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1 Introduction

In this paper we address some phenomenological implications of the infrared behaviour

of the strong coupling constant �s[1]. In particular, we examine some models for the total

proton-proton and proton-antiproton cross-sections and show the dependence of the rise

with energy of the cross-section upon the small kt behaviour of �s, through the mecha-

nism of soft gluon summation. In a previous paper [2], soft gluon summation techniques

have been applied to develop a model for the impact parameter distribution of partons in

hadronic collisions. According to this model, the distribution in impact parameter space

(b-distribution) is the Fourier transform of the transverse momentum distribution of the

colliding parton pair, and is obtained by using the Bloch-Norsdieck technique for soft gluon

summation, developed some time ago to describe hadronic transverse momentum distribu-

tions [3–6]. This model for the b�distribution of partons is used in the context of eikonal

models for total cross-sections, and in particular in the context of the eikonal mini-jet mod-

els, where the rise with energy is driven by the jet cross-section calculated from QCD. In

order to make full use of QCD for this particular problem, it is necessary that not only the

energy dependence be derived from QCD, but also the b�dependence, at least for what

concerns the hard part of the cross-section : it may otherwise be possible to obscure the

difficulties of QCD inspired models through various parameters which are still present in

it. One of the difficulties is that the QCD cross-section rises too fast with energy to be able

to accomodate both the early rise (around
p
s = 10 � 20 GeV ) and the high energy be-

haviour at
p
s � 200�300 GeV and beyond. In some mini-jet models the too abrupt rise

of the mini-jet cross-section is softened by modifying the small x-behaviour of the parton

densities. Our alternative proposal, discussed in detail in this paper, is to regulate the rise

of the cross-section through soft gluon emission.

In Sect. 2 we present a brief description of the eikonal mini-jet model. In Sects.3�
6 we shall analyze the structure of the Block-Nordsieck model for the b�distribution of

partons, first recalling the main features of the model, and then studying , analytically as

well as numerically, its behaviour employing various phenomenological models for the

kt ! 0 behaviour of the strong coupling constant �s. In all cases, we shall compare our

results with those from a model in which the matter distribution of partons is obtained from

the electromagnetic form factor of the colliding hadrons. In the last two sections, Sects. 7

and 8, we shall study the predictions of the Bloch-Nordsieck model for total cross-sections

and shall compare our results for proton-protonand proton-antiprotoncollisions with other

models and present data. It will be shown that the model, with a singular but otherwise

integrable behaviour of�s, is flexible enough to accomodate both the early rise with energy

as well as present data from the Tevatron.
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2 Eikonal mini-jet model for total cross-sections

Ever since the first observation of the rise of proton-proton total cross-section, the sug-

gestion was advanced that such rise was due to the increasing (with energy) number of

hard collisions taking place among the hadron constituents [7]. This ansätz was subse-

quently quantified by the mini-jet model, which proposes to calculate the total inelastic

cross-section from the jet cross-section obtained from QCD [8,9]. The unitarized version

of the mini-jet model is represented by the eikonalized minijet model[10–12], in which the

total cross-section is given by

�tot = 2
Z
d2~b

h
1 � e�n(b;s)=2

i
(1)

with

n(b; s) = A(b)[�soft + �jet] (2)

and A(b) a function which represents the impact parameter distribution of partons in the

collision. In its most intuitive formulation, the overlap is obtained from the Fourier trans-

form of the electromagnetic form factors F1 and F2 of the colliding hadrons, i.e.

AFF (b) =
1

(2�)2

Z
d2~qeib�qF1(q)F2(q) (3)

The model which uses this overlap function, hereafter called the form factor (FF) model,

although attractive, is of course not parameter free, as it depends on the scale parameters

characterizing the form factors.

The two cross-section �soft and �jet are respectively a non-perturbative term and a

function of energy obtained by integrating the QCD jet cross-section from a minimum pt

value, ptmin, to the maximum kinematically allowed. This quantity increases with energy

at fixed ptmin, depending upon various QCD controlled quantities like the parton densities,

in particular, and very strongly, upon the small x-behaviour of the gluon densities. In fact,

the kinematic lower limit in the x-integration for the jet cross-section is given by xmin =

4p2tmin=s, and it can be as low as 10�6 at Tevatron energies. With such small x-values,

the jet cross-section grows much too rapidly as s increases and so does the eikonalized

cross-section. In order to apply the mini-jet model to data, a screening effect is obtained

either using the much less dangerous limit
p
xmin or softening the small-x singularity with

a cutoff parameter. In this way, the above model can reproduce the energy rise, but with

some further modifications, notably in A(b). In particular, in order to obtain reasonable

agreement with the data it is also necessary to modify the simple form factor model, by

allowing for different values of the scale parameters for the low and high energy region.

Our approach is different. We believe that the function A(b) is not a constant in en-

ergy and for the hard part of the collisions we have proposed a model in which soft gluon
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emission is responsible for the b-distribution of the colliding partons. Since the overall

soft gluon emission summation is energy dependent, we expect such model can modify

and complement the mini-jet model description of total cross-sections.

3 Bloch-Nordsieck formalism in impact parameter space

The Bloch-Nordsieck distribution depends upon the energies of the colliding quarks and

gluons and is thus, although mildly, energy dependent. In this section we shall recapitu-

late the main features of this model, whose general structure was derived in ref.[2]. As

described, our proposed impact parameter space distribution for a pair of partons i and j is

given by

ABN =
e�h(b;M;�)

2�
R
bdbe�h(b;M;�)

(4)

where

h(b;M;�) =
2cij
�

Z M

0

dkt
kt

�s(k
2
t ) ln

M +
q
M2 � k2t

M �
q
M2 � k2t

[1� J0(ktb)] (5)

with cij = 4=3 for a quark-antiquark pair. In eqs.(4,5) the hadronic scale M accounts for

the maximum energy allowed to each single soft gluon emitted in the collision. This quan-

tity depends upon the energy of the colliding parton pair and, through this, upon the energy

of the initial colliding hadrons. The main point of our model is that soft gluon emission

destroys the collinearity of the colliding partons. Let us distinguish now between valence

partons and gluons or sea quarks. In first approximation, gluons and sea quarks can be

considered as having the same non-collinearity as the initial valence quarks which emit

them during the hadronic collision (a different case will be that of the photons, which we

shall discuss in a different paper). To leading order we can now assume that the impact

parameter distribution of all type of parton pairs is the same as that of the valence quarks.

This approximation is in the same spirit as the one for which the impact parameter distri-

bution in the form factor model is given by the Fourier transform of the electromagnetic

form factors, i.e. matter distribution follows charge distribution.

In the calculation of total cross-sections with the eikonalized mini-jet model, the dis-

tribution (4) appears convoluted with parton densities and jet cross-sections. In ref.[2], we

proposed to write the average number of collisions at impact parameter b as

n(b; s) = nsoft(b; s) +
X
i;j;

Z dx1
x1

Z dx2
x2

fi(x1)fj(x2)
Z
dz
Z
dp2tABN(b; qmax)

d�

dp2tdz

(6)

where fi are the quark densities in the colliding hadrons, qmax is the maximum transverse

momentum allowed by kinematics to a single gluon emitted by the initial q�q pair, z =
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Figure 1: Two typical subprocesses contributing to the rise of the total proton-protoncross-
section

ŝjet=(sx1x2), and d�
dp2tdz

is the differential cross-section for process

q�q! jet jet+X (7)

for a given pt of the produced jets with c.m. energy
q
ŝjet. The jet pair in process (7) is the

one produced through any subprocess initiated by the valence quark-antipark pair, thus it

could be gluon jets, or quark jets. In Fig. 1 we show some typical subprocesses which con-

tribute to (7). For high energy and low pt, most of the jets are produced through scattering

of gluons emitted by a valence quark pair which continues undetected after emission. In

principle, an exact calculation of this model for n(b; s) would require to know A(b; qmax)

for each subenergy ŝ of the quark-antiquark pair because for process (7)

qmax(ŝ) =

p
ŝ

2
(1� ŝjet

ŝ
) (8)

and then one would need to calculate n(b; s) for each s value, through convolution for all

parton densities and all subprocesses. This procedure is at present unpractical for this prob-

lem, since the b-parameter dependence applies to the initial valence pair. What is available,

through various parametrizations, is parton densities after Q2 evolution, for all type of par-

tons, whereas the above formulation would require to apply corrections and evolution in

expressions which depend upon the impact variable b. In any case, before recommend-

ing to embarque in such a time-consuming integration, one can study the properties of the

proposed model, adopting some approximations, which allow for phenomenological cal-

culations. The approximation described in [2] is

n(b; s) = nsoft +ABN�jet(s; ptmin) (9)
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where ABN is the function ABN(b;< qmax >) evaluated at the value M =< qmax >,

obtained by averaging over all parton densities and jet subprocesses. In the next section

we shall evaluate< qmax > for different energies of the colliding hadrons and for different

ptmin values.

4 The scale dependence : qmax

Using the expression

M �< qmax(s) >=

p
s

2

P
i;j

R dx1
x1
fi=a(x1)

R dx2
x2
fj=b(x2)

p
x1x2

R
dz(1 � z)P

i;j

R dx1
x1
fi=a(x1)

R dx2
x2
fj=b(x2)

R
(dz)

(10)

with zmin = 4p2tmin=(sx1x2), one can plot the quantity M as a function of
p
s for differ-

ent values of ptmin. This is shown in Fig.2, where we have used GRV(LO) [13] parton

densities for proton proton collisions.
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eV
)

ptmin=1 to 2 GeV

Figure 2: The maximum value kinematically allowed for the transverse momentum of the
single gluon, averaged over densities (GRV-LO parametrization) and for different ptmin

values, as a function of the c.m. energy of the colliding protons.

One sees that, for
p
s � 50�104 GeV , the range of values for M is between 0.5 and

4 GeV for ptmin = 1�2GeV . For these typical values, one can now calculate h(b;M;�)

and subsequentlyA(b;M). Our point of interest in this paper is also to relate the rate of rise

of the total cross-section with the behaviour of �s in the infrared region. The stronger the

singularity as kt ! 0, the larger h(b;M;�), the faster ABN goes to zero and the stronger

will be the suppression produced by soft gluon emission. We shall now quantify this state-

ment with numerical calculations.
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5 �s dependence in the function h(b;M;�)

We start by showing how the b-dependence ofh(b;M;�) varies according to the behaviour

of �s in the very low kt region. Because of the many uncertainties we shall work with the

one-loop expression for �s and shall use two different models, each of them characterized

by a set of parameters, i.e. the frozen �s model used in [14,15] where

�s(k
2
t ) =

12�

33 � 2Nf

1

ln[(k2t + a2�2)=�2)]
(11)

which depends upon the parameter set f�; ag and in which �s goes to a constant value as

kt goes to zero. An altogether different model is the singular �s model, described in [2]

with

�s(k
2
t ) =

12�

(33 � 2Nf )

p

ln[1 + p( k
2

t

�2
)p]

(12)

which coincides with the usual one-loop expression for large values of k?, while going to

a singular limit for small k?. In this model, �s depends upon the parameter set f�; pg. The

singular expression of eq.(12) is inspired by the Richardson potential [16] used in quarko-

nium spectroscopy. The Richardson potential can be connected to a singular 1=k2? be-

haviour of�s in the infrared limit, a singularity which is not dangerous in bound state prob-

lems, where the Schroedinger equation selects only those solutions for which the momen-

tum is fixed by the stability condition. For this problem, and as discussed in [2], the expres-

sion we have chosen should be considered as a toy model, in which the singular behaviour

of �s (if any) can be modulated through the singularity parameter p. One should also no-

tice that the singular limit of the above equation is not an observable. Phenomenologically,

one never measures �s in the k? ! 0 limit, since this limit corresponds to emission of a

very soft gluon, in which case summation, and hence integration over k?, is mandatory.

In other words, what really matters is the integrability of the function, since observable

quantitites (soft gluons are observed only as overall energy momentum imbalance carried

away by soft particles, but not measured individually) always involve an integration over

the infrared region. In what follows we shall always use the set a = 2;� = 0:2 GeV

for the frozen �s model, whereas for the singular case, while we shall vary the singularity

parameter p, we shall adopt the value � = 0:1 GeV [17].

Let us now examine the function h(b;M;�). This function does not allow for a

closed form expression, and needs to be numerically evaluated. Useful analytical approx-

imations can be found in the appendix.

The dependence of the functionh(b;M;�) upon the infrared behaviour of�s is shown

in Fig.3, where we have plotted in the same graph the exactly integrated expression for

the function h(b;M;�) for the frozen case, eq.(11), and for the singular case, eq.(12), for

two values of the parameter p. For each case, we have evaluated h(b) for the two values
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Figure 3: Comparison between numerically integrated expressions for h(b;M;�) for sin-
gular and frozen �s. M = 1 (lower) and 4 GeV (upper).

M = 1 and 4 GeV , which correspond to the interesting range
p
s = 50 � 104 GeV , for

ptmin = 1�2 GeV (see Fig. 2). Although at very small b (b � 0:2 GeV �1) the values are

not very different, at larger b-values there is an increasing discrepancy between the two

formulations. The large b region below � 10 GeV �1 is the one which matters most for

the total cross-section analysis, where the figures then show that the infrared behaviour

of �s plays an important role in the rise of the cross-section. In the next sections we shall

study the difference inA(b) and then in the number of collisions, given the same jet-cross-

section.

6 The overlap function A(b)

In this section, we shall calculate numerically e�h(b;M;�) and the normalized A(b), for the

two cases, frozen and singular �s. We show in Figs.4,5 the normalized function A(b) for

the frozen and singular �s possibilities, using, for the latter case, three different values of

the parameter p which regulates the singularity. In both figures we also show the compar-

ison with the functionA(b) in the form factor model, according to which matter density in

the proton is given by the electromagnetic form factor. With the usual parametrization

Fproton(q) =

 
�2

q2 + �2

!2

�2 = 0:71GeV 2 (13)
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Figure 5: As in Fig.4 for singular �s,
for various values of the parameter
p.

the overlap function A(b) in the form factor model has the expression

AFF (b) =
�2

96�
(�b)3K3(�b) (14)

In each figure, the various curves correspond to varying the scale M as described in the

previous section, so that they include a range of energies
p
s = 50�104 GeV for a range

of ptmin between 1 and 2 GeV . We see that the frozen �s case is more similar to the form

factor model, especially at low medium energies, (50! 100GeV ), when the proton is not

yet exhibiting the full QCD behaviour. This is different from the singular case, where the

functionA(b) is always falling with energy more than in the form factor model. The more

singular �s as kt ! 0 (larger p values), the more concentrated at small impact parameter

is the overlap function and hence the less important the large b-values. This will have as

physical consequence that as the c.m. energy increases, the non-collinearity of the initial

state due to soft gluon emissions will accordingly increase. Clearly this will signify a much

more noticeable effect of soft gluon straggling on the total cross-section. We shall now see

this effect on the average number of collisions n(b; s).

7 Average number of collisions

In the eikonalized mini-jet model, the quantity which contains the energy dependence of

the total cross-section, is the average number of collisions n(b; s). At low c.m. energy of

the colliding particles, this number is dominated by contribution from soft, non-perturbative

type events, while the QCD component, mini-jet like, slowly rises, reaching a comparable

size in the 200�300 GeV region. As mentioned in the first section, one can approximate
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the average number of collisions in the entire region as

n(b; s) = nsoft(b; s) + nhard(b; s) (15)

with

nsoft(b; s) = AFF (b)�soft(s) (16)

and

nhard(b; s) = ABN(b;M;�)�jet(s; ptmin) (17)

To study the b-behaviour, we shall introduce the soft term, by using the form factor model

for A(b) described in the previous section, which is consistent with a low energy model

of the proton in which only valence quarks play a role in the scattering. In this model all

the energy dependence comes from the cross-section term : we will parametrize �soft so

as to reproduce, through the eikonal, the low energy behaviour of the total proton-proton

and proton anti-proton cross-sections. We found, as best fit to the low energy data with an

eikonal formulation with nhard = 0

�ppsoft = 47 +
46

E1:39
(18)

and

�p�psoft = 47 +
129

E0:661
+

357

E2:7
(19)

whereE is the proton energy in the Laboratory system in GeV and the cross-sections are in

mb. For�jet we use GRV(LO) densities to evaluate the proton-proton jet cross-section and

two different values of ptmin = 1:2 and 2 GeV , the latter being the one for which the total

cross-section in the FF model passes through the CERN data points at
p
s = 546 GeV .

In a subsequent section, when we shall try to fit the total cross-section data, we shall use

other ptmin values. We can now plot the entire n(b; s) as a function of b, for various values

of the center of mass energy
p
s, which corresponds to various values of the scale M, as

described in the first section. We show this behaviour for the frozen and singular �s case

in Figs.6, for ptmin = 2 GeV .

For the frozen �s model, shown in Fig.6, the results are compared to a straightfor-

ward application of the form factor model, i.e. with

nFF (b; s) = AFF (b)[�soft + �jet] (20)

We see that at
p
s = 100 GeV , there is still no difference betwen the two models. On

the other hand, as the energy increases, the BN model shows a stronger suppression of the

large b-contribution. For the singular case, in order to show variations with the singularity

parameter p, we plot in Fig.7 the result for different p-values. Notice that the p-dependence

is related to the values of kt probed, i.e. by the M values,which are smaller the smaller
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ptmin is. Thus, for ptmin = 2 GeV for instance, there is very little difference among the

various curves, at any given energy. This reflects the fact that the upper integration limit

in eq.(5) is a relatively large M (3� 4GeV ) value, so that the overall function is not very

sensitive to the infrared region. It should be noted that for smaller ptmin values, like the

ones actually used for fitting the total cross-sections in the next section, the dependence

upon p is much more noticeable. We show one such case in Fig.7.

The next figure, Fig.8, shows a break down of the average number of collisions into

the soft and the hard component. In the present analysis we are not changing the soft com-

ponent, which appears as the dash-dotted curve, and the figure shows, at a given high

(LHC) energy, how the hard part would be different in the three models, i.e. in general

more peaked at small b for the Bloch-Nordsieck model, and in particular falling faster the

stronger the singularity of �s. At lower energies, where the mini-jet contribution is less

important, these discrepancies would be much reduced. So, in this picture, while keep-

ing a similar b-distribution at low energy, we quantitatively enhance small b-collisions at

high energy, though QCD soft gluon emission. The change in the b-distribution introduced

in the hard component by the different models for A(b) is responsible for the changed

shape of n(b; s) between the form factor and the other two models. The direct compar-

ison among the three models is shown in Fig.(9) where the average number of collisions

at
p
s = 14 TeV is plotted for a choice of the various parameters as indicated. Apart from

the change in shape, it can be noticed that the frozen�s case corresponds to a behaviour in-

termediate between the form factor model, and the singular �s case. We also see from this

figure that the range of values of the b�parameter most important to the total cross-section

calculation changes in the different models.
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8 Total cross-sections

Before attempting the last relevant phenomenological exercise for the calculation of the

total proton-proton and proton-antiproton cross-section, we shall first show how the inte-

grand in eq.(1) changes with energy and which values of b are most relevant for the cal-

culation of the total cross-section in the various models for A(b) we have just described.

We must stress that this is not an optimization of the many parameters from which this

model depends : rather an exercise to show how the Bloch-Nordsieck model for the impact

parameter distribution affects the total cross-section behaviour in the eikonalized minijet

model and how the behaviour of �s in the infrared region is related to the rise of the total

cross-section. This is done in Fig.10. The figure shows how much the integrand of eq.(1) is

peaked at different b-values as the energy increases, but also as the model forA(b) changes.

And it indicates that the rise with energy of the area under the curve, i.e. the cross-section,

at the same energy shrinks for the more singular �s behaviour.

Finally in Fig.11 we show the comparison of this model with proton-protonand proton-

antiproton data. For proton-proton, we only show data up to ISR energies, since the exist-

ing data points in the TeV range are extrapolations from cosmic ray data [18] from p�air

collisions and are partly model dependent[19]. For the proton-antiproton data, we have

plotted all the data points published so far from the CERN Sp�pS [20] and FNAL [21] ex-

periments. This introduces a larger band of uncertainty that it is usually shown, but the

purpose of this paper is to indicate the potentiality of the Bloch-Nordsieck model rather

than to do a best parameter fit, and we have opted for a comparison of our results with the

full experimental picture.
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Figure 10: The integrand of the eikonal formulation for�tot, for ptmin = 2GeV in the three
different models described in the text, for a range of c.m. energy values 100,1000,10000
GeV

.

We have studied three different formulations of the eikonal mini-jet model, one for

the form factor model and two for the soft gluon summation model. To choose the param-

eters of the mini-jet description, we have selected those ptmin values which would ensure

that the curve can reach the high energy points : for the form factor model this can be ac-

complished with ptmin = 2 GeV but, as often stressed, with such value it is not possible

to fit the early rise of the data. A lower value of ptmin would on the other hand give curves

which rise too much at higher energy and miss the points. Going to the soft gluon sum-

mation model, it must be noticed that since this model has an energy dependence in the

b-behaviour in addition to the one in the jet-cross-section (common to all the models), one

can expect that a smaller ptmin could be used, thus allowing for the earlier rise. In fact, the

high energy data, for the frozen �s model, can be met with ptmin = 1:6 GeV . Although

with this value, the cross-section starts rising sooner than in the form factor model, still it is

impossible to fit both the early rise as well as the high energy points. This model depends

not only upon ptmin value, but also on the scale a which regulates the infrared behaviour

of �s : the smaller a, the more singular the behaviour and the easier to fit the early rise.
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Figure 11: Total p-p and �pp cross-sections and comparison with various models

Finally, we show the results for the singular �s case, with a particular choice of the pa-

rameter p which regulates the singularity of �s. We can choose now a rather small value

of ptmin to reproduce the early rise, since at higher energy the increased soft gluon emis-

sion reduces drastically the large-b contribution to the cross-section and does not let it rise

as much as in the other models. Our results are compared with a multiparameter fit from

a QCD inspired model[12], which has recently been used to successfully predict photon

photon total cross-sections[22]. These results are not very different from the ones obtained

using the Regge-Pomeron exchange picture [23], but the model in [22] is closer in spirit

to the one discussed here, with the energy rise due to the rise of the QCD jet cross-section.

The results of this figure shows that it is possible to have a rise in agreement both with

the intermediate energy data as well as with the Tevatron data : this result is obtained using

a single eikonal function, usual QCD parton densities and minijet cross-sections with ptmin

in the 1�2 GeV range. To follow the beginning of the rise, one needs a rather low ptmin.

In general such low values imply too fast a growth of the total cross-section, in our case

14



this fast growth is tampered by the increasing number of soft gluon emission phenomena

at small kt.

9 Conclusions

We have presented a detailed numerical analysis of a Bloch-Nordsieck approach to the im-

pact parameter distribution of partons in the context of the eikonal mini-jet model for total

hadronic cross-sections. We have shown that the proposed soft gluon summation expres-

sion plays an important role in softening the rise of the cross-section due to mini-jets and

have studied the role which the infrared behaviour of �s plays in it.
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A Approximate Expressions for h(b;M;�)

In this section, we show some analytic approximations to the function h(b;M;�). Here we

shall restrict our attention to values of M relevant to the total cross-section calculations,

i.e. values in the few GeV range. Since as the total c.m. energy increases, M increases

from 0.5 to 4 GeV, the region of b > 1=M (b < 1=M ) corresponds to values of b larger

(smaller) than 2:5 GeV �1, at low
p
s, down to 0:2 GeV �1 for the highest

p
s values. In

other words, in the integration, small and large b-values are an energy dependent concept :

at very small
p
s, small b, i.e. b < 1=M means values of b less than 2:5GeV �1, whereas at

very high energy large b-values mean b > 0:2GeV . We shall now start studying h(b;M�)

in the frozen �s case, and distinguish three cases :

1. bM < 1

2. bM > 1, ba� < 1

3. bM > 1, ba� > 1

In order to obtain a closed form expression to better study the function, we shall

adopt the following approximations :

�s(k < a�) � ��s =
12�

27ln(a2)

�s(k > a�) =
12�

27ln k2

�2
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ln M+
p
M2�k2

M�
p
M2�k2 � 2 ln

2M

k
k � 0 and

ln M+
p
M2�k2

M�
p
M2�k2 � 2 ln

M

k
for k values not in the infrared region.

1� J0(x) =
x2

4
x < 1

1� J0(x) = 1 x > 1

Then, one can break the integral from 0 ! M into various intervals in which one can

approximate the integrand and perform the integration. According to the three cases indi-

cated above, one then obtains the following approximate expression :

bM < 1 (A.1)

h(b;M;�) =
2cF
�

"
��s
b2

2

Z a�

0
kdk ln

2M

k
+�b

b2

4

Z M

a�
kdk

ln M
k

ln k
�

#

=
2cF
�

(
��s
b2�2a2

8

�
1 + 2 ln

2M

a�

�
+

+ �b
b2M2

8

(
a2�2

M2
� 1 + 2

�2

M2
ln
M

�

"
li

 
M2

�2

!
� li(a2)

#))

For bM > 1, one distinguishes between two cases : b larger or smaller than 1=a�, so that

the integral can now be divided as follows :

for 1
M

< b <
1

a�
(A.2)

h(b;M;�) =
2cF
�

"
��s
b2

2

Z a�

0
kdk ln

2M

k
+ �b

b2

4

Z 1

b

a�
kdk

ln M
k

ln k
�

+�b
Z M

1

b

dk
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ln M
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ln k
�

#

=
2cF
�

"
��s
b2�2a2

8

�
1 + 2 ln

2M

a�

�
+

�b
b2�2

8

�
a2 � 1

b2�2
+ 2 ln

M

�

�
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�

1

b2�2

�
� li(a2)

��
+

�b

"
ln
M

�
ln

ln M
�

ln 1
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� ln(Mb)
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or as

for 1
M

<
1

a�
< b (A.3)

h(b;M;�) =
2cF
�

"
��s
b2

2

Z 1

b

0
kdk ln

2M

k
+ 2��s

Z a�

1

b

dk

k
ln
M

k
+�b

Z M

a�

dk

k

ln M
k

ln k
�

#

=
2cF
�

"
��s

8
[1 + 2 ln(2Mb)] +
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2��s

�
ln(Mb) ln(a�b)� 1

2
ln2 (a�b)

�
+

�b

"
ln
M

�
ln

ln M
�

ln a
� ln

M

a�

##

The last decomposition is the one to use to study the large b limit, whereas the first

one corresponds to the small b limit.

For the singular �s case we adopt similar approximations, except that now

�s(k < Np�) = �b
�
�

k

�2p

�s(k > Np�) =
�b

ln( k
2

�2 )

where Np =

 
1

p

!1=2p

is a number of order unity. For p=1/2, indeed Np = 2 and the

two regions, small and large k, coincide with those in the frozen �s case with a=2. The

expressions for h(b;M;�) in this case become :

b <
1

M
(A.4)

h(b;M;�) =
2cF
�

"
�b
b2

2
(�)2p

Z �Np

0

dk

k2p�1
ln
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�
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+
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M2
� 1 +

�2

M2
2 ln

M

�

"
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M2

�2

!
� li(N2

p )

#)#

and for the bM > 1 case one will have the two possibilities,

for
1

M
< b <

1

Np�
(A.5)

h(b;M;�) =
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and the other case

b >
1

Np�
>

1

M
(A.6)
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This approximation is reasonably accurate, as one can see from Figs.12-13, where we have

plotted both the approximate and the exact expressions from the above equations for the

two different models for �s.

Figure 12: Comparison between the
approximate and the actual numer-
ical integration for h(b;M;�) for
various values for M, in the frozen
�s model

Figure 13: Comparison between the
approximate and the actual numeri-
cally
computed expression for h(b;M;�)
for the singular �s model
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