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1 Introduction

Operating with subpicosecond bunches is crucial to the new generation ofe+e� collid-

ers and FELs for reaching their final goals, which are respectively high luminosity and

high peak current. To obtain this result, much depends on the ability to monitor bunch

dimensions on such a small scale.

It is now widely recognized that this can be done by making use of coherent radia-

tion (CR) of different types produced by a bunched beam interacting with material targets

or external fields. Coherent transition radiation (CTR) is only one among others, but it is

now intensively used due to its simplicity of implementation and the small perturbation

produced on the beam. Another example is the coherent diffraction radiation, that is es-

sentially a special case of CTR, but, being nonintercepting, promises to be advantageous

for high current and low-emittance machines.

CTR is emitted by a particle bunch crossing the boundary between two media. Co-

herent emission takes place at wavelengths comparable with, or longer than, the bunch

length. In this case all electrons in the bunch produce radiation more or less in phase, and,

as a result, a large enhancement in the emitted power is observed with respect to the ordi-

nary incoherent transition radiation (TR) ( for details see reviews [1,2] and an exhaustive

list of references therein). The power spectrum of CTR from an individual bunch is given

by

SCTR(!) = N2F (!)STR(!) ; (1)

whereN is the number of electrons in the bunch,STR is the power spectrum of TR

produced by a single particle andF (!) is the bunch form-factor connected through the

Fourier transform to the spatial charge distribution

F (!) =

����
Z
dz h(z)ei(!=c)z

����
2

; (2)

whereh(z) is the normalized charge distribution projected on the direction of the beam

momentum (coherence effects due to the bunch transverse dimensions are not considered

in this paper). The power spectrum is usually obtained either by a direct spectroscopic

measurement or by an autocorrelation technique in the time domain. In any case Eqs. (1)

and (2) imply that the bunch longitudinal dimension can be extracted from the measured

CTR spectrum if the incoherent TR spectrum is known. In practice, however, Eq. (1) must

include also a number of experimental factors, functions of frequency, that introduce some

difficulties in the bunch length determination. The limited bandwidth of the detector, as

well as diffraction effects due to finite apertures in the radiation transport channel, are the
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main factors causing losts of the low frequency part of the measured spectrum; this is true

for all CR- based beam diagnostics independent of the radiation used.

Recently, the proper role of the size of the target in modulating the power spectrum

of incoherent TR was shown [3,4]. It was found that the size of a target used to produce

radiation can be a factor defining spectral and angular features of the emitted photons.

The effect occurs when the parameter
�, where
 is the relativistic factor of the beam

and� is the radiation wavelength, exceeds the transverse dimensions of the target. While

for visible light, since� is small, the effect is expected at very high energies (
 � 105),

for CTR at� � 1 mm it is observable already at
 of a few tens . The TR spectrum from

a finite target is a complex function of the beam energy, target extensions, frequency and

angle of emission, i.e, very different from the flat spectrum given by the Frank formula,

that has been used so far. The effect appears always as a suppression of the spectrum at

low frequencies and, therefore, it proves to be important for the analysis of bunch length

measurements using CTR.

The low frequency spectrum cutoff, independently of the source, leads to a con-

siderable uncertainty in bunch length and shape determination. Particularly, the precise

knowledge of the spectrum over a wide range is a necessary requirement for bunch shape

reconstruction using the Kramers-Kronig method [7]. The problem is also important for

the autocorrelation technique because of the unambiguous relation between frequency

and time domains; the complex optics required in this case makes the effect more evident.

While the problem of the detector bandwidth can be solved, even in part, by a calibration

of the detector efficiency, others must to be computed or modeled in some way.

For these reasons we believe that a theoretical study of the problem in question is of

some value for both the design of experiments and data analysis. In the pioneering work

[3], the treatment of the problem of the transverse size of the target in CTR experiments

was performed for an electron passing through a thin layer of transparent matter using a

perturbation technique, while metallic screens are normally used due to their higher re-

flectivity. Later, the same authors [5] studied the case of a thin absorbing layer and TR

emitted in the forward direction. As a consequence, the resulting picture of the effect must

include interference between TR, the particle field and diffraction radiation and, therefore,

becomes rather complex. Again, a typical geometry for bunch length measurements con-

sists of a target tilted at 45 degrees with respect to the incoming beam, the radiation being

detected at 90 degrees.

In this paper we calculate the single particle spectrum emitted in the backward di-

rection from a finite-size target, in the presence of diffraction by the collection optics and

the environment. It has been shown [6] that properties of the backward radiation are al-

most identical to those of radiation emitted at 90 degrees. Since diffraction phenomena
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are generally too complicated to be computed in a rigorous way, we restrict our analysis

to a number of simplified models, that, nevertheless, cover the majority of experimental

situations. A particular emphasis is placed on the problem of the finite size of the target,

as less known.

2 Effects of diffraction and target size on TR spectra

In the calculations, we rely on the approach already used in our previous work [9]. The

method is, essentially, the application of the Kirchoff diffraction theory to describe the

propagation of the field generated by a charged particle on the boundary between the

vacuum and a perfect conducting material. TR is considered to emerge in the backward

directions with respect to the momentum of the particle crossing the boundary at normal

incidence. Three different schemes of measurement, close to those typically encountered

in practice, are investigated.

2.1 Spectrum of TR filtered by a finite aperture

The first scheme considered is the simplest for spectroscopic measurements. It is char-

acterized by the presence of only one circular diaphragm between the emitting screen

and the detector, typically representing the window separating the vacuum chamber of

an accelerator from the detector environment, and no other collecting optics. For ease

of calculation we assume a cylindrically symmetric geometry. A circular target with a

radiusr made of a perfect metal is placed at a distancea from the diaphragm, whileb

is the distance between the diaphragm and the detector having a diameter2d ( Fig. 1a).

The incident particle with chargeq and velocityv hits the target at the center. Emerg-

ing TR propagates in thez direction. Let us introduce three different sets of coordinates

(xs,ys),(�,�) and (x,y) for the target, diaphragm and detector planes, respectively.

The TR field components at the arbitrary point P(x,y) in the detector plane in the

Fresnel approximation, and neglecting phase constants, are found to be

Ex;y(P; !) = � k2

(2�)2
1

ab

Z
d�d�

Z
dxsdys fx;y(xs; ys)

�ei(k=2a)[(��xs)2+(��ys)
2]ei(k=2b)[(x��)

2+(y��)2] ; (3)

where the functionfx;y is given by

fx;y(xs; ys) =
iq

�v

Z
d{x d{y

{x;y

{
2 + �2

ei({xxs+{yys) : (4)
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and represents the TR transverse components on the target plane. In Eqs. (3) and (4)

k = !=c is the photon wave vector,{x;y are its projections on the xy plane and� = !=v
.

a

detector

b

detector

f b

detector

a b

(a)

(b)

(c)

Figure 1: Three schemes of measurements under consideration: a) TR beam emitted by
the target is filtered by a diaphragm, b) the target is placed in the front focal plane of a
lens having the focus lengthf , c) the target is imaged onto the detector by the lens.

In cylindrical coordinates we have:

{x;y =

�
{x

{y

�
= {

�
cos 

sin 

�
;

�
xs
ys

�
= �s

�
cos'

sin'

�
;

�
x

y

�
= �

�
cos�

sin�

�
: (5)

Using these notations, after several simple integrations over the angular variables,

and omitting the phase factor containing�2, we obtain the expression for the field in a

general form:

Ex;y(P; !) =
q

2�2v

k2

ab

Z
d�s�s

Z
d{
{

2J1({�s)

{
2 + �2

ei(k=2am)�2s

�
Z
d'

�
cos'

sin'

�
e�i(k=am)��s cos('��) L(p) ; (6)

wherem = 1 + b=a, J1 is the Bessel function of the first kind and

L(p) = 2�ei(k=2bm)p2
Z D

0

d��ei(km=2b)�2J0(k�p=b) ; (7)

p =
p
�2 + (b2=a2)�2s + 2(b=a)��s cos('� �) :
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As follows from Eq. (6), the field in P is built up by a coherent summation of the

waves emitted by all points of the source and so it, therefore, depends on both the shape

and the size of the target. The phase factor linearly dependent from�s is of Fraunhofer

type and, consequently, responsible for fields at far distances from the source, while that

containing�2s provides a first order Fresnel correction to the Fraunhofer approximation.

The functionL, mainly determined by the integral over the diaphragm surface, gives a

contribution from the standard diffraction by the aperture.

The above integral is well known (see, e.g., [10]) and is expressed in terms of the

Lommel functions:

L(p) = 2�ib

km

n
1 � ei(k=2bm)(p2+m2D2)[V0(p)� iV1(p)]

o
; (8)

where the Lommel functionsVn can be written in our case in the form:

Vn(p) =

1X
l=0

(�1)l
� p

mD

�n+2l

Jn+2l

�
kD

b
p

�
: (9)

Thus, Eq. (6) includes effects given by both the size of the target and the diffrac-

tion produced by the diaphragm. The latter is well known to, basically, produce a low

frequency spectrum cutoff, almost entirely defined by the diaphragm aperture and angu-

lar acceptance. However, Eq. (6) can be hardly analyzed analytically in its general form.

From this point on, we found it reasonable to separate the two effects and focus our study

on that of the target size. To this end we formally letD tend to1. So thatL reduces to a

constant

L1 =
2�ib

km
: (10)

Practically, the better the inequalityd�
p
b�=m is fulfilled, the more the approximation

is adequate.

We must then consider the phase factor in Eq. (6) that is quadratic in�s and pre-

viously recognized as a Fresnel correction factor. To clarify how it can affect the TR

spectrum, we first draw attention to the correspondence of the Fraunhofer approximation

to the so called wave zone or radiation zone concept. The wave zone is usually specified

as the spatial domain where a spherical wave in the proximity of the observation point can

be considered a plane one. In this context, the above phase factor is the first order cor-

rections to the wave zone approximation due to the extended character of the source and

the sphericity of wave fronts at the point P. As seen, its effect is essentially to give a limit

�s �
p
am� to the size of the area on the source surface that mainly forms the field at P:

source points lying outside of this region do not give any noticeable contribution because
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of the destructive interference. Obviously, for a finite-size target these corrections can be

neglected if

r�
p
am� : (11)

This condition is well satisfied for long wavelengths, but unavoidably breaks down at

short ones and then the correction factor reduces the ”effective” size of the target. On the

other hand, decreasing the wavelength, the quantity�
 decreases faster than
p
am� and,

therefore, at sufficiently small wavelengths, such that

�� am


2
; (12)

the correction factor does not play any role and the TR spectrum becomes indistinguish-

able from the conventional spectrum from an infinite target.

The unequality Eq. (12) has a more general form

�
2 � z ; (13)

wherez is the distance from the TR source to the observation point. This condition is

of great importance for applications of TR, since it establishes the boundary of the wave

zone and, therefore, the validity of the standard TR formulae. When condition Eq. (13)

is violated, even an infinite target acts like a finite-size one with an ”effective” dimension

depending on the wavelength and the distance to the observation point.

In the far-infrared region, that represents our main interest, the condition Eq. (11)

can be well fulfilled by adjusting the distance between the target and detector. So that,

using Eq. (10), Eq.(6) can be significantly simplified, giving

Ex;y(P; !) = �
2q

v

k

am

�
cos�

sin�

�Z
d�s�s

Z
d{
{

2J1({�s)

{
2 + �2

J1

�
k�

am
�s

�
: (14)

The upper integration limit with respect to{ represents a delicate problem. In fact,

TR appears as a result of a ”reflection” by the target of the pseudophotons arising when

the fast particle electromagnetic (EM) field is expanded as an infinite set of plane waves (

Weizsäcker- Williams representation). This implies that in a rigorous theory{ must run

the full range from0 to1. But actually, pseudophotons with{ > k cannot transform into

real ones and propagate in a free space. Since, in this paper, fields are considered at large

(compared to the wavelength) distances from the target, it is a reasonable assumption to

regard{ as being confined within a range between0 andk. For 
 � 1 the truncated

integral has the rather accurate approximate value
Z k

0

d{
{

2J1({�s)

{
2 + �2

' �K1(��s)�
J0(k�s)

�s
; (15)
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whereK1 is the modified Bessel function of the first kind. A simple analysis of Eq.(15)

reveals that the second term in the right-hand side is of importance mainly in the region

�s � �, where it compensates the irregular behaviour of the first term as� ! 0, while

beyond this region it provides only a decaying modulation of the first term. Since the next

step in the calculation is integrating over�s, for � � r we expect a small contribution

from the second term compared to the first one. However, for wavelengths comparable or

larger thanr it has to be taken into account. This gives
Z r

0

d�s�s

�
�K1(��s)�

J0(k�s)

�s

�
J1 (��s) = �(r; �; k; �) ; (16)

where� stands fork�=am and

�(r; �; k; �) =
�

�2 + �2
� �r

�2 + �2
[�K1(�r)J0(�r) + �J1(�r)K0(�r)]

�
Z r

0

d�sJ0(k�s)J1(��s) : (17)

Substituting Eq. (16) into Eq. (14), we obtain

Ex;y(P; !) = �
2q

v

k

am

�
cos�

sin�

�
�(r; �; k; �) : (18)

Eq. (18) gives the TR field from a finite-size target in the wave zone. It is interesting

to note the connection with diffraction radiation (DR): in Eq. (17) the second and third

terms represent exactly the DR from a circular hole of a radiusr in an infinite screen, while

the first one gives the conventional TR. Thus, TR from a finite-size target appears as the

difference between the ordinary TR and DR in accordance with the Babinet’s principle.

The differential power spectrum is given by

S!;P (�) =
q2

�2c

k2

�2a2m2
�2(r; �; k; �) : (19)

The total spectrum registered by the detector is found by integrating Eq. (19) over the

detector aperture

S! = 2�

Z d

0

d��S!;P (�) : (20)

If in this integral one makes the substitution� = am sin � and uses� as the new integration

variable, one finally obtains

S! =
2q2

�c

k2

�2

Z �m

0

d� sin � cos ��2(r; �; k; k sin �) ; (21)
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Figure 2: SpectraS! of TR in the first scheme of measurements, for a target with radius
of 20 mm and a detector angular acceptance of 0.05 rad. Spectra, normalized to the
corresponding ones from the infinite target ,Sinf

! , are plotted for several beam energies.

where�m = arcsin(d=am) is the angular acceptance of the detector.

Figures 2 and 3 show the spectra calculated by using Eq. (21) for parameters and fre-

quency ranges typical of bunch length measurements, and normalized to the correspond-

ing spectra from an infinite target. Figure 2 shows spectra for different beam energies. It

can be seen that the distortion of the spectrum increases at large energies. This can be

simply explained by the fact that the particle field, which scales like
� in the transverse

directions, becomes increasingly larger than the target dimension with increasing energies

so that its outermost portion, carrying the low-frequency spectral components, contributes

less and less to TR. From the condition
� � r (! � c
=r) that gives the spectral region

influenced by the effect, it follows that this domain expands towards higher frequencies

linearly with 
. Spectra for different detector angular apertures are given in Fig. 3. One

can see that the suppression effect becomes more pronounced with decreasing angular

aperture. This implies that the spectral content of the radiation is no longer constant as

in the case of ordinary TR but is a function of the emission angle. The reason for such

a kind of correlation can be again understood in terms of the simple picture given above,

because the TR at small angles is mostly formed by the periphery of the particle field.

A simple formula for the spectral-angular distribution can be obtained from Eqs. (19)

and (17) in the special case of a high-energy limit such that�r � 1. Neglecting the in-
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Figure 3: Spectra of TRS! in the first scheme of measurements for a target radius of 20
mm and beam energy of 1 GeV. Spectra are normalized to the corresponding spectraSinf

!

from the infinite target. Numbers next to the curves are detector angular acceptances in
radians.

tegral term in Eq. (17) and defining the angular variable� as before, we arrive at the

formula, that was earlier derived in [4]:

S!;� = S
inf
!;� [1 � J0(kr sin �)]

2
; (22)

whereSinf
!;� is the spectral- angular distribution of the ordinary TR from an infinite target,

given by

Sinf
!;� =

q2

�2c

sin2 �

(1� �2 cos2 �)2
: (23)

It follows from Eq. (22) that in contrast to the ordinary TR, that peaks at
�1, the angular

distribution of TR from a finite-size target has the maximum at the larger angle, depending

on the wavelength :

�max �
2:8

kr
: (24)

2.2 Spectrum of TR from a target in the focal plane of a lens

The second scheme under consideration ( Fig. 1b) is a simplified geometry normally used

in autocorrelation interferometric measurements, when the target is placed in the front fo-
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cal plane of a converging lens to produce, behind the lens, a quasi-parallel photon beam.

Let us consider a thin lens with diameter2D and focal lengthf . It is known that the lens

introduces a phase advance that is a function of the coordinates on its surface. In the Fres-

nel approximation, the field in the detector plane can then be obtained by multiplication

of Eq. (3) by the phase factor

h(�; �) = e�i(k=2f)(�
2+�2) : (25)

By the same computation as in the case of the previous scheme we arrive at the

formula, analogous to Eq. (6),

Ex;y(P; !) =
q

2�2v

k2

fb

Z
d�s�s

Z
d{
{

2J1({�s)

{
2 + �2

ei(k=2f)�
2
s
(1�b=f)

�
Z
d'

�
cos'

sin'

�
e�i(k=f)��s cos('��) L(p) : (26)

As beforeL is expressed through the Lommel function

L(p) =
2�ib

k
[1� ei(k=2b)(p

2+D2)[V0(p)� iV1(p)]] ; (27)

Vn(p) =

1X
l=0

(�1)l
� p
D

�n+2l

Jn+2l

�
kD

b
p

�
;

p =
p
�2 + (b2=f2)�2s + 2(b=f)��s cos('� �) :

In contrast to the previous scheme, the Fresnel correction factor in Eq. (26) can be

set exactly to1 by choosingb = f , i.e., by placing the detector in the back focal plane

of the lens. Apart from this, Eqs. (26) and (27) are identical to the corresponding Eqs.

(6)-(9) if one puts in the lattera = f andm = 1. The power spectrum, in the infinite lens

approximation, is thus given by Eq. (21) with

�m = arcsin(d=f) : (28)

The similarity between the first and second scheme can be seen by simple ray tracing:

the effect of the lens is basically to ”draw” the detector towards the target, resulting in an

increase of the angular acceptance of the system.

2.3 Spectrum of TR in the target image plane

Here the diaphragm of the first scheme is replaced by a lens of the same size anda andb

are chosen such that the condition1=a+1=b = 1=f is satisfied ( Fig. 1c). In this geometry
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the target is simply imaged onto the detector. The expression for the field is obtained from

Eq. (3) and Eq. (25)

Ex;y(P; !) =
q

2�2v

k2

ab

Z
d�s�s

Z
d{
{

2J1({�s)

{
2 + �2

ei(k=2a)�
2
s

�
Z
d'

�
cos'

sin'

�
L(p) ; (29)

where, as before,L is the pattern resulting from the diffraction on the lens, that in this

case is given by the well-known expression

L(p) = 2�aD

kp
J1(

kD

a
p) ; (30)

p =
p
%2 + �2s + 2%�s cos('� �) ;

with % = �=M ,whereM = b=a is the lens magnification. There is a principle difference

between this scheme and the previous ones. In fact, in the first and second models all

the points of the target contribute to the field at any particular point in the detector plane,

while, in the present case every point in the detector plane is an image ( diffraction limited

for a finite-size lens) of the corresponding point of the target. This fact is responsible for

the disappearing in Eq. (29) of the phase factor linear in�s.

As a consequence of the simple form of the functionL, Eq. (29) can be shown [9]

to reduce to

Ex;y(P; !) =
q

�v

1

M

�
cos�

sin�

�Z
d{

{
2

{
2 + �2

�
1X
l=1

Rl

J2l(�%)

%

Z
d�se

i(k=2a)�2sJ1({�s)J2l(��s) : (31)

The spectrum of radiation can be calculated analytically for the infinite lens and neglect-

ing the Fresnel correction phase factor, as before. Using the fact that the infinite lens

establishes an unambiguous correspondence between the source and image planes, one

gets

L1 =

8<
:

(2�)2
a2

k2
�(�s � %)

�s
�('� �� �) ; % � r

0 ; % > r

: (32)

After integrating over the target area, Eq. (29) becomes

Ex;y(P; !) = �
2q

v

1

M

�
cos�

sin�

�Z
d{
{

2J1({%)

{
2 + �2

: (33)
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By making use of Eq. (15), the power spectrum integrated over the detector area is given

by

S! =
2q2

�c

1

�2

Z d=M

0

d%%

�
�K1(�%)�

J0(k%)

%

�2
: (34)

In Eq. (34) we imply thatd=M � r, while generally one should integrate from0 to

minfd=M; rg.
In contrast to the first and second scheme, where the second term provides just a

small corrections at long wavelengths, here it is of great importance to avoid singularities

in S!. Both terms in Eq. (34) show a divergence at% = 0, but their difference is finite.

This requires special care in a numerical evaluation of the integral, but a divergence-free

expression can be obtained by calculating the integral with a finite value for the lower

limit of integration and then performing the limit to zero. This gives

S! =
2q2

�c

1

�2

�
C � ln 2� 1

2
� �d

�
K0(�d)K1(�d) +

�d

2

�
K2

0 (�d)

� K2
1(�d)

� �
+ 2K0(�d)J0(kd) + 2k

Z d

0

d�K0(��)J0(k�)

+ ln(�d) � k2d2

4
3F4(1; 1;

3

2
; 2; 2; 2; 2;�k2d2)

�
; (35)

whereC = 0:5772 : : : is the Euler’s constant and3F4 is the hypergeometric function.

We want to attract attention to the identical role of the target and detector dimen-

sions in affecting the spectrum. In fact, since the intensity distribution in the image plane

is just a ”magnified” image of that in the source plane, both target and detector are equiv-

alent in producing restrictions on the transverse region over which the power spectrum

must be calculated; namely, the spectrum is only determined by the minimum values of

d=M andr. Two implications follow immediately . Firstly, the effect of the detector size

is of the same nature as that of the target. In particular, the spectrum produced by an in-

finite target but registered by a finite-size detector is absolutely identical to the spectrum

produced from a target of the same size (assumingM = 1), provided that it is seen by

a detector of large enough dimensions. Secondly, with increasingd , the spectrum given

by Eq. (35) must approach that for an infinite target. Actually, asd ! 1, the whole

expression in curely brackets tends toln(�
) � 1
2

and Eq. (35) gives the exact result as

v ! 1.

The radiation spectra given by Eq. (35) for different beam energies are plotted in

Fig. 4.
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Figure 4: SpectraS! of TR in the third scheme of measurements for a target with radius
r=20 mm (provided thatd=M � r, where d is the detector diameter and M is the lens
magnification). Spectra are normalized to the corresponding spectraSinf

! from the infinite
target and given for several beam energies.

3 Uncertainty in CTR bunch length measurements due to the size of the target

In the ideal case, i.e, in the absence of the low frequency suppression, the spectrum of

CTR is directly proportional to the bunch form-factor. Therefore, applying an inverse

Fourier transform to Eq. (2) an unambiguous determination of the symmetrical compo-

nent of the charge distribution in the bunch can be performed. Unfortunately, in a real

experiment a distortion of the spectrum at low frequencies is always present. The usual

practice then consists in empirically selecting part of the spectrum that is assumed un-

perturbed and recovering from that the bunch length information by assuming the bunch

charge distribution shape is known. However, such a procedure can lead to large system-

atic errors because the selected portion of the spectrum may still be distorted or represents

only a very small fraction of the whole spectrum. To solve this problem, it was suggested

in [8], and successfully applied to autocorrelation measurements, to add an analytical fil-

ter function simulating the frequency cutoff to the expected spectrum and use it to fit the

experimental autocorrelation data. Even if very successful in particular cases, the method

is difficult to appliy to non-Gaussian beams and, besides, the choice of the fitting function

is always somewhat arbitrary.
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Figure 5: The characteristic frequency!ch corresponding to a 10% dropoff (R = 0:9,
whereR = S!=S

inf
! ) from the high-frequency plateau (R = 1) of spectra, for a target

radius of 20mm, in the first and second schemes of measurements. Numbers next to the
curves are detector angular acceptances in radians.

As stated in the introduction, there are many possible sources for a low frequency

suppression of the CTR spectrum, and it is evident that the capability of evaluating quan-

titatively this effect for at least some of the sources and making the necessary corrections

to the experimental spectrum would seriously improve the accuracy of the data analysis.

The effects of diffraction in the whole system is usually difficult to calculate, unless there

is a single element that defines entirely all properties of the optics. On the other hand, the

computations for the finite-size target can be easily performed, using the formulae given

in this paper . The corrections for this effect can be important because for sufficiently

high beam energies a great portion of the spectrum is modified compared to that of an

infinite target. In general, obviously, the usefulness of this correction should be evaluated

in relation to the given bunch length and the presence of other possible suppression mech-

anisms. To this end it is important to characterize the finite-size effect on the frequency

scale and give simple rules allowing to estimate, even roughly, the role of the effect in the

every particular situation.

As usual for such kind of problems, we define a characteristic frequency!ch cor-

responding to a 10% dropoff of spectra from the high-frequency plateau, thus defining

the region! > !ch where the distortion is small. In Fig. 5 and 6 the characteristic fre-
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quency!ch is plotted versus the beam energy for the first two and the third schemes of

measurements, respectively.
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Figure 6: The characteristic frequency!ch corresponding to a 10% dropoff (R = 0:9,
whereR = S!=S

inf
! ) from the high-frequency plateau (R = 1) of spectra, for a target

radiusr in the third scheme. Numbers next to the curves are minimum value ofd=M and
r in mm, where2d is the detector diameter andM is the lens magnification.

To establish a relation between the characteristic frequency and the bunch length

we assume a gaussian bunch shape. The form-factor for the gaussian beam is

F (!) = e�!
2=2�2

! ; (36)

where�! relates to the bunch length�z as�! = c=
p
2�z. To have a reliable bunch length

determination by means of a the Gaussian fit to the spectrum, the latter must be weakly

distorted at least in the region! � �!. One may guarantee in this case that the systematic

error will be well within 10% if the following condition is satisfied

�z <
cp
2!ch

: (37)

Thereby, even qualitatively, the criterion Eq. (37) can be used to estimate in a simple way

whether for a given bunch length the effect of the target size is important.

The characteristic frequency can also serve as a parameter allowing to compare

the finite-size effect with other sources of low frequency suppression . For the sake of
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convenience and ease of evaluation we give here simple approximate relations for!ch

!ch(sec
�1) =

3:3 � 109
4

p
�m(rad)

E0:87(MeV ) (38)

and

!ch(sec
�1) =

8:3 � 1010
d(mm)

E0:87(MeV ) (39)

found by analyzing the curves of Fig. 5 and 6, respectively.

4 Conclusion

The development of ever shorter electron bunches for x-ray FELs and high energy Lin-

ear Colliders makes the measurements of bunch length based on CTR more interesting.

For this reason it is important to understand all the sources that can modify the radia-

tion spectrum with respect to the classical ”flat” distribution given by the Frank formula.

Diffraction from the limited angular acceptance of the experimental apparatus and the

finite dimension of the source target are among the main causes of the reduction of the

radiation intensity at low frequencies, and have been only slightly considered up to now.

In this paper we have derived rather accurate analytical expressions, with main em-

phasis on the finite-size target effect, that can help in correcting the experimental results,

together with empirical rules that can indicate the need of such a correction, on the basis

of the Kirchoff diffraction theory.

The analysis has been performed for some simplified experimental schemes that are

most used in practice. As was expected, the effect of the target dimension arises when the

target is smaller then the parameter
� that characterizes the transverse extension of the

particle EM field. It is important to note that when the radiation detection is performed at

a distancez � �
2 from the target, it is necessary also to take into account corrections to

the wave zone approximation, whose effect is, in last instance, in reducing the effective

size of the emitting screen.
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