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Abstract

We analyse the radiative decay� ! �+���0 in the low–energy expansion of the Stan-
dard Model. We employ the notion of “generalized bremsstrahlung” to take full advan-
tage of the theoretical and experimental information on the corresponding non-radiative
� ! 3� decay. The direct emission amplitude ofO(p4) is due to one-loop diagrams
with intermediate pions (isospin violating) and kaons (isospin conserving). Vector meson
contributions appearing atO(p6) are also evaluated.
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1. The decays� ! 3� are forbidden in the limit of isospin conservation. Neglecting

the small electromagnetic corrections [1], the amplitudes are proportional to the isospin

breaking mass differencemu � md. The leading-order amplitude in the low-energy ex-

pansion ofO(p2) [2] is known to receive large higher-order corrections, both atO(p4) [3]

and beyond [4,5].

The radiative decay� ! �+���0 is in principle an interesting channel. At low-

est orderp2, the amplitude is pure bremsstrahlung. At next-to-leading order an addi-

tional contribution appears (direct emission) that is nonvanishing even in the isospin limit.

Therefore, the direct emission amplitude carries in principle new information that is not

accessible in� ! 3� decays. The notion of a direct emission amplitude is not unique

except that it starts atO(k) wherek is the photon momentum. For instance, the so-called

quadratic slope parameters of the non-radiative amplitude arising atO(p4) also generate

a radiative amplitude ofO(k) that one may combine with the bremsstrahlung amplitude

because it is also completely fixed by the non-radiative process. We have recently shown

[6] that one can define a generalized bremsstrahlung (GB) amplitude for a generic radia-

tive four-meson process that includes the effects of all local terms ofO(p4) contributing

to the non-radiative transition.

The main advantages of the GB amplitude are:

� Since all local contributions to the non-radiative amplitude ofO(p4) are included,

the uncertainties in the corresponding low-energy constants do not propagate to the

direct emission amplitude (defined here as the difference between the total and the

GB amplitudes).

� If there are substantial higher-order contributions beyondO(p4) in the non-radiative

amplitude they can be included in the GB amplitude by using the experimentally

measured non-radiative amplitude. For� ! �+���0, this is especially welcome

because the unitarity corrections [4,5] modify both rate and slope parameters of

� ! 3� substantially. Using the experimental values in the GB amplitude allows

for a much more accurate determination of the total amplitude.

The purpose of this letter is to calculate both GB and direct emission amplitudes for

� ! �+���0 along the same lines as forK ! 3� [7]. We will comment on the

differences between the GB and the usual bremsstrahlung amplitudes and we discuss the

relative importance of the main contributions to direct emission: pion loops (isospin vi-

olating), kaon loops and vector meson exchange (both isospin conserving). The channel

under consideration has already been studied in the framework of chiral perturbation the-
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ory by Bramon et al. [8] where also references to the earlier literature can be found. We

will discuss the differences to Ref. [8] as we go along.

At present, the Particle Data Group quotes an upper limitB(� ! �+���0) <

6� 10�4 [9]. However, the experimental situation will improve soon. For instance, at the

�-factory DA�NE in Frascati one expects [10] a total yield of108 � per year.

2. To evaluate the bremsstrahlung contribution to� ! �+���0 we need to know the

amplitude for�(p�) ! �+(p+)�
�(p�)�

0(p0) . Neglecting electromagnetic corrections

[1], the amplitude can be written in the form [3]

A(s; s�) =
B(mu �md)

3
p
3F 2

�

(1 + 3
s� s0

M2
� �M2

�

) (1 + �(s; s�)) (1)

whereB is a parameter of the lowest-order chiral Lagrangian [11] related to the quark

condensate andF� = 92:4 MeV is the pion decay constant. The kinematical variables

s; s�; s0 are defined as

s = (p� � p0)
2 ; s� = (p� � p�)

2 ; s0 =
1

3
(s+ s+ + s�) : (2)

The function�(s; s�) vanishes to lowest orderp2. At O(p4) it receives both loop and

counterterm contributions [3]. Higher-order effects due to�� rescattering are important

and have been included in�(s; s�) by way of dispersion relations [4,5]. These higher-

order corrections increase the rate ofO(p4) by some 25� 30% and must be included for

a reliable estimate of the bremsstrahlung amplitude.

Experimental results are conventionally expressed in terms of the Dalitz variablesx; y

defined as

x =

p
3(s� � s+)

2M�Q
; y =

3

2M�Q
[(M� �M�0)

2 � s]� 1 ; (3)

Q =M� � 2M�+ �M�0 :

Up to a normalization constant, the experimental Dalitz plot distribution is fitted by a

function of the form [9,12]

A(x; y)2 = A(0; 0)2(1 + ay + by2 + cx2) (4)

whereA(x; y) corresponds to the decay amplitude (1). Charge conjugation invariance

forbids a term linear inx.

The present experimental and theoretical status of the parameters in (4) is summarized

in Table 1. We do not need a value forA(0; 0) since we always normalize our results to
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a b c
Experiment [9; 12] �1:22� 0:07 0:22� 0:11 �
Gasser and Leutwyler O(p4) [3] �1:33 0:42 0:08
Kambor et al: (solution a) [4] �1:16 0:24 0:09
Kambor et al: (solution b) [4] �1:16 0:26 0:10

Table 1: Experimental and theoretical values of the linear and quadratic slopes of� !
�+���0 defined in Eq. (4).

the non-radiative decay. In this way, errors are substantially reduced. From Table 1, the

importance of higher-order corrections is evident also for the slope parameters. For the

numerical calculation, we will use the experimental values ofa; b. Experiments have not

been sensitive enough to extract the parameterc which is however relatively stable with

respect to chiral corrections (we will takec = 0:10 for the numerics).

The kinematics of the decay�(p�) ! �+(p+)�
�(p�)�

0(p0)(k) is specified by

adding the variables

ti = k �pi (i = �;+;�; 0) (5)

with

t� = t+ + t� + t0 :

Any three of theti together withx andy in (3) form a set of independent variables.

With CP conserved, there is only an electric transition amplitude that we write as

A(� ! �+���0) = e"�(k)E�(x; y; ti) (6)

with

k�E� = 0 :

Low’s theorem [13] relates the radiative amplitude to the corresponding non-radiative

amplitude and their first derivatives with respect to the Dalitz variables up toO(k). For

a general four-body amplitudeA(s; t) with Mandelstam variabless; t, both
@A(s; t)

@s
and

@A(s; t)

@t
contribute to the Low amplitude. Since there are two neutral particles in our pro-

cess we can choose variables and assign particle labels such that only one of the deriva-

tives enters. With the variables chosen in (3) and withp1 = �p�, p2 = p0, p3 = p� and
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p4 = p+ in the notation of Ref. [6], Low’s theorem reads

E�
Low(x; y; ti) = A(x; y)

 
p�+
t+

� p��
t�

!

�
p
3

M�Q

"
p�0 + p�� �

p��
t�

(t0 + t�)

#
@A(x; y)

@x
+O(k) :

(7)

To lowest orderp2, the radiative amplitude is completely given by the Low amplitude

(7). In fact, since there is nox-dependence in the� ! 3� amplitude ofO(p2) in (1), only

the non-derivative part in (7) contributes. Starting atO(p4), anx-dependence is generated

that produces the quadratic slope termcx2 in (4).

However, one can do better than that. In order to account for all the local parts of

O(p4) in the non-radiative amplitude that contribute also to the radiative amplitude, a so-

called generalized bremsstrahlung amplitude can be introduced [6]. One major advantage

of using the GB amplitude is that the remaining direct emission amplitudeE� � E�
GB

can only receive contributions from local terms ofO(p4) that do not contribute to the

non-radiative amplitude. For� ! �+���0, only the low-energy constantL9 [11] could

therefore appear in the direct emission amplitude. However, the corresponding coun-

terterm does not contribute to� ! �+���0 even formu 6= md. Thus, the one-loop

contribution to direct emission is necessarily finite.

The general formula for the GB amplitude of Ref. [6] simplifies in the present case to

E�
GB = A(x; y)(

p�+
t+

� p��
t�

)

�
p
3

M�Q

"
p�0 + p�� �

p��
t�

(t0 + t�)

#
@A(x; y)

@x

+
3

2M2
�Q

2

(
(t0 + t�)

"
p�0 + p�� �

p��
t�

(t0 + t�)

#
� (t�p

�
+ � t+p

�
�)

)
@2A(x; y)

@x2

� 3
p
3

M2
�Q

2

�
t�p

�
0 � t0p

�
�

� @2A(x; y)
@x@y

+O(k) :
(8)

If one uses the experimental amplitude as given by the Dalitz plot distribution (4) the

last term in (8) involving
@2A(x; y)

@x@y
will in fact not contribute. As already announced,

we use for the slope parameters the experimental values [9,12]a = �1:22 � 0:07, b =

0:22�0:11 and the theoretical prediction [4]c = 0:10. The results for the rate normalized

to �(� ! �+���0) are given in Table 2 for five bins in the photon energyE (in the�

rest frame).
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E (MeV) �GB(� ! �+���0)=�(� ! �+���0)

10–30 (2:30� 0:04)� 10�3

30–50 (5:99� 0:10)� 10�4

50–70 (1:85� 0:04)� 10�4

70–90 (4:47� 0:11)� 10�5

> 90 (5:00� 0:14)� 10�6

Table 2: Rates for�(� ! �+���0) with the GB amplitude (8) for different bins in the
photon energyE, normalized to�(� ! �+���0).

The relative branching ratios forE � 10 and 50 MeV, respectively are

B(� ! �+���0;E � 10 MeV)GB = (3:14� 0:05)� 10�3B(� ! �+���0)
B(� ! �+���0;E � 50 MeV)GB = (2:35� 0:05)� 10�4B(� ! �+���0) :

(9)

The errors given in both (9) and Table 2 are due to the experimental errors of the slope

parametersa; b. These errors would of course be much larger if we would not normalize

to �(� ! �+���0).

We can now make a first comparison with the work of Ref. [8]. Bramon et al. con-

structed a simple approximation to the Low amplitude (7). They dropped the derivative

term in (7) and took instead the amplitudeA(x; y) of O(p4) [3] at the center of the Dalitz

plot. In fact, they did not exactly use the amplitude of Ref. [3] but increased the coun-

terterm amplitude to account for the discrepancy between the experimental rate and the

predicted rate ofO(p4). With these assumptions, they obtain [8]

B(� ! �+���0;E � 10 MeV)bremsstrahlung = 2:81� 10�3B(� ! �+���0)
B(� ! �+���0;E � 50 MeV)bremsstrahlung = 1:85� 10�4B(� ! �+���0)

(10)

In spite of the rather drastic approximations made, this prediction is quite close to our

result (9) that is based on the GB amplitude (8) and on experimental input for the slope

parameters. Of course, it is difficult to assign an error to the prediction of Bramon et

al. With the errors given in (9) due to the experimental errors of the slope parameters,

our prediction forB(� ! �+���0;E � 10 MeV) is more than 6 standard deviations

bigger than that of Ref. [8]. The discrepancy increases for larger values of the cut in the

photon energy.

Before attributing any significance to the predictions (9), we will of course have to

investigate the direct emission amplitude. Before doing so, we compare the rates for the

GB amplitude (8) with the ones for the Low amplitude (7) in the same photon energy bins
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E (MeV) (�GB � �Low)=�GB

10–30 2:0� 10�3

30–50 8:7� 10�3

50–70 1:9� 10�2

70–90 3:3� 10�2

> 90 4:9� 10�2

Table 3: Relative differences in the rates between GB and Low. Listed are the quantitiesZ E
(2)


E
(1)


 
d�GB
dE

� d�Low
dE

!
dE

,Z E
(2)


E
(1)


d�GB
dE

dE for different bins in the photon energy.

as before. The results displayed in Table 3 show that the differences are rather small in

all energy bins. This is due to the fact thatE�
GB � E�

Low is only sensitive to the quadratic

slope parameterc in (4), numerically the smallest of the three parameters. Nevertheless,

the difference between GB and Low is still bigger than the one-loop contribution to the

direct emission amplitude to which we now turn.

3. The full radiative amplitude is the sum of the GB amplitude (8) and of a direct emis-

sion amplitudeE�
DE:

E� = E�
GB + E�

DE : (11)

In this paragraph we calculate the direct emission amplitude ofO(p4). As shown in

Ref. [6],E�
DE has the following general structure at this order:

E�
DE = E�

counterterm +
X
loops

(�� +H�) : (12)

As already mentioned, there is no counterterm contribution to direct emission for� !
�+���0. The (finite) loop contribution is exclusively due to diagrams of the topology

shown in Fig. 1 where a photon should be appended to all charged lines and all vertices

with at least two charged fields.

The loop amplitude consists of a sum of two gauge invariant parts (for each loop

diagram)�� andH�. Referring to Ref. [6] for details, we recall that both�� andH�

depend only on the on-shell couplings of the verticesV1; V2 in Fig. 1. Those vertices have

the general form in momentum space

V1 = a0 + a1pa �pb + a2pa �x
+ a3(x

2 �M2
x) + a4(y

2 �M2
y ) + a5(p

2
a �M2

a ) + a6(p
2
b �M2

b )
V2 = b0 + b1pc �pd + b2pc �x

+ b3(x
2 �M2

x) + b4(y
2 �M2

y ) + b5(p
2
c �M2

c ) + b6(p
2
d �M2

d ) :

(13)
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pb
y

x
pa pc

pd

V1 V2

Figure 1: One–loop diagram for the general four–meson transition. For the radiative
amplitude, the photon must be appended to every charged meson line and to every vertex
with at least two charged fields. The verticesV1; V2 are defined in Eq. (13).

The relevant on-shell coefficients for the various diagrams are collected in Table 4. We

have included the diagrams with two neutral intermediate particles for completeness al-

though they do not contribute to either�� or H� here. In general,H� is always zero in

this case but�� may be non-zero depending on the assignment of particle labels.1

The� ! 3� couplings vanish of course formu = md. In contrast to Ref. [8], we keep

the pion loop contributions since they turn out to be comparable in magnitude to the kaon

loops which we calculate in the isospin limit. The main contribution of direct emission

arises in the interference with the GB amplitude (8). The corresponding contributions to

the rate, separately for pions and kaons, are shown in Table 5.

Although pion and kaon loops make comparable contributions to the rate their impact

is quite small for almost all photon energies. Integrating the differential rate over the

photon energy forE � 10 MeV produces a correction to the branching ratio that is

smaller than the error given in (9) for the GB contribution only. It is even slightly below

the difference between the rates for GB and Low amplitudes for most photon energies (cf.

Table 3). The relative size of the loop amplitude increases withEmin
 at the expense of

decreasing rates.

For the loop contributions to direct emission we only agree with Ref. [8] to the extent

that they are small. Bramon et al. did not include the pion loops and they did not calculate

the interference with the dominating bremsstrahlung amplitude. Taking the kaon loop

amplitude by itself leads of course to a very small rate that is completely negligible [8] in

comparison with the interference term.

1In fact, the loop contribution to�� with two �0 in the loop was missed in the calculation ofKL !

�
+
�
�

�
0 [7]. The change in the rate is numerically insignificant.
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Table 4: On-shell coefficients of the verticesV1; V2 defined in (13) for the various loop
diagrams in units of1=F 2 and withM2

1 = (md �mu)B0=(
p
3(M2

� �M2
�)).

�(�pb)! �a(pa)
+Mx(x)My(y)
! �c(pc)�d(pd) a0 a1 a2 b0 b1 b2
� ! �0 +

�+�� ! �+�� �M2
1 (3M

2
� �M2

�)=3 �2M2
1 0 2M2

� 2 �2
� ! �0 +

�0�0 ! �+�� �M2
1 (M

2
� �M2

�) 0 0 M2
� 2 0

� ! �+ +

�0�� ! �0�� 4M2
1M

2
�=3 2M2

1 2M2
1 M2

� 0 �2
� ! �� +

�0�+ ! �0�+ 4M2
1M

2
�=3 2M2

1 2M2
1 M2

� 0 �2
� ! �0 +

K�K+ ! �+�� M2
�=(2

p
3)

p
3=2 0 0 0 1

� ! �0 +

K0K0 ! �+�� �M2
�=(2

p
3) �p3=2 0 0 0 1

� ! �+ +

K0K� ! �0�� M2
�=
p
6

q
3
2

0 �M2
�=
p
2 �1=p2 p

2

� ! �� +

K0K+ ! �0�+ M2
�=
p
6

q
3
2

0 �M2
�=
p
2 �1=p2 p

2

4. Since there is no counterterm contribution to direct emission atO(p4) resonance ex-

change can only enter atO(p6). Actually theSU(2)–singlet nature of the� field implies

that most of the resonance contributions vanish also atO(p6). The only relevant direct

emission amplitude surviving at this order is generated through the product of the follow-

ingO(p3) vector operators [14]:

LV = hV "���� hV � f u� ; f ��+ g i + i�V "���� hV � u� u� u� i+ : : : (14)

The couplings inLV can in principle be determined from the phenomenology of

vector meson decays. The decay rate for! ! �0 [9] fixes jhV j = 0:037. For the second

coupling�V , one has to rely on models for the time being. Hidden symmetry predicts

�V = 2hV [15], while the ENJL model [16] has�V = 0:050. These values are compatible

with each other and we will choose�V = 0:050 � 0:075 for the numerical estimate. We

will also assume that the fieldV � in (14) describes a nonet of vector mesons with ideal

mixing.
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E (MeV) (�GB+DE � �GB)=�GB (pions) (�GB+DE � �GB)=�GB (kaons)

10–30 4:5� 10�4 6:4� 10�4

30–50 2:7� 10�3 2:7� 10�3

50–70 8:4� 10�3 5:9� 10�3

70–90 2:1� 10�2 9:9� 10�3

> 90 6:0� 10�2 1:4� 10�2

Table 5: Relative rate differences for the interference between GB and the one-loop con-
tributions to direct emission. The notation is analogous to Table 3.

Integrating out the vector mesons in the Lagrangian (14), one obtains the following

effective Lagrangian ofO(p6) for the direct emission in� ! �+���0:

L6
VMD = �64ihV �V F

��@��

3
p
3M2

V F
4
�

h
@��

0(@��
+@��

�) + @��
0(@��

+@��
� � @��

�@��
+)
i
:

(15)

This Lagrangian gives rise to the decay amplitude

E�
DE;VMD = � 64hV �V

3
p
3M2

V F
4
�

[p� � p0g�+� + p� � p�g�0+ + p� � p+g��0] (16)

g�ij = tip
�
j � tjp

�
i

which differs from formula (19) in [8].

For the values ofhV and�V in the range mentioned before, we find that this amplitude

provides a contribution to the direct emission comparable or slightly larger in size than

the one from the loops. In Table 6, we display the interference terms in the rate due to

vector exchange alone (forhV �V = 2:8� 10�3) and due to the total direct emission.

Due to the comparable size but opposite sign of loop and VMD contributions, the

total direct emission in� ! �+���0 turns out to be very small. IfhV �V is positive (as

theoretically predicted) and in the expected range, it will be very difficult to observe any

deviation from the GB prediction.

5. Our main results can be summarized as follows:

i. The concept of generalized bremsstrahlung is very efficient in avoiding the propa-

gation of uncertainties in the non-radiative decays to the direct emission amplitudes.

In the case at hand, we have shown that the numerically important final state inter-

actions in� ! �+���0 [4,5] are easily incorporated in the GB amplitude. This
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E (MeV) (�GB+DE � �GB)=�GB (VMD) (�GB+DE � �GB)=�GB (total)

10–30 �1:3� 10�3 �0:1� 10�3

30–50 �1:0� 10�2 �4:9� 10�3

50–70 �3:4� 10�2 �2:0� 10�2

70–90 �7:6� 10�2 �4:5� 10�2

> 90 �1:4� 10�1 �6:2� 10�2

Table 6: Relative rate differences for the interference between GB and direct emission:
VMD (for hV �V = 2:8 � 10�3) and total direct emission. The notation is analogous to
Table 3.

allows for a very precise prediction of the radiative decay rate normalized to the

non-radiative transition:

B(� ! �+���0;E � 10MeV) = (3:14�0:05)�10�3B(� ! �+���0) : (17)

ii. The�� loops in the direct emission amplitude, though isospin suppressed, are com-

petitive with theKK loops. However, even the combined one-loop amplitude is

negligible compared to GB for most of the photon energy range.

iii. We find that vector meson exchange (in the expected range for the vector couplings)

has comparable size but opposite sign of the loop contributions. If this model–

dependent prediction is correct, we do not expect to observe any direct emission

effect in� ! �+���0, even with the anticipated yield of108 � per year [10].
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