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Abstract

The Bloch-Nordsieck model for the parton distribution of hadronsinimpact parame-
ter space, constructed using soft gluon summation, isinvestigated in detail. Itsdependence
upon the infrared structure of the strong coupling constant « is discussed, both for finite
as well as singular, but integrable, o,. The formalism is applied to the prediction of to-
tal proton-proton and proton-antiproton cross-sections, where screening, dueto soft gluon
emission from the initial valence quarks, becomes evident.
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1 Introduction

In this paper we address some phenomenological implications of the infrared behaviour
of the strong coupling constant «;[1]. In particular, we examine some modelsfor the total
proton-proton and proton-antiproton cross-sections and show the dependence of the rise
with energy of the cross-section upon the small &; behaviour of «;, through the mecha-
nism of soft gluon summation. In a previous paper [2], soft gluon summation techniques
have been applied to develop amodel for the impact parameter distribution of partonsin
hadronic collisions. According to this model, the distribution in impact parameter space
(b-distribution) is the Fourier transform of the transverse momentum distribution of the
colliding parton pair, and isobtai ned by using the Bloch-Norsdi eck techniquefor soft gluon
summation, devel oped some time ago to describe hadroni ¢ transverse momentum distribu-
tions[3-6]. This model for the b—distribution of partonsis used in the context of eikonal
modelsfor total cross-sections, and in particular in the context of the eikonal mini-jet mod-
els, where the rise with energy isdriven by the jet cross-section calculated from QCD. In
order to make full use of QCD for this particular problem, it is necessary that not only the
energy dependence be derived from QCD, but also the b—dependence, at least for what
concerns the hard part of the cross-section : it may otherwise be possible to obscure the
difficulties of QCD inspired models through various parameters which are still present in
it. One of the difficultiesisthat the QCD cross-section risestoo fast with energy to be able
to accomodate both the early rise (around /s = 10 + 20 GeV') and the high energy be-
haviour at /s > 200+ 300 GGeV and beyond. In some mini-jet modelsthe too abrupt rise
of the mini-jet cross-section is softened by modifying the small x-behaviour of the parton
densities. Our aternative proposal, discussed in detail in this paper, isto regulate the rise
of the cross-section through soft gluon emission.

In Sect. 2 we present a brief description of the eilkonal mini-jet model. In Sects.3+
6 we shall analyze the structure of the Block-Nordsieck model for the b—distribution of
partons, first recalling the main features of the model, and then studying , analytically as
well as numerically, its behaviour employing various phenomenological models for the
k; — 0 behaviour of the strong coupling constant «,. In all cases, we shall compare our
resultswith those from amodel inwhich the matter distribution of partonsis obtained from
the electromagnetic form factor of the colliding hadrons. In the last two sections, Sects. 7
and 8, we shall study the predictionsof the Bloch-Nordsieck model for total cross-sections
and shall compare our resultsfor proton-protonand proton-antiproton collisionswith other
models and present data. It will be shown that the model, with a singular but otherwise
integrable behaviour of «, isflexible enough to accomodate both the early risewith energy
aswell as present datafrom the Tevatron.



2 Eikonal mini-jet model for total cross-sections

Ever since the first observation of the rise of proton-proton total cross-section, the sug-
gestion was advanced that such rise was due to the increasing (with energy) number of
hard collisions taking place among the hadron constituents [7]. This ansatz was subse-
guently quantified by the mini-jet model, which proposes to calculate the total inelastic
cross-section from the jet cross-section obtained from QCD [8,9]. The unitarized version
of themini-jet model isrepresented by the eikonalized minijet model[10-12], in which the
total cross-section is given by

Orot = Q/dQZ; {1 — e_”(b’s)/z} D

with
n(b,s) = A(b)[osos: + 0jet] 2

and A(b) afunction which represents the impact parameter distribution of partonsin the
collision. Initsmost intuitive formulation, the overlap is obtained from the Fourier trans-
form of the electromagnetic form factors F; and F; of the colliding hadrons, i.e.

1
(27)?
The model which uses this overlap function, hereafter called the form factor (FF) model,
although attractive, is of course not parameter free, as it depends on the scale parameters
characterizing the form factors.

The two cross-section o, ;; and o;., are respectively a non-perturbative term and a
function of energy obtained by integrating the QCD jet cross-section from a minimum p,
value, psmin, to the maximum kinematically allowed. This quantity increases with energy
at fixed py,.i,,, depending upon various QCD controlled quantitieslike the parton densities,
in particular, and very strongly, upon the small x-behaviour of the gluon densities. In fact,
the kinematic lower limit in the x-integration for the jet cross-section isgiven by «,,,;, =
4p? .. /s, and it can be as low as 10~° at Tevatron energies. With such small x-values,
the jet cross-section grows much too rapidly as s increases and so does the eikonalized
cross-section. In order to apply the mini-jet model to data, a screening effect is obtained
either using the much less dangerouslimit | /z,,,;,, or softening the small-x singularity with
a cutoff parameter. In thisway, the above model can reproduce the energy rise, but with
some further modifications, notably in A(b). In particular, in order to obtain reasonable
agreement with the data it is also necessary to modify the simple form factor model, by
allowing for different values of the scale parameters for the low and high energy region.

Our approach is different. We believe that the function A(b) isnot aconstant in en-
ergy and for the hard part of the collisions we have proposed a model in which soft gluon

App(b) = | #de i Fia)Fala) 3)



emission is responsible for the b-distribution of the colliding partons. Since the overall
soft gluon emission summation is energy dependent, we expect such model can modify
and complement the mini-jet model description of total cross-sections.

3 Bloch-Nordsieck formalism in impact parameter space

The Bloch-Nordsieck distribution depends upon the energies of the colliding quarks and
gluons and is thus, although mildly, energy dependent. In this section we shall recapitu-
late the main features of this model, whose general structure was derived in ref.[2]. As
described, our proposed impact parameter space distribution for apair of partonsi andj is
given by

o—h(BMA)

Ay = 4
BN 9 [ bdbeh(iMA) @)

where
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with ¢;; = 4/3 for aquark-antiquark pair. In egs.(4,5) the hadronic scale M accounts for
the maximum energy allowed to each single soft gluon emitted in the collision. This quan-
tity depends upon the energy of the colliding parton pair and, through this, upon the energy
of theinitial colliding hadrons. The main point of our model is that soft gluon emission
destroysthe collinearity of the colliding partons. Let us distinguish now between valence
partons and gluons or sea quarks. In first approximation, gluons and sea quarks can be
considered as having the same non-collinearity as the initial valence quarks which emit
them during the hadronic collision (adifferent case will be that of the photons, which we
shall discuss in a different paper). To leading order we can now assume that the impact
parameter distribution of al type of parton pairsisthe same as that of the valence quarks.
This approximation isin the same spirit as the one for which the impact parameter distri-
bution in the form factor model is given by the Fourier transform of the electromagnetic
form factors, i.e. matter distribution follows charge distribution.

Inthe calculation of total cross-sectionswith the eikonalized mini-jet model, thedis-
tribution (4) appears convoluted with parton densitiesand jet cross-sections. Inref.[2], we
proposed to write the average number of collisions at impact parameter b as

n(b,s) = ng (b, s —I—Z/ day / dx? (1) f (a2 /dz/dpfABN(b Qmax)d;;lz
(6)
where f; arethe quark densitiesin the colliding hadrons, ¢,., ... iSthe maximum transverse
momentum allowed by kinematics to a single gluon emitted by the initial ¢g pair, = =



valence quark valence quark

valence quark valence quark

Figure1: Two typical subprocesses contributingto theriseof thetotal proton-protoncross-
section

Sjet/(sx129), and d;@—i& isthe differential cross-section for process

qq — jet jet + X @)

for agiven p; of the produced jetswith c.m. energy \/3]: . Thejet pair in process(7) isthe
one produced through any subprocess initiated by the valence quark-antipark pair, thus it
could begluonjets, or quark jets. InFig. 1 we show sometypical subprocesseswhich con-
tributeto (7). For high energy and low p,, most of the jets are produced through scattering
of gluons emitted by a valence quark pair which continues undetected after emission. In
principle, an exact calculation of thismodel for n(b, s) would requireto know A(b, ¢maz)
for each subenergy s of the quark-antiquark pair because for process (7)
Vo S

nan(5) = (1 = 22 ®

and then one would need to calculate n(b, s) for each svalue, through convolution for all
parton densitiesand all subprocesses. Thisprocedureisat present unpractical for thisprob-
lem, sincetheb-parameter dependenceappliesto theinitial valence pair. What isavailable,
through various parametrizations, is parton densities after ()% evolution, for all type of par-
tons, whereas the above formulation would require to apply corrections and evolution in
expressions which depend upon the impact variable b. In any case, before recommend-
ing to embarquein such atime-consuming integration, one can study the properties of the
proposed model, adopting some approximations, which allow for phenomenological cal-
culations. The approximation described in [2] is

n(bv 3) = Nsoft + ABNUjet(Saptmin) (9)



where Agy isthe function Agn (b, < @ma. >) evauated at thevalue M =< gpaz >,
obtained by averaging over all parton densities and jet subprocesses. In the next section
weshall evaluate < ¢,,,,. > for different energies of the colliding hadronsand for different
Pemin Val ues.

4 Thescaledependence: ¢4

Using the expression

VX B fyalan) i) e [ d(1 - 2)
2 Yig S fialwn) [ 22 fip(a2) f(d2)

with z,,;, = 4p? . /(sz124), One can plot the quantity M as afunction of /s for differ-

ent values of py,,i,. Thisis shown in Fig.2, where we have used GRV(LO) [13] parton
densities for proton proton collisions.

(10)

M =< Gmaz(s) >
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Figure 2: The maximum value kinematically allowed for the transverse momentum of the
single gluon, averaged over densities (GRV-LO parametrization) and for different p,..,
values, asafunction of the c.m. energy of the colliding protons.

Oneseesthat, for /s ~ 50+ 10* GeV/, therange of valuesfor M isbetween 0.5 and
4 GeV for pmin, = 1 +2 GeV. For thesetypical values, one can now calculate h(b; M, A)
and subsequently A(b, M'). Our point of interest inthispaper isalso torelatetherate of rise
of thetotal cross-section with the behaviour of « inthe infrared region. The stronger the
singularity as k; — 0, thelarger h(b; M, A), the faster Ay goes to zero and the stronger
will bethe suppression produced by soft gluon emission. We shall now quantify thisstate-
ment with numerical calculations.



5 «, dependencein thefunction h(b; M, A)

We start by showing how theb-dependenceof . (b; M, A) variesaccordingto the behaviour
of o, inthevery low £, region. Because of the many uncertaintieswe shall work with the
one-loop expression for «; and shall use two different models, each of them characterized
by aset of parameters, i.e. thefrozen o, model used in [14,15] where

127 1

(k) = 35N, [k + a2A7)jA7)] )

which depends upon the parameter set { A, «} and in which o, goesto a constant value as
k; goesto zero. An altogether different model is the singular o, model, described in [2]
with 12 )
2

)= 5Ny In[1 + p( 55 )7] (2
which coincides with the usual one-loop expression for large values of £, while going to
asingular limitfor small &, . Inthismodel, o, depends upon the parameter set {A, p}. The
singular expression of eq.(12) isinspired by the Richardson potential [16] used in quarko-
nium spectroscopy. The Richardson potential can be connected to a singular 1/k? be-
haviour of o, intheinfraredlimit, asingularity whichisnot dangerousin bound state prob-
lems, where the Schroedinger equation sel ects only those solutions for which the momen-
tum isfixed by thestability condition. For thisproblem, and asdiscussedin[2], theexpres-
sion we have chosen should be considered as atoy model, in which the singular behaviour
of a, (if any) can be modulated through the singularity parameter p. One should also no-
ticethat the singular limit of the above equation isnot an observable. Phenomenologically,
one never measures o, inthe k£, — 0 limit, since thislimit corresponds to emission of a
very soft gluon, in which case summation, and hence integration over %, is mandatory.
In other words, what really matters is the integrability of the function, since observable
quantitites (soft gluons are observed only as overall energy momentum imbalance carried
away by soft particles, but not measured individually) always involve an integration over
the infrared region. In what follows we shall dwaysusetheset « = 2,A = 0.2 GeV
for thefrozen o, model, whereasfor the singular case, whilewe shall vary the singularity
parameter p, we shall adopt thevalue A = 0.1 GeV[17].

Let us now examine the function %(b; M, A). This function does not alow for a
closed form expression, and needs to be numerically evaluated. Useful analytical approx-
imations can be found in the appendix.

Thedependence of thefunction 2(b; M, A) upontheinfrared behaviour of «; isshown
in Fig.3, where we have plotted in the same graph the exactly integrated expression for
the function i (b, M, A) for the frozen case, eq.(11), and for the singular case, eq.(12), for
two values of the parameter p. For each case, we have evaluated /(b) for the two values
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Figure 3: Comparison between numerically integrated expressionsfor /(b, M, A) for sin-
gular and frozen a;. M = 1 (lower) and 4 GeV (upper).

M =1 and 4 GeV, which correspond to the interesting range /s = 50 < 10* GeV/, for
Pemin = 1 +2 GeV (seeFig. 2). Although at very small b (b < 0.2 GeV ™) thevaluesare
not very different, at larger b-values there is an increasing discrepancy between the two
formulations. The large b region below =~ 10 GieV~! is the one which matters most for
the total cross-section analysis, where the figures then show that the infrared behaviour
of a; plays animportant rolein the rise of the cross-section. In the next sections we shall
study thedifferencein A(b) and then in the number of collisions, given the same jet-cross-
section.

6 Theoverlap function A(b)

In this section, we shall calculate numerically e=**:4) and the normalized A(b), for the
two cases, frozen and singular «,. We show in Figs.4,5 the normalized function A(b) for
the frozen and singular «; possibilities, using, for the latter case, three different values of
the parameter p which regulates the singularity. In both figures we also show the compar-
ison with the function A(b) in the form factor model, according to which matter density in
the proton is given by the electromagnetic form factor. With the usual parametrization

1/2

q2_|_1/2

2
Foroton(q) = ( ) V2 =0.71GeV? (13)
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the overlap function A(b) in the form factor model has the expression

1/2

App(b) = 5= (vb)” Ks(ub) (14)

In each figure, the various curves correspond to varying the scale M as described in the
previous section, so that they include arange of energies /s = 50 + 10* GeV for arange
of ps,,.., between 1 and 2 GeV'. We see that the frozen o, case ismore similar to the form
factor model, especially at low medium energies, (50 — 100 G'eV'), when the protonisnot
yet exhibiting the full QCD behaviour. Thisisdifferent from the singular case, where the
function A(b) isaways falling with energy more than in the form factor model. The more
singular o, ask; — 0 (larger p values), the more concentrated at small impact parameter
is the overlap function and hence the less important the large b-values. This will have as
physical consequence that as the c.m. energy increases, the non-collinearity of theinitial
state dueto soft gluon emissionswill accordingly increase. Clearly thiswill signify amuch
more noticeabl e effect of soft gluon straggling on thetotal cross-section. We shall now see
this effect on the average number of collisions (b, s).

7 Average number of collisons

In the eitkonalized mini-jet model, the quantity which contains the energy dependence of
the total cross-section, is the average number of collisionsn(b, s). At low c.m. energy of
the colliding particles, thisnumber isdominated by contributionfrom soft, non-perturbative
type events, while the QCD component, mini-jet like, Sowly rises, reaching acomparable
sizein the 200 = 300 GeV region. Asmentioned in the first section, one can approximate



the average number of collisionsin the entireregion as

n(b,s) = nsost(by 8) + Npara(b, s) (15)

with
Nsopi(b,5) = Arp(b)ososi(s) (16)

and
Nhard(D, 8) = ApN(b; M, A)0 et (s, Pemin) (17)

To study the b-behaviour, we shall introduce the soft term, by using the form factor model
for A(b) described in the previous section, which is consistent with alow energy model
of the proton in which only valence quarks play arolein the scattering. In this model all
the energy dependence comes from the cross-section term : we will parametrize o, s+ SO
as to reproduce, through the eikonal, the low energy behaviour of the total proton-proton
and proton anti-proton cross-sections. We found, as best fit to the low energy datawith an
eikonal formulation with ny,,,.4 = 0

46
Uffft =47+ J1.39 (18)
and 129 357
Uffft =47+ 70661 + 27 (19)

where £ isthe proton energy inthe Laboratory system in GeV and the cross-sectionsarein
mb. For o;., weuse GRV (LO) densitiesto eval uate the proton-protonjet cross-section and
two different values of p;,,.., = 1.2 and 2 GeV/, thelatter being the one for which the total
cross-section in the FF model passes through the CERN data points at /s = 546 GeV/.
In a subsequent section, when we shall try to fit the total cross-section data, we shall use
other p...;, values. We can now plot the entire (b, s) asafunction of b, for variousvalues
of the center of mass energy +/s, which corresponds to various values of the scale M, as
described in the first section. We show this behaviour for the frozen and singular o, case
in Figs.6, for p;,,., = 2 GeV.

For the frozen o, model, shown in Fig.6, the results are compared to a straightfor-
ward application of the form factor model, i.e. with

npr(b,s) = App(b)[0sost + Ojet] (20)

We see that at /s = 100 GeV, thereis till no difference betwen the two models. On
the other hand, as the energy increases, the BN model shows a stronger suppression of the
large b-contribution. For thesingular case, in order to show variationswith the singul arity
parameter p, weplotinFig.7 theresult for different p-values. Noticethat the p-dependence
is related to the values of £, probed, i.e. by the M valueswhich are smaller the smaller

10
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Figure 7: The average number of
collisonsfor thesingular o, casefor
different valuesof thesingularity pa-
rameter p.

Prmin 1S. THUS, fOr py0 = 2 GeV for instance, there is very little difference among the
various curves, at any given energy. This reflects the fact that the upper integration limit
ineg.(5) isarelatively large M (3 + 4 GeV') value, so that the overall function isnot very
sendgitive to the infrared region. It should be noted that for smaller p,,,.., vaues, like the
ones actually used for fitting the total cross-sections in the next section, the dependence
upon p is much more noticeable. We show one such casein Fig.7.

The next figure, Fig.8, shows abreak down of the average number of collisionsinto
the soft and the hard component. In the present analysis we are not changing the soft com-
ponent, which appears as the dash-dotted curve, and the figure shows, at a given high
(LHC) energy, how the hard part would be different in the three models, i.e. in genera
more peaked at small b for the Bloch-Nordsieck model, and in particular falling faster the
stronger the singularity of ;. At lower energies, where the mini-jet contribution is less
important, these discrepancies would be much reduced. So, in this picture, while keep-
ing asimilar b-distribution at low energy, we quantitatively enhance small b-collisions at
high energy, though QCD soft gluon emission. The changein the b-distributionintroduced
in the hard component by the different models for A(b) is responsible for the changed
shape of n(b, s) between the form factor and the other two models. The direct compar-
ison among the three modelsis shown in Fig.(9) where the average number of collisions
at /s = 14 T'eV isplotted for achoice of the various parametersasindicated. Apart from
the changein shape, it can be noticed that the frozen «, case correspondsto abehaviour in-
termediate between the form factor model, and the singular o, case. We also seefromthis
figurethat the range of values of the b—parameter most important to the total cross-section
calculation changes in the different models.

11
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Figure 8: Soft and hard component
of n(b,s) in the three models de-
scribed in the text.

8 Total cross-sections

Before attempting the last relevant phenomenological exercise for the calculation of the
total proton-proton and proton-antiproton cross-section, we shall first show how the inte-
grand in eg.(1) changes with energy and which values of b are most relevant for the cal-
culation of the total cross-section in the various models for A(b) we have just described.
We must stress that this is not an optimization of the many parameters from which this
model depends: rather an exerciseto show how the Bloch-Nordsieck model for theimpact
parameter distribution affects the total cross-section behaviour in the eikonalized minijet
model and how the behaviour of o in the infrared regionis related to the rise of the total
cross-section. Thisisdonein Fig.10. Thefigure shows how much theintegrand of eg.(1) is
pesked at different b-valuesasthe energy increases, but also asthemodel for A(b) changes.
And it indicatesthat the rise with energy of the areaunder the curve, i.e. the cross-section,
at the same energy shrinksfor the more singular «; behaviour.

Finally in Fig.11 we show the comparison of thismodel with proton-protonand proton-
antiproton data. For proton-proton, we only show data up to | SR energies, since the exist-
ing datapointsin the TeV range are extrapol ations from cosmic ray data[18] from p — air
collisions and are partly model dependent[19]. For the proton-antiproton data, we have
plotted all the data points published so far from the CERN SppS [20] and FNAL [21] ex-
periments. This introduces a larger band of uncertainty that it is usualy shown, but the
purpose of this paper is to indicate the potentiality of the Bloch-Nordsieck model rather
than to do a best parameter fit, and we have opted for a comparison of our resultswith the
full experimental picture.

12
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Figure10: Theintegrand of theeikonal formulationfor o, for p;.., = 2 GeV inthethree
different models described in the text, for arange of c.m. energy values 100,1000,10000
GeV

We have studied three different formulations of the eilkonal mini-jet model, one for
the form factor model and two for the soft gluon summation model. To choose the param-
eters of the mini-jet description, we have selected those p,..;,, values which would ensure
that the curve can reach the high energy points: for the form factor model this can be ac-
complished with p;,,.;, = 2 GeV but, as often stressed, with such valueit is not possible
to fit the early rise of thedata. A lower value of p,,,;, would on the other hand give curves
which rise too much at higher energy and miss the points. Going to the soft gluon sum-
mation model, it must be noticed that since this model has an energy dependence in the
b-behaviour in addition to the onein the jet-cross-section (common to all the models), one
can expect that asmaller p;,.;,, could be used, thus alowing for the earlier rise. Infact, the
high energy data, for the frozen o, model, can be met with p;,..;,, = 1.6 GeV. Although
with thisvalue, the cross-section startsrising sooner than intheform factor model, still itis
impossible to fit both the early rise aswell asthe high energy points. This model depends
not only upon p.,.;, value, but also on the scale « which regulates the infrared behaviour
of a, : the smaler «, the more singular the behaviour and the easier to fit the early rise.

13
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Figure 11: Total p-p and pp cross-sections and comparison with various models

Finally, we show the results for the singular o, case, with a particular choice of the pa
rameter p which regulates the singularity of «. We can choose now a rather small value
of pimin t0 reproduce the early rise, since at higher energy the increased soft gluon emis-
sion reduces drastically the large-b contribution to the cross-section and does not let it rise
as much asin the other models. Our results are compared with a multiparameter fit from
a QCD inspired model[12], which has recently been used to successfully predict photon
photon total cross-sectiong[22]. Theseresultsarenot very different from the ones obtained
using the Regge-Pomeron exchange picture [23], but the model in [22] is closer in spirit
to the one discussed here, with the energy rise dueto therise of the QCD jet cross-section.

Theresultsof thisfigureshowsthat itispossibleto havearisein agreement bothwith
theintermediateenergy dataaswell aswiththe Tevatron data: thisresult isobtained using
asingleeikonal function, usual QCD parton densitiesand minijet cross-sectionswith py,.,:,,
inthel =2 GeV range. To follow the beginning of the rise, one needs arather low py,.,:,,.
In general such low values imply too fast a growth of the total cross-section, in our case
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this fast growth is tampered by the increasing number of soft gluon emission phenomena
at small k.

9 Conclusions

We have presented adetailed numerical analysis of aBloch-Nordsieck approach totheim-
pact parameter distribution of partonsin the context of the eilkonal mini-jet model for total
hadronic cross-sections. We have shown that the proposed soft gluon summation expres-
sion plays an important role in softening the rise of the cross-section due to mini-jets and
have studied the role which the infrared behaviour of o, playsinit.
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A Approximate Expressionsfor a(b, M, A)

I n thissection, we show some analytic approximationsto thefunction (b, M, A). Herewe
shall restrict our attention to values of M relevant to the total cross-section calculations,
i.e. valuesinthe few GeV range. Since as the total c.m. energy increases, M increases
from 0.5to 4 GeV, theregion of b > 1/M (b < 1/M) corresponds to values of b larger
(smaller) than 2.5 GeV ™!, a low /s, down to 0.2 GeV/ ~! for the highest /s values. In
other words, in theintegration, small and large b-values are an energy dependent concept :
at very small /s, small b,i.e. b < 1/M meansvaluesof blessthan2.5 GeV !, whereasat
very high energy largeb-valuesmean b > 0.2 GeV. Weshall now start studying 2. (b; M A)
in the frozen «, case, and distinguish three cases :

1. oM < 1
2. bM > 1,ba\ < 1
3. 6M > 1,baA > 1

In order to obtain a closed form expression to better study the function, we shall
adopt the following approximations:

B 127
as(k < al) = a, = Tin(a?)
as(k > al) = Lﬁkz)
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2M
M4 ~
In {FAT=E &~ 2In ==k~ 0 and

e M

M+ M2 _L2 . . .

In 3= men? for k values not in the infrared region.
2

1_‘]0(“'):% r<1

1—Jo(z)=1 a>1
Then, one can break the integral from 0 — M into various intervals in which one can

approximate the integrand and perform the integration. According to the three cases indi-
cated above, one then obtains the following approximate expression :

bM< 1 (A.1)
ZCF bz ]\Jf
Wb, M, A) = “F e / kdkln——l—b / kdk L
m
A
2er [ b*A?%a? 2M
— . 1421 20
T {oz 8 [ 2 a/\] +

b M? a2/\2 AP M M? Ly
For bM > 1, one distinguishes between two cases : b larger or smaller than 1/aA, so that
the integral can now be divided as follows :

1
1 h< — A.2
Jor 7 < <a/\ (A.2)
2 2 M In M
hb M, A) = 2F b/ kdkln—+bb/kdk : / dknk]
m i N
2A2,2
_ @[asbAa [ ol M]+
T A
_B2A? 1 M 1 ,
b - e [t () — A
- M Inl
blln—ln A —ln(Mb)]
A n L
or as
for <L<b (A.3)
M al\
2er [ b 3 oM qeddk. M M dkInM
hib, M,A) = =F 5—/ hedl Tn 222 25/ il P b/ bl
(6, M, 4) W[QZO "L E R T F Ik
9
= —[ [1 4 2In(2Mb)] +
T |8
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20, {In(Mb) In(aAb) — I’ (aAD)} +

_ M ln% M
bllnxln T _hlJH

The last decomposition is the one to use to study the large b limit, whereas the first
one correspondsto the small b limit.

For the singular «; case we adopt similar approximations, except that now

as(k < N,A) = b (é)%

k
(k> N,A) b
o =
P ln(%)
1/2p
where N, = | - is a number of order unity. For p=1/2, indeed N, = 2 and the
P

two regions, small and large k, coincide with those in the frozen «, case with a=2. The
expressionsfor h(b; M, A) in this case become:

|
b o< — .
< i (A.49)
2p [-1? ANy dk oM b? In &
h(b: M. A :—b—Azp/ In b fedk -k
(b; M, A) wlz() o R k+4ANp &
2cp b(N2)t=r 2M 1
— 621\2
- [8(1— ») "AN, +

b NZA? A? M M? ,
bpag (21 2,0 [h ) -]

and for thebM > 1 case one will have the two possibilities,

|
forM < b<Np/\ (A.5)
2p [ b NA dk M B dk In
h(b, M,A) = bA?p/ L s +b
(b, M, A) WlZ 0 k21 k+4Np iklnX]
2w [[BPAR (VD) 20 1Y
oo 8 1—p NA
b M o1 .
ot - 12 T [z@(bw) V)| +
M. M
b|In = In —A — In(Mb)
/\ ID'EK
and the other case
|
b — A.
>NpA Y (A.6)
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h(b)

2ep [-B2A% % dk oM NpA  dk M - M dkinid
hb. M.A) = b 1 szZP/ B b/ vy
(6, M, 4) 7 [ > Jo T Lo B T Ty R Ik

Qg b 1

— ZF B2A2Y? |2 1n(2Mb) 4+ ——

. l8<1—p>< ) l al >+1—p]+

b 1 b M 1

ZBPARY (210 (Mb) — = | + ——— |21 -

QP( ) [ n(Mb) p]JrZPNﬁp[ HANerp]Jr

M[ ln%

N In N,
In M

Thisapproximationisreasonably accurate, asone can seefrom Figs.12-13, wherewe have
plotted both the approximate and the exact expressions from the above equations for the

two different modelsfor «.

Figure 12: Comparison between the
approximate and the actual numer-
ical integration for h(b, M,A) for
various values for M, in the frozen
o model
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