange quark mass has been reviewed
recently in Refs. [22,27], and we use the range

ms (1GeV) = 150 + 25 MeV, (44)

which is in the ball park of the values obtained in the quenched lattice calculations (see
Ref. [49] and references therein; for a very recent analysis see Ref. [50]) and from QCD
sumrules [51]. We note that the QCD sum rule results are generally higher than the lattice
values. Lower bounds on the strange mass have been derived in Ref. [52].

In Fig. 1 we depict’/e as a function of the matching scale & A.), calculated
from Egs. (39) and (40) with LO Wilson coefficients for the central value of;lamd for
various values ofn,, ©,,/, and A, according to their ranges defined above. For low
values of the matching scale we find a rather moderate enhancement of the VSA result
which is due to the weaker cancellation between@h@nd()s operators. However, one
might note that very large values fgy/= in the range of the recent Fermilab measurement
[4] are not reached with th& factors listed in Tabs. 3 and 4 together with Eq. (43), if
central values are used for the parameters. Indeed, adopting central valigs®r.,,
Aoco, @nd Im\; and varyingA, between 600 MeV and 900 MeV we obtain as ‘central
range’ for the CP ratio:

8.4-107" < &'/ (LO-centra) < 12.9-107*. (45)

Thisis also illustrated in Fig. 2 where we show the various contributiosgtdor central
values of the parameters at a scalé\pf= 700 MeV. For this value of the cutoﬁ?élﬂ) iS
very close to unity whereaB§3/2) is significantly suppressed which leads to a value for
¢'/e of 11.5 -10~*. Smaller numbers are obtained for larger values of the cutoff. Another
noticeable contribution, beside that@f, which reduces the value ef/c is thel = 0
component of); and(@,. As we already mentioned above, this contribution comes from
theQ4, Qy, andQ);, operators which are redundant below the charm threshold and satisfy,
to LO and at NLO in the HV scheme, the relations in Eq. (56). In the NDR scheme the
relations receive smatP(a;) andO(«) corrections [10].

In Fig. 3 we show how the various terms depend on the choice of the matching
scale. In particular, we observe that the behaviour of is almost identical to the one
of ys (Qs)o. This is due to the fact that the rati"/? /BS*/? is approximately stable
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Figure 1: ¢'/e using LO Wilson coefficients and the experimental phases, plotted for
various values ofn,(1 GeV) and(2,,,, as a function of the matching scale = n. We

use Im\; = 1.33 - 10~*. The solid (dashed, dot-dashed) lines corresponthtg = 325

(245, 405) MeV.

over the whole range of the cutaff, and, consequently;s (Qs)o and(—) ys (Qs)- fall
off roughly in the same way. We note that the ragigu)/m?(u) increases by about
12 % if the scaley = A, is varied betweer600 MeV and 1 GeV, whereasB!"/? (A,)
decreases byt %. A similar statement applies ts. The decrease @!"/? andB{*/? is
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Figure 2: Thel = 0 andl = 2 contributions ta="/= of the dominant operators using

LO Wilson coefficients and the experimental phases. We also use the central values for
Aocor ms(1GeV), Q, 1y, and Im\, at a scale of\. = 700 MeV. The contributions of the
operatorsy); and@s; are negligible and are not included in the figure.

therefore qualitatively consistent with the (non-diagonal) evolutiap ehdys computed

in the leading logarithmic approximation, and it leads to a fairly moderate overall scale
dependence. This property is due to the fact that@g’/N,) terms in Egs. (35) and

(36) have only a logarithmic cutoff dependence which, nevertheless, still goes beyond the
1 dependence of the short-distance part. In this situation it would be tempting to adopt
the largeN, values forB{"? and B{*’® which are scale independent and coincide, to

a very good approximation, with their VSA valugs'/? = B{*/? = 1. However, the
results show that /N, corrections are important, and to recover the VSA values would
require an a priori unexpected cancellation of éh@°/N.) corrections with higher order
terms or contributions from higher resonances. Therefore, the VSA might underestimate
the true range of uncertainty in the analysis'gt.

The dependences of the resultwn, €,.,,, andAy, are given in Fig. 1. Among
them them, dependence is the most important one. The dependence)ontbna large
degree of accuracy [27], is multiplicative and can be obtained in straightforward way. If
we take into account the residual dependence on the matching scale by varyinyg.
between600 and900 MeV and scan independently the theoretical input parameters and
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A, (MeV)

Figure 3: Various contributions td/= using LO Wilson coefficients and the experimental
phases, plotted as functions of the matching s¢al&Ve use central values fat,, €2, ,,
AQCD! and Irrl)\t.

the experimentally measured numbers, we obtain the following rangé/focalculated
with LO Wilson coefficients:

3.1-107" < £'/e (LO) < 31.6-107". (46)

The quoted range results from a variatiomaf, €2,.,,,, andAq, in Egs. (39) and (40) as
depicted in Fig. 1 and also allows for a variation ofAnaccording to the range defined
in Eq. (24).

We investigate next the dependence on the NLO Wilson coefficients. The NLO
values are scheme dependent and are calculated within naive dimensional regularization
(NDR) and in the 't Hooft-Veltman scheme (HV), respectively. As already mentioned, the
absence of any reference to the renormalization scheme dependence in the low-energy cal-
culation prevents a complete matching at the next-to-leading order [22]. Nevertheless, a
comparison of the numerical results obtained from the LO and NLO coefficients is useful
in order to estimate the corresponding uncertainties and to test the validity of perturbation
theory.

In the NDR scheme, introducing the NLO coefficients does not noticeably affect
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Figure 4. Same as in Fig. 1, now using NLO Wilson coefficients in the NDR scheme. The
solid (dashed, dot-dashed) lines corresponddq = A%’ = 325 (245, 405) MeV.

our numerical results (see Fig. 4). F@%’ = Ao S 325 MeV we find slightly lower
values for’ /e and a somewhat larger difference between the results obtainédfor

325 MeV and405 MeV, respectively. Generally, the difference between LO and NLO is
more pronounced for very low values of the matching scale, but it is still moderate except
for Agep = 405 MeV. For Ao, = 325 MeV (245 MeV) the effect of the NLO coefficients

is rather small, and values for the matching scale as lo@@s700 MeV appear to be
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Figure 5: Same as in Fig. 3, now using NLO Wilson coefficients in the NDR scheme.

| | Casel | Case2 |
LO 84 < £'fJe <129 | 63 < £'/e < 95
NDR 80 < /e < 11.0 | 5.9 < /e < 84
HV 58 < £/e < 6.6 | 42 < &'fe < 4T

LO+ NDR+ HV || 58 < £/ < 1290 | 42 < £/ < 95

Table 5: Central ranges faf/e (in units of 10~*) at LO and NLO (NDR and HV). The
numbers are obtained for central valuesnef, €2,.,,, Im);, and Ay, by varying A,
between 600 and00 MeV. ‘Case 1’ and ‘Case 2’ correspond to the use of Egs. (39)-
(40) and (41) - (42), respectively.

acceptable. We also notice a slightly smaller scale dependence, that is to say, the NLO
Wilson coefficients further improve the stability of the calculation. This property becomes
obvious if we investigate the various contributions=tge (compare Figs. 3 and 5). In
particular, at NLO in the NDR scheme we observe a smaller variatiap @9s), and

ys (Qs)2 In the range of\. between600 MeV and1 GeV. Nevertheless, the numerical
effect of the NLO coefficients is rather moderate, and the ‘central’ and scanned ranges
quoted in Tabs. 5 and 6 are close to the LO results given in Egs. (45) and (46).
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Figure 6: Same as in Fig. 3, now using NLO Wilson coefficients in the HV scheme.

| | Casel | Case2 |
LO 31 < &'fJe <316 | 24 < £'/e < 232
NDR 27 < &fe €264 | 21 < £'/e < 20.2
HV 1.9 < &'/e < 165 | 1.5 < &'/ < 11.9

O+ NDR+ HV | 1.0 < &/ < 316 | 15 < ¢/c < 232

Table 6: Same results as in Tab. 5 but for the complete scanning of the parameters (
My, iy @NAAgep, @and ImM\;) as explained in the text.

In the HV scheme, the effect of the NLO coefficients is more pronounced. Both
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ys (Qs)o andys (Qs)» are rather stable over a large range of the matching scale leading
to an approximately stable result fo/s between700 MeV and1 GeV. This is shown

in Fig. 6 for the central values ofi,(1 GeV), Q,1,y, Im);, andAy,. On the other hand,

for Agco = 405MeV and A, < 700 MeV we observe a noticeable slope indicating the
breakdown of the perturbative expansion of QCD (see Fig. 7). However, for moderate
values of the matching scale the numerical values for the ratio depend weakly on the
choice ofA, (See Fig. 7), which makes the result rather stable. Generally, at NLO in the
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Figure 7: Same as in Fig. 1, now using NLO Wilson coefficients in the HV scheme. The
solid (dashed, dot-dashed) lines corresponddq = A%’ = 325 (245, 405) MeV.
HV scheme we obtain smaller values fofc (see Tabs. 5 and 6).

We note that at NLO the maximum value for the ratio is found for moderate values
of A. around700 - 800 MeV, whereas the upper bound in Eqg. (46) refers to low values of
the matching scaley 600 MeV). Finally, one might note that the numerical values of the
Wilson coefficients in the HV scheme communicated to us by M. Jamin [43] correspond to
the treatment of the two-loop anomalous dimensions used in Ref. [10] which differs from
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the one used in Ref. [11]. For this reason the NLO corrections to the Wilson coefficients
in the HV scheme presented in Appendix A are generally smaller than the ones found
in Ref. [11] (for a discussion of this point see also Ref. [22]).

So far in the numerical analysis we have used Egs. (39)-(40) together with the
phenomenological values for the phases [48]. Replacing them by Egs. (41) - (42) leads to
lower values for’/c (see Case 2 in Tabs. 5 and 6). The numerical results are very close
to those we would get if we used the imaginary parts obtained at the one-loop level in
the 1/N, approach. Both the central values and the upper bounds in the scanned ranges
for &' /e are lower due to a smaller contribution from thé = 1/2 terms. However, the
modifications do not change substantially our picture’gf. As mentioned above, the
comparison of the two cases provides, in part, an estimate for higher order effects.

In conclusion, the fact that we use rather low values for the matching scale makes
some of the Wilson coefficients rather sensitive to NLO corrections. In partiggland
ys depend noticeably on the choice of thescheme in dimensional regularization. For
example, foru = 700 MeV and Ao, = 325 MeV the values ofys andys at LO and in
the NDR and HV schemes differ approximately by 20 - 30 %. Since the non-perturbative
calculation of the matrix elements is insensitive to this dependence, the corresponding
uncertainty must be included in the final result f6fc. Collecting together the LO and
NLO values in Tab. 5 from Eqgs. (39) - (40) and (41) - (42) we get the following range:

4.2-107* < £'/e (centra) < 12.9-107%, (47)

which, for central values afr, 2,,1,, Agco, and IM\;, takes into account the theoretical
errors inherent to the method (dependence on the scheme and matching scale). Further-
more, it includes the expected errors due to the neglect of higher order corrections to the
imaginary part. Similarly collecting the values in Tab. 6 we obtain the following range
from the complete scanning of the parameters:

1.5-107* < ¢'/e < 31.6-107%, (48)

which also takes into account the uncertainties in the valuesfor, ./, Ao, and
Im);.> The upper bound from our calculation in Eg. (48) is rather close to the central
value of the new Fermilab measurement [4] and requires a conspiracy of the parameters
within their ranges of uncertainties given above.

The present world average for the ratio including earlier measurement&igfe=
(21.8 + 3.0) - 10~* [4]. Our result indicates that the experimental data can be accommo-
dated in the standard model. A major uncertainty in the theoretical estimatg-af

5A comparison with the results of other calculations performed within a specific scheme and treatment
of the final state interaction phases should be done using the numbers in Tab. 6.
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due to the choice ofg, which enters the calculation through the matrix elements of the
operators)s andQs [see Egs. (35) and (36)]. In Eq. (48) we have takeril GeV) =

150 + 25 MeV which is in the range of the values obtained in quenched lattice calcu-
lations and from the QCD sum rules. Adopting even lower valuesrfpwould allow

us to relax the upper bound quoted above. However, recently the ALEPH collabora-
tion analyzed the measured mass spectra of the stramigeay modes and reported a
value ofm, (1 GeV) = 23472, MeV [53]. It will be interesting to see whether this large
(central) value form, will remain when the error is reduced. Very recently, the value
ms(1 GeV) = (188 + 22) MeV was obtained using a-like decay sum rule for the
meson [54], which is consistent with the range used in this paper. The determination
of Im\; will be further improved by precision tests of the unitarity triangle [22] remov-
ing to a large extent the corresponding uncertainty in the analysis of direct CP violation.
Q,+y Which measures the contribution t¢/c from the isospin breaking in the quark
masses was estimated in Ref. [16] in the lafgelimit, and it will be a challenge to in-
vestigate, in future studies, th¢ N, corrections to this parameter. Finally, the calculation

of the hadronic matrix elements even though largely improved by including correc-

tions may still be plagued by noticeable uncertainties. Our analysis so far included terms
of O(p®), O(p°/N,), andO(p?) for the matrix elements of the density-density operators
and terms oD (p?), O(p?/N,), andO(p?) for the matrix elements of the current-current
operators. In the following section we shall investigate the effect of higher order correc-
tions. In particular we will consider the terms 6X(p?/N.) for the matrix elements of

Qs-
5 Higher Order Corrections

In the previous section we have shown that the calculation of the hadronic matrix elements

inthe1/N, expansion leads to a well defined range of values’farwhich can account,

to a large extent, for the weighted average of the experimental measurements [2—4]. How-
ever, the central values obtained are lower than the values of the new measurement [4].
The upper bound from our calculation requires, within the standard model, specific values

of various parameters. In particular, lower values of the strange quark mass are favoured.
In our analysis so far we varied the theoretical input parameters independent of each other
and considered the experimental results within one standard deviation. This conservative
attitude may to some extent exaggerate the differences [55]. In the present section we
investigate the higher order corrections and consider in particular the question whether
these corrections are able to substantially enhance the predictiefifpso that a large

value for the ratio could be explained even for central values of the input parameters.
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In the twofold expansion, the higher order corrections to the matrix elemefis of
andQg are of ordersO(p*), O(p°/N?), andO(p?/N,). In this section we will consider
the O(p*/N.) contribution which brings in, for the first time, quadratic corrections on
the cutoff. From general counting arguments we show that these corrections are expected
to be large forQ)s, which is a peculiar operator)s is consequently not protected from
possible large corrections beyond the largeimit, and we cannot exclude the possibility
that the contribution of)s bringse’/e close to the experimental value for central values
of the parameters. Calculating tki&(p?/N,) correction forQs in the chiral limit we
explicitly find that it is indeed large and positive.

Before investigating thé&(p?/N.) corrections we briefly estimate part of the higher
order corrections replacing the/'F,. expansion’ by at/Fx expansion’. As already dis-
cussed in Ref. [14], we could have used the rati¢ in place of1/F, in the next-to-
leading order terms of Egs. (33)-(36). This choice would be consistent at the level of
first order corrections in the twofold series expansion, as the difference concerns higher
order effects. However, the scale dependenge(@fich is mainly quadratic) is absorbed
through the factorizable loops to the matrix elements at the next order in the parameter
expansion and does not occur in the matching with the short-distance contribution [14].
Consequently, it is more appropriate to choose the physical decay constant in the expres-
sions under consideration. In this situation, we can use, insteat,dhe kaon decay
constantF'x which gives an indirect estimate of higher order corrections. In Tab. 7 we
show the effect of this modification, t8(p°/N,), on the values oB{"? and B{*/?. we
notice that the numbers are generally larger for th& expansion’. In particular, for
A, < 900 MeV the Bélm factor is enhanced compared to the VSA value. This change,
in spite of the somewhat smaller reduction&ﬁ‘/z), leads to a moderate enhancement of
e’ /e which further improves the agreement with the observed value. Numerically, collect-
ing together the various terms we get-10~* < ¢'/e (centra) < 15.8-10~ % Scanning
independently the input parameters we obtah:- 107 < &'/ < 38.3-107*in place
of Eq. (48). Adopting zero phases reduces the upper bouiioc 10~

In Fig. 8 we depict’ /e as a function of the matching scale & A.), calculated
with LO and NLO (NDR and HV) Wilson coefficients and for the central values of;Im
andf2,.,, and various values of,,. The variation of, ,,, does not change the qualitative
behaviour; it only shifts the curves upward or downward for smaller or larger values of
Q4. , respectively. The curves in Fig. 8 result from replacifi@’. by 1/F in all next-
to-leading order expressions relevant to the complete set of matrix elements. Beside the
enhancement of the numerical result we also observe a somewhat smaller dependence on
the matching scale. Finally, even though we obtain somewhat larger valuggfdahe
effect is still rather moderate and does not affect the statement we made above that lower
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| A. [[0.6GeV]|0.7GeV][0.8GeV][0.9 GeV]|1.0GeV |

B&MP || 1.10 0.96 0.84 0.72 0.62
(1.30) | (1.19) | (1.09) | (0.99) | (0.91)
BY*? || 0.64 0.56 0.49 0.42 0.34
(0.72) | (0.66) | (0.59) | (0.53) | (0.46)

Table 7: Bag paramete"/? and B{** shown for various values of,.. The num-
bers in the parentheses are obtained by replakingy Fx in the next-to-leading order
expression.

values of the strange quark mass are favoured.

In the above we have argued that estimating the effect of higher order corrections
to the matrix elements, by replacing thg F;, expansion’ by al/Fj expansion’, does
not drastically modify the results we obtained in the previous section. In particular, this
statement refers to terms 6f(p°/N?) which are corrections on top of th@(p"/N.,)
contribution and correspond to the same pseudoscalar representation of the four-quark
operator. In the following we will not study thi/ N? corrections, which correspond to
a two-loop diagram in the chiral theory. The same approximation was made in the chiral
quark model [46]. However, estimating the typical effect of higher orders by modify-
ing the known correctionsl{ F;, — 1/F}) does not account for possible contributions
from new terms which are absent at the level of the first order corrections. In particu-
lar, higher order terms in theg? expansion (tree level) cannot be calculated because the
low-energy couplings in thé(p®) lagrangian are very uncertain or even unknown. Nev-
ertheless, these terms are independent of the (non-factorizable) matching scale and are
chirally suppressed with respect to the leading tenmv@(m//\?, with A, ~ 1GeV the
scale of chiral symmetry breaking). The convergence of the tree level series was verified
for the current-current operators [13,29] and also@e14], where a complete leading
plus next-to-leading order calculation now exists and tree contributions appear to decrease
monotonically. For the operatd}s the leading term i€ (p?) and by analogy we expect
the higher order tree terms to be smaller. The term@@f/N,) on the other hand are
not expected to be small f@ps. We remind the readers that for the CP conserving am-
plitude it is mainly the (quadratiap(p*/N.) corrections which bring tdQ: »), a large
enhancement relative to the (leading} O(p?) values. As the leading¥. value forQ
is alsoO(p?) we cannot a priori exclude that the value (6f¢), is largely affected by
O(p*/N,) corrections too. As already discussed in Section 4.1, quadfdtit/N,) cor-
rections are proportional to the factdr = A?/(47F;)? relative to theO(p?) tree level
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Figure 8:¢' /e using LO and NLO (NDR and HV) Wilson coefficients and the experimen-
tal phases, plotted for various valuesrof as a function of the matching scale = g,
now with1/F, — 1/FF in the next-to-leading order terms for the matrix elements. We
use the central values for kpands2, .,,. The solid (dashed, dot-dashed) lines correspond
t0 Ageo = 325 (245, 405) MeV.

contribution. Different is the case of the operafy since its leadingV. value isO(p°)
at lowest order in the chiral expansion. Quadratic termgXpare consequently chirally
suppressed with respect to the leadisigvalue. More precisely the suppression factor is
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~ (m% ./A2) - A. In contrast toQg)o, it is very unlikely that thed(p®/N,) corrections
for (Qs)» could be larger than thé(p°/N,) contributions investigated in the previous
section.

We calculate next thé(p?/N,) quadratic corrections to the matrix elements of the
operatorls. The pseudoscalar representatiori)gfcan be read off from Eq. (30):

% = 2P Y | {0,
q

+(Uaq(LsUBUT*U + 2r LsUM'U + rHoM)

+(LsUT0U0"UY + 2r LU MUY + 1 Hy M), (U)gs | +O(p") . (49)

In the following we will calculate thé(p?/N,) evolution of the operata®s in the chiral

limit. It is then straightforward to compute the hadronic matrix eleniéib,. To calcu-

late the evolution of)s we use the background field method as described in Ref. [39] and
also in Refs. [14,40]. This operatorial method is very convenient to calculate corrections
in the chiral limit. To this end we decompose the matfiin the classical field’ and the
quantum fluctuatiosq,

Aa

U=exp(ivV2¢/f)U, ¢&=¢"%, (50)

S

with U satisfying the equation of motion
0020t —0200 +rT M —r MU = NﬁanU—ln 01, U= exp(it®\/f) . (51)
The O(p?) lagrangian thus reads c
L= L4 30,6°0") + 50,6 90U
—%@20/\4* +UTEM) — %agogo +0(&%) . (52)

The corresponding expansion of the meson density in Eq. (30) around the classical field
yields

(Dr)ij = Grgjn = (Dr)ij + Z'ng(UTf)ji + %(UT§2)ji

+i% L2 [0 U10,00T + UNor€, 0,001} .,

f
- %L5 (2091 €0,¢ + Ut[ove, €10,00" — 2070"¢0,00"¢
+0"UN0,8, 6 — 0" U9, UUTE? ], + i2v2 T;Lg [UT{&, MU} ;i
2
+2 %Lg (U2, MU} 5 + O(£%). (53)

29



Using Eq. (53) the evolution ap¢ can be obtained in a straightforward way. Integrating
over the quantum fluctuation by calculating the non-factorizable diagrams of Fig. 9.a we
get the following result:

3_A } . (54)

2\ _ _AF2,. 27T (ufTta 7 2
Qs(A2) AFZr*Ls(0"U0,U ) as {1 + 2 ArF. )

This result has already been presented in Ref. [40]. Before investigating the numerical
effect of the quadratic term in Eq. (54) a few comments are necessary:

e In Eg. (54) we present only the diagonal evolution, i.e., the term proportional to
the operatofo*UT9,U) 4 which gives the only non-vanishing contribution to the
K — nw amplitudes. This property is analogous to the tree level. One might
note in particular that thég contribution vanishes since it does not produce a term
proportional to this operator. ThE, contribution vanishes from the beginning as
it does not appear in Eqg. (53).

e To O(p’/N.) we showed explicitly that the factorizable contributions provide the
corrections needed to obtain the physical values of the low-energy couplings [14].
Except for finite corrections, the values of the couplings can be obtained in the
large-V, limit, i.e., by imposing tree level relations in order to set up the renormal-
ized (factorizable) matrix elements [compare Egs. (37) and (38)[2(18/N,) in
Eq. (54) we use again the renormalized couplifigdefined in the largeV, limit®,
since the scale dependence of the bare coeffidientill be absorbed in factoriz-
able loop corrections to the matrix elements and does not need to be matched to any
short-distance contribution [14].

e Beside the diagrams in Fig. 9.a a priori the diagram in Fig. 9.b with a strong vertex
proportional toL5; could also contribute. However, it is easy to see that since the
L5 term in the lagrangian contains a quark mass matfixthis diagram produces
an operator similar to the one resulting from theterm at tree level fot)s. This
operator does not contribute to the— 77 amplitudes.

e The diagram of Fig. 9.b with the strong vertex coming fromtheL,, L;, andLg
couplings also turns out to vanish.

e There are n@(p?/N.,) tree level contributions, i.e., from couplinds [33] which
are subleading imv..

SNote that our constanis’ should not be confused with the renormalization scale dependent coefficients
L’ in Refs. [33] and [56].
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Figure 9: Non-factorizable loop diagrams for the evolutionigfto O(p?/N,). The
crossed circles denote the two bosonized densities, the black circles the strong interaction
vertices from the kinetic term in the lagrangian. Similar diagrams withty*) mass

or U,(1) terms in Eq. (52) are logarithmically divergent or finite, and we do not present
them here.

| A. [[0.6GeV]|0.7GeV]0.8 GeV]0.9GeV| 1.0 GeV |
B&Y || 1.50 1.51 1.55 1.62 1.73

Table 8:B{"/?, now including, in the chiral limit, terms a®(p2/N..).

Numerically, we observe a large positive correction from the quadratic term of
O(p*/N.) in Eq. (54). The slope of this correction is qualitatively consistent and welcome
since it compensates for the logarithmic decreas@@f/N.). Adding theO(p*/N.)
term to the fullO(p?) and O(p°/N,) result in Eq. (35) we obtain the following matrix
element forQg:

_ 4\/5 2 2 2 rr 3 Az 3 2
<Q6>0__T7FR (mK—mﬂ) L5 1+§(47T)2F7? - 16 (47‘[’)2 lOgAC +

(55)
The corresponding values Eél/z) (obtained by adding the quadratic corrections to the
values in Tab. 3) are listed in Tab. 8. T '/2) factor is found to be rather stable around
the vaIueBél/Z) ~ 1.6 £+ 0.1. The quadratic term aP(p?/N.) is of the same magnitude
as theO(p?) tree term. For théQ,), and(Q), there was also a large enhancement to
the O(p?) tree contribution introduced by th@(p*/N.) term (see Tabs. 1 and 3); is a
AT = 1/2 operator, and the enhancement @), suggests that at the level of theN,
corrections the dynamics of th®] = 1/2 rule also applies t6)s. One might however
note that the long-distance evolution of the opergtgincluding both the)(p°/N,) and
O(p*/N.) terms is very different from the one @f; or Q,. The former is approximately
constant over a wide range of the cutoff scale due to the smaller coefficient of the quadratic
term and a large cancellation of the scale dependences between the quadratic and the log-
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| Casel | Case? |

LO 19.5 < &'/e < 247 | 148 < &'/Je < 194
NDR 16.1 < &'/e < 234 125 < &'/e < 183
HV 93 < &/e <193 | 70 < &'Je < 149
LO + NDR + HV | 93 < /e < 247 | 7.0 < £/ < 194

Table 9: Same results as in Tab. 5, but now including quadratic ter@§Bf N,.) for Qg
as explained in the text.

arithmic term, whereas the later [which does not receive@(y /N..) contribution] has

a large positive slope. One should also remark that we observe a noticeable suppression of
(Qs)2 similar to the one needed o), »), in order to bring the CP conserviayl = 3/2
amplitude down to the experimental valte.

Using the values foBél/Q) in Tab. 8 together with the bag factors of the remaining
operators presented in the previous section we calculated again the fatfor central
values ofmyg, Q,1,, Im\;, andAqy,. The results for the three sets of Wilson coeffi-
cients LO, NDR, and HV and fak,. between 600 anfl00 MeV are given in Tab. 9. The
numbers are obtained from Egs. (39) - (40) and (41) - (42), respectively. With LO Wilson
coefficients, the enhancementl@é‘lm leads to larger values faf/<, and the predictions
are now more stable and closer to the data. The results in the NDR scheme are rather
close to the LO ones although more sensitive to the valug,gf In the HV scheme, the
effect of the NLO coefficients is more pronounced. The results are significantly smaller
for low values of the matching scale and less stable. This is illustrated in Fig. 10 where
we showe’/e for various values ofng as a function of the matching scale.

Performing a scanning of the input parameters as explained above, we arrive at
the values in Tab. 10. Comparing these results with the values in Tabs. 5 and 6 we see
a clear enhancement originating from the quadratic term in Eq. (55). The large ranges
reported in Tab. 10 can be traced back to the large ranges of the input parameters. The
parameters, to a large extent, act multiplicatively, and the larger rangé/fois due to
the fact that the central value(s) for the ratio are enhanced roughly by a factor of two
compared to the results we presented in the previous section. More accurate information
on the parameters, from theory and experiment, will restrict the values for the CP ratio.

The contributions from current-current operators’ie are rather small, and cor-

"The mechanism for the suppression(¢f). however differs from the one fojQ; »)2, since in the
former case it occurs through logarithms and in the latter case mainly through quadratic terms [13,29].
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| Casel | Case2 |

LO 80 < &'fe < 621 | 6.1 < &'/s < 485
NDR 6.8 < &'fJe <639 | 52 < £'/e < 498
HV 28 < &'fe < 498 | 22 < £'/e < 385
LO + NDR + HV || 2.8 < &'/e < 639 | 2.2 < &'/e < 4938

Table 10: Same results as in Tab. 6, but now including quadratic teri@$3f N,.) for
Qs as explained in the text.

rections from higher order terms (beyond the ones investigated in Section 4) and from
higher resonances will not be able to modify thBifactors in a way that they change

the ratios’ /e considerably. For the reason explained earlier in this article, higher order
corrections for the operat@js are not expected to bring a large change for the ratio. The
question of whether a large value df = can be accommodated in the standard model
without specific values of various parameters reduces essentially to the vaﬂiéé/ of
Adding theO(p?/N,) quadratic terms produces a substantial increase for the value of the
matrix elementQs)o, and a large value faB{'/? in the range of..6 cannot be excluded.

This property leads to a more natural explanation for a large valué/ef Our result

can be modified by corrections @ (p?/N,) beyond the chiral limit, from logarithms

and finite terms, but they are not expected to remove the large enhancement observed in
Eq. (55). Nevertheless it would be very interesting to verify this statement through an
explicit calculation.

In view of the large corrections one might question the convergence df/iNie
expansion. However, we remind the readers that the quadratic tethpdf N,) in Qs
we consider in this section represents a new class of terms abseft?loandO (p°/N..).

It is reasonable to assume that the term®¢p®/N,) (~ A) carry a large fraction of
the entire (non-factorizable) contribution, since quadratic corrections in the cutoff from
higher order terms are chirally suppressed (i.e., they.are- §, A - §2, ...).

We point out that the quadratic terms obtained at the level of the pseudoscalar
mesons are physical and must be included in the numerical analysis. Our result is com-
patible with the fact that, in a complete theory of mesons, the quadratic dependence on the
cutoff should be absent. Indeed one expects that incorporating higher resonances allows
one to select higher values for the cutoff and does not remove the effect of the quadratic
terms, but turns them smoothly into logarithms. Therefore, within a limited range of the
cutoff, the quadratic terms provide an approximate representation of the effect of higher
resonances. This behaviour has been observed in the calculationof ther’ mass
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Figure 10:&'/e using LO and NLO (NDR and HV) Wilson coefficients and the exper-
imental phases, plotted for various valuesmef as a function of the matching scale
A, = p, including for Qs the term ofO(p?/N,) in the chiral limit. We use again the
values Im\, = 1.33 - 10~* and2,,,, = 0.25. The solid (dashed, dot-dashed) lines are for
Aoco = 325 (245, 405) MeV.

difference after including the vector and axial vector mesons [57,58]. In this particular

case the quadratic terms turn into finite terms. It has also been observed partly for the
By parameter after including the vector mesons [59]. The two examples in Refs. [58,59]
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show that effects of higher resonances can modify noticeably the results and reduce the
dependence on the cutoff but are not strong enough to reverse the effects of the pseu-
doscalar mesons. Nevertheless, it would be very interesting to include higher resonances
in the calculation of thél — 77 decays, in order to study explicitly their effect.

We note that the\] = 1/2 enhancement we observe Qs to O(p*/N,) is not
able to render the contribution ¢f; in Re4, dominant. The nhumbers chél/Z) in Tab. 8
are consistent with the observed value for the = 1/2 amplitude, which is dominated
by @; and(@,; at LO and at NLO in the HV scheme, the enhancement ofBﬁéz)
factor changes the result of Ref. [29] by less thai for m,(1 MeV) = 150 MeV and
245MeV < Ayep < 405MeV. In the NDR scheme, the effect can amount to approxi-
mately11 % of the amplitude for\ ., = 405 MeV. Therefore we do not see a correlation
between the large values of Rgand:'/z, since the two quantities are dominated by dif-
ferent operator$.In particular, in one of the first estimates®f< [60] it was suggested
(following Ref. [8]) that theAT = 1/2 amplitude is dominated by the operafgy, which
would lead to a large value af/c. Such a mechanism, in the range for the matching
scale we consider, would require an enhanceme@gf, several times larger than the
one obtained in the present analysis. The same remark applies to Ref. [61].

Among the previous calculations, loop corrections to the oper&igrand Qs in
the 1/N. expansion were also considered in Refs. [23,36]. This study used a different
matching condition, and the parametrization of thé*) lagrangian was not general.
The authors obtained a large reduction@t). and an enhancement s),, predicting
large values foe’/«.

It is interesting to compare our values fdy'= with the results found with other
methods. Lattice calculations obtainB/* (2GeV) = 1.0 + 0.2 and B{*/? (2 GeV) =
1.0 + 0.2 and predicted a small value fef/e = (4.6 & 3.0) - 10~* with Gaussian errors
for the experimental input (see Ref. [62] and references therein). More recent values re-
ported forB{** are B{*? (2 GeV) = 0.81(3)(3) [63], 0.77(4)(4) [64], and 1.03(3) [65].
BS? was estimated in Ref. [66]B{"/? (2 GeV) = 0.76(3)(5). However, as stressed in
Ref. [49], the systematic uncertainties in this calculation are not completely under con-
trol. This statement has been confirmed by a recent analysis [67] which obtained negative
values forBél/Q) and favours either negative or slightly positive values:fgg. Although
the scales used in lattice calculations and the phenomenological approaches are different,
the various results for thB factors can be compared, for values of the scale aro@eV
or above, since3"/? and B** were shown in QCD to depend only very weakly on the
renormalization scale for values abav&eV [10]. Small values fot’ /e consistent with

8For a discussion of this point see also Ref. [27].
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zero were also quoted in Ref. [68].

The chiral quark model [46] yields a range fBél/Q) in the HV scheme which is
above the VSA vaIueBél/Z)(O.S GeV) = 1.6 £+ 0.3, and predicts a small reduction of
the B{*/? factor, B{** (0.8 GeV) = 0.92 + 0.02. The quoted range for the CP ratio is
7-107* < £'/e < 31-10%. Since the treatment of the renormalization scale in Ref. [46]
is different from the one used in this article we do not see a clear link which could easily
explain why both approaches give approximately the same resdliéfé%).

Very recently, an extensive study df/= in the standard model was presented in
Ref. [27]. The authors investigated the sensitivity of the CP ratio on the input parameters
and updated their numerical values. They trea%]dz) and B§3/ 2 as parameters and
adopted the valueB{"/? = 1.0+ 0.3 andB{** = 0.8 + 0.2 together with the constraint
BY® > BB/®_ Numerically, they obtained.05 - 104 < ¢'/e < 28.8-10 % and
0.26-107* < £'/e < 22.0-10~*in the NDR and HV schemes, respectively. The quoted
results are consistent with the values we getfge to O(p?) andO(p°/N,) for Qs and
Qs. As shown in this section, an additional large contribution comes frondpé/N.)
term of theQ)s operator.

In summary, we have shown in this section that the quadratic terd¢;6f/ V) are
large forQs. From general counting arguments we have good indications that among the
various next-to-leading order terms in thfeand1/N, expansions they are the dominant
ones. They enhano@él/z) and bringe’ /e much closer to the measured value for central
values of the input parameters. We obtain a quadratic evolutio@fawhich indicates
that aAl = 1/2 enhancement mechanism is operative @ras for @, ». B§3/2) is
expected to be affected much less by term&@h*/N,) due to an extra* suppression
factor relative to the leadin@(p°) tree term.

One should recall that our analysis is performed in the chiral limit. Corrections
beyond the chiral limit, from logarithms and finite terms, are not expected to remove the
large enhancement (Bél/z) arising from the quadratic term in Eq. (55 Consequently,
the results foe’/c we obtained in Section 4, by including terms®fp?) andO(p°/N.)
for Qs andQs, should be considered as a lower range, which is shifted to higher values
by including also quadratic terms @¥(p?/N.). The ideal case would be to calculate
and include the fulD(p?/N.) amplitudes, as well as th@(p*) andO(p°/N?) terms. It
would also be interesting to investigate the effect of higher resonances (at least the vector
mesons and presumably also the axial vector and scalar mesons). Each of the additional
effects separately is not expected to counteract largely the enhancement foBéHQf)or
Nevertheless, in the extreme (and unlikely) case where all these effects would come with

“Note that for the CP conserviny/ = 1/2 amplitude the chiral limit gives a good approximation to
the numerical result.
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the same sign a significant modification of the result cannot be excluded formally. In order
to reduce the scheme dependence in the resuit ferappropriate subtractions would be
necessary (see Refs. [28,37]).

In view of the noticeable uncertainties connected still with both the calculation of
the matrix elements and the exact values of the various parameters taken from theory
and experiment, it is difficult to decide whether the large valu€ 6f observed recently
Is indicating new physics beyond the standard model [61,69,70]. In this situation it is
interesting to investigate other kaon decays in order to perform precision tests of flavour
dynamics and to search for new physics [22,71].

6 Conclusions

In this article we have presented results of a new analysis for the CP paraijeter

Our interest in this topic concentrates on the improved calculation of loop corrections
for the hadronic matrix elements. It is well known that the leadWgvalues for the
matrix elements underestimate thd = 1/2 amplitude 4, in K — =7 decays. It

has been shown earlier thigtV, contributions to the operato€g, and(), are very large,
bringing the value for the amplitudé, closer to the experimental value [13]; an improved
matching condition brings it even closer [29]. The same method introduced corrections to
the matrix elements of the operatapg and Qs [14,23,36] and modified the predictions

for the parametet’ /c.

In view of this knowledge and the fact that three large experiments [2—4] were
measuring the CP asymmetry, we decided to embark on an extensive study of the hadronic
matrix elements including at the same time improvements of the input parameters which
have taken place in the meantime. In particular, we incorporate an improved estimate
of the multiplicative CKM factor [27] and use leading and next-to-leading order Wilson
coefficients, which were communicated to us by M. Jamin [43].

In the first part of the paper (up to Section 4) we have presented our resti(sip
andO(p°/N.) for the dominant operatoi@s andQg [14] and have included them in an
extensive analysis of the CP parameter. We have found that the matrix elé@gntand
(Rs)2, to this order, have only a logarithmic dependence on the cutoff. The corrections
to these operators are smaller than thoséhf), and(Q-), which are quadratic in the
cutoff [29]. They decreas&)s)- roughly to half its value in the VSA and modify)s)o
to a lesser extent leading to a rafit)'/? /B{*/? ~ 1.8. The net effect is to eliminate
the almost complete cancellation between the two operators but the overall values of the
matrix elements are reduced. The corresponding ranges/foare given in Tabs. 5-6
and Figs. 1-7. Adopting central values for the input parametets Q, ., AY and

MS !
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Im);) we obtaind.2 - 107% < &’/ (centra) < 12.9-10~%. The quoted range refers to

the uncertainties associated with the calculation of the hadronic matrix elements and with
the use of three sets of Wilson coefficients LO, NDR, and HV. Performing a complete
scanning of the parameter space we obtain

1.5-107" < &'/e < 31.6-107".

The upper values far' /< obtained in this part of the article are close to the experimental
data [2,4]. They are reached only for low valuesaf and specific values for the other
parameters. As stated in the article, this is the complete first-order calculatign for

the twofold expansion and provides a benchmark for additional corrections.

A major part of the present article is the estimate of still higher order effects. In
this direction we have studied, first, the changes introduced by the replacement of the
coupling constanf’, by F in the next-to-leading order expressions for the matrix ele-
ments, which gives an indirect estimate of higher order corrections [14]. We found that
the predicted values are increased. Numerical results for central values,admoaft2, .,
and various values ofi; are shown in Fig. 8, which indicate that the experimental data
can be accommodated in the standard model. A low value,a0$ also favoured.

In a second step we studied t6&p?/N,.) corrections foiQs. Here theO(p°) term
vanishes; the)(p’/N,) correction was found to be moderate [14]. Thus a significant
correction appears, for the first time, through quadratic term@(@f/N,), and the be-
haviour of(Q)s), is similar to the one found for the matrix elemefd ), and(Q2), [29].

In Section 5 we have shown that the value @), is enhanced by th@(p*/N.) contri-

bution in the chiral limit. This point we already emphasized in Ref. [40]. Numerically, we
obtain values forBél/z) aroundl.6 £ 0.1. Our calculation indicates that at the level of the
1/N, corrections a\I = 1/2 enhancement is operative fQ¥ similar to the one of),

and@, which dominate the CP conserving amplitude. The effect of addin@{hé/N.,)
quadratic terms is evident as a substantial increase in the valiig=ofvhich brings the
result rather close to the data for central values of the input parameters. Numerically, this
is shown by the following range obtained by collecting together the results for the three
sets of Wilson coefficients LO, NDR, and HV:

7.0-107" < £'/e(centra) < 24.7-107*

(for details see Tab. 9). Performing a complete scanning of the parameter space for the
various cases produces the ranges reported in Tab. 10.

As stated in the article, it is still desirable to calculate and compare the full ampli-
tudes taO(p*), O(p*/N,), andO(p’/N?). The incorporation of higher resonances would
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be very interesting since it would allow to select higher values for the matching scale. A
more sophisticated treatment of the scheme dependence remains a challenge for future
studies. However, it is encouraging that the approximations we made in this paper give
results close to the experimental data. Clearly the possibility of an natural explanation,
within the standard model, of the experimental valuesfgs cannot be excluded.

To sum up, we have presented our results from an extensive study of the hadronic
matrix elements t@(p?/N.). We computed all matrix elements in the same theoretical
framework, except fo(Q;)> = (Q2)» which were extracted from the data on the CP con-
serving decays. Our predictions fdyc are close to the weighted experimental average
for central values of the input parameters.

Note addedAfter completion of this article the NA48 collaboration at CERN reported
the value Rés'/s) = (18.5 4+ 7.3) - 10~* [72]. The new world average is R€/¢) =

(21.2 4+ 4.6) - 10~*. The conclusions of the present article are in agreement with this new
measurement.

Acknowledgements

We wish to thank Johan Bijnens, Andrzej Buras, Jorge Fatelo, Jean-Maerd; and
Gino Isidori for discussions; especially Bill Bardeen for helpful advice and discussions
throughout this work. We are very thankful to Matthias Jamin for providing us with the
numerical values of the Wilson coefficients used in this article. This work was supported
in part by the Bundesministeriunuif Bildung, Wissenschaft, Forschung und Technolo-
gie (BMBF), 057D093P(7), Bonn, FRG, and DFG Antrag PA-10-1. One of us (T.H.)
acknowledges partial support from EEC, TMR-CT980169.

39



A Numerical Values of the Wilson Coefficients

In this appendix we list the numerical values of the LO and NLO (HV and NDR) Wilson
coefficients forAS = 1 transitions used in Section 4.2. These values were communicated
to us by M. Jamin [43]. Following the lines of Ref. [10] the coefficieptare given for

a 10-dimensional operator badi€);,...,Q10}. Below the charm threshold the set of
operators reduces to seven linearly independent operators [see Eqs. (11) - (14)] with

Qe = —CQ1+ Q2+ s, Qy = ;Ql_%Qi’n Qo = %Q1+Q2—%Q3-(56)
At next-to-leading logarithmic order in (renormalization group improved) perturbation
theory in the NDR scheme the relations in Eq. (56) recéNe;) andO(«) corrections
[10,42]. In the present analysis we use the linear dependence at the level of the matrix
elements/Q;);, i.e., at the level of the pseudoscalar representation where modifications
to the relations in Eq. (56) are absent. We note that the effect of the different treatment of
the operator relations at next-to-leading logarithmic order, which is due to the fact that in
the long-distance part there is no (perturbative) counting,jns numerically negligible.

The following parameters are used for the calculation of the Wilson coefficients:

My = 80.2GeV, sin? @y = 0.23, a=1/129,

m; = 170 GeV, my(my) = 4.4GeV, me(m.) = 1.3GeV.

| . [[0.6GeV]0.7GeV][0.8GeV][0.9GeV|[1.0GeV |

Y1 0.0 0.0 0.0 0.0 0.0
Y2 0.0 0.0 0.0 0.0 0.0
Y3 0.0410 0.038 0.035 0.034 0.032
Ya —0.056 | —0.056 | —0.055 | —0.055 | —0.055
Ys 0.009 0.011 0.012 0.012 0.013
Ys —0.133 | —0.116 | —0.106 | —0.098 | —0.092

Y7/ 0.024 0.025 0.027 0.028 0.029
ys/ v 0.217 0.180 0.155 0.138 0.125
yo/a || —1.749 | —1.657 | —1.595 | —1.550 | —1.515
yio/c || 1.007 0.887 0.803 0.740 0.690

Table 11:AS = 1 LO Wilson coefficients for\ o, = 245 MeV.
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1 ]]0.6 GeV]0.7GeV][0.8 GeV|0.9 GeV|1.0 GeV|
U 0.0 0.0 0.0 0.0 0.0
Yo 0.0 0.0 0.0 0.0 0.0
Ys 0.052 | 0.046 | 0.043 | 0.040 | 0.038
ys || —0.063 | —0.063 | —0.062 | —0.062 | —0.062
Ys 0.008 | 0.010 | 0.012 | 0.013 | 0.013
ys || —0.187 | —0.154 | —0.135 | —0.122 | —0.113
yr/a || 0.029 | 0.031 | 0.033 | 0.034 | 0.036
ys/a || 0324 | 0.249 | 0206 | 0.178 | 0.158
yo/av || —1.957 | —1.799 | —1.702 | —1.634 | —1.585
yo/a|| 1.280 | 1.082 | 0.956 | 0.867 | 0.800

Table 12:AS = 1 LO Wilson coefficients for\ ., = 325 MeV.

1 ]]0.6 GeV]0.7GeV][0.8 GeV|0.9 GeV|1.0 GeV|
" 0.0 0.0 0.0 0.0 0.0
Yo 0.0 0.0 0.0 0.0 0.0
Ys 0.065 | 0.057 | 0.051 | 0.048 | 0.045
ys || —0.069 | —0.070 | —0.069 | —0.069 | —0.069
Ys 0.005 | 0.009 | 0.011 | 0.013 | 0.014
ye || —0.285 | —0.209 | —0.173 | —0.152 | —0.137
yr/a || 0.033 | 0.035 | 0.038 | 0.039 | 0.041
ys/a || 0526 | 0.356 | 0.277 | 0.230 | 0.198
yo/a || —2.295 | —1.995 | —1.836 | —1.736 | —1.666
yio/a | 1.690 | 1.334 | 1.139 | 1.011 | 0.920

Table 13:AS =1 LO Wilson coefficients for\,., = 405 MeV.
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| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

!
Yo
Ys
Ya
Ys
Ye
Y / «Q
?Js/ «
?Jg/ «
ylo/ «Q

0.0
0.0
0.033
—0.050
—0.014
—0.154
—0.037
0.234
—1.783
0.971

0.0
0.0
0.031
—0.051
—0.005
—0.120
—0.035
0.189
—1.658
0.803

0.0
0.0
0.029
—0.051
—0.001
—0.103
—0.034
0.163
—1.586
0.700

0.0
0.0
0.028
—0.051
0.002
—0.093
—0.033
0.146
—1.537
0.630

0.0
0.0
0.027
—0.050
0.004
—0.085
—0.032
0.134
—1.502
0.577

Table 14:AS = 1 NLO Wilson coefficients (NDR) for\ ., = A%) = 245 MeV.

| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

W
Yo
Ys
Ya
Ys
Ye
Y7 / «
ys/ «Q
yg/ «Q
Yio/

0.0
0.0
0.040
—0.055
0.017
—0.125
—0.033
0.269
—1.791
0.990

0.0
0.0
0.036
—0.054
0.015
—0.103
—0.033
0.212
—1.663
0.816

0.0
0.0
0.034
—0.053
0.014
—0.090
—0.033
0.181
—1.588
0.711

0.0
0.0
0.032
—0.053
0.014
—0.082
—0.032
0.160
—1.539
0.638

0.0
0.0
0.030
—0.053
0.014
-0.077
—0.032
0.146
—1.503
0.585

Table 15:AS = 1 NLO Wilson coefficients (HV) forAq, = A%) = 245 MeV.
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| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

!
Yo
Ys
Ya
Ys
Ye
Y / «Q
?Js/ «
?Jg/ «
ylo/ «Q

0.0
0.0
0.037
—0.051
—0.067
—0.334
—0.052
0.413
—2.160
1.445

0.0
0.0
0.038
—0.056
—0.024
—0.199
—0.037
0.289
—1.864
1.079

0.0
0.0
0.036
—0.057
—0.011
—0.150
—0.034
0.229
—1.718
0.889

0.0
0.0
0.034
—0.058
—0.004
—0.126
—0.032
0.195
—-1.633
0.771

0.0
0.0
0.032
—0.058
—0.001
—0.111
—0.031
0.173
—1.576
0.690

Table 16:AS = 1 NLO Wilson coefficients (NDR) for\ ¢, = A%) = 325 MeV.

| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

W
Yo
Ys
Ya
Ys
Ye
Y7 / «
ys/ «Q
yg/ «Q
Yio/

0.0
0.0
0.052
—0.064
0.037
—0.229
—0.023
0.500
—2.188
1.489

0.0
0.0
0.048
—0.063
0.021
—0.155
—0.030
0.329
—1.875
1.102

0.0
0.0
0.043
—0.062
0.018
—0.124
—0.031
0.255
—1.724
0.904

0.0
0.0
0.040
—0.061
0.017
—0.107
—0.031
0.214
—1.636
0.783

0.0
0.0
0.037
—0.061
0.016
—0.097
—0.030
0.188
—1.577
0.699

Table 17:AS = 1 NLO Wilson coefficients (HV) forAq, = A%) = 325 MeV.
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| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

!
Yo
Ys
Ya
Ys
Ye
Y / «Q
?Js/ «
?Jg/ «
ylo/ «Q

0.0
0.0
—0.020
—0.012
—0.447
—1.327
—0.218
0.788
—3.019
2.422

0.0
0.0
0.039
—0.056
—0.092
—0.415
—0.054
0.488
—2.236
1.538

0.0
0.0
0.043
—0.063
—0.036
—0.244
—0.036
0.342
—1.927
1.162

0.0
0.0
0.041
—0.065
—0.017
—0.181
—0.032
0.269
—1.768
0.958

0.0
0.0
0.039
—0.065
—0.008
—0.149
—0.031
0.227
—1.672
0.829

Table 18:AS = 1 NLO Wilson coefficients (NDR) for\ ¢, = A%) = 405 MeV.

| u

0.6 GeV|[0.7 GeV| 0.8 GeV|0.9 GeV| 1.0 GeV|

W
Yo
Ys
Ya
Ys
Ye
Y7 / «
ys/ «Q
yg/ «Q
Yio/

0.0
0.0
0.023
—0.053
0.217
—0.620
0.051
1.206
—3.154
2.589

0.0
0.0
0.059
—0.072
0.048
—0.272
—0.019
0.582
—2.267
1.587

0.0
0.0
0.055
—0.072
0.026
—0.183
—0.026
0.385
—1.939
1.187

0.0
0.0
0.050
—0.071
0.021
—0.145
—0.028
0.296
—1.774
0.975

0.0
0.0
0.046
—0.070
0.019
—0.125
—0.028
0.246
—1.676
0.842

Table 19:AS = 1 NLO Wilson coefficients (HV) forAq, = A%) = 405 MeV.
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