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Abstract
The complex ac magnetic susceptibilities (χn = χ'n + iχn") of high Tc superconductors in

absence of dc fields have been studied by numerically solving the non-linear diffusion equation
for the magnetic flux, where the diffusivity is determined by the resistivity. In our approach the
parallel resistor model between the creep and flux flow resistivities is used, so that the
crossover between different flux dynamic processes (thermally activated flux flow, flux creep,
flux flow) can naturally arise. For this reason we remark that, as the frequency increases, the
presence of a different non linearity in different regions of the I-V characteristic determines non-
universal temperature dependencies of the χn, i.e. the χn are found to be not universal functions
of a frequency and temperature dependent single parameter. Moreover, the actual frequency
dependent behavior is also shown to be strictly related to the particular pinning model chosen
for the simulations. Indeed, for large values of the reduced pinning potential (U/KT≥220) and
for increasing frequency, a transition has been observed between dynamic regimes dominated
by creep and flux flow processes. On the other hand, for smaller reduced pinning potentials, a
transition from the thermally activated flux flow (Taff) to the flow regime occurs. In qualitative
agreement with available experimental data but in contrast with previously used simpler models,
the amplitude of the peak of the imaginary part of the first harmonic is shown to be frequency
dependent. Moreover the frequency dependence of its peak temperature shows large
discrepancies with approximated analytical predictions. Finally, the shape of the temperature
dependencies of the higher harmonics are found to be strongly affected by the frequency.
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1 – INTRODUCTION
Dissipative effects in the mixed state of high Tc superconductors have been investigated

by different dynamic techniques, such as "ac magnetic" susceptibility1), "ac transport"
measurements, mechanical oscillator2,3). Furthermore, the low frequency complex
susceptibility (χn = χ 'n + iχn") is also used to determine the critical current density 4). It is
known that χn can be regarded as the Fourier coefficients of the steady magnetization cycles in
the presence of an external oscillating magnetic field, being such coefficients determined by the
magnetic flux entering and leaving the sample. Therefore, it is necessary to study the non-linear
diffusion-like equation5) which governs the spatial-temporal evolution of the local magnetic
field B, where the role of the flux diffusivity is played by the resistivity ρ, which is a function
of temperature (T), local field (B) and local current density (J). In such description the various
regimes of flux dynamics are introduced through the I-V characteristic, which in turn depends
on the different pinning mechanisms operating in the material. As a matter of fact, considerable
efforts have been devoted to the development of theoretical models for the description of flux
pinning and dynamics in high Tc materials: from the Kim - Anderson6) to the novel vortex-
glass7)/collective pinning models8,9). The common feature of such models is the highly non-
linear I-V characteristics.

The general non-linear diffusion problem cannot be solved analytically. In longitudinal
geometry (long slab or cylinders) analytical solutions are available for :
a) the linear limit, corresponding to the regimes of thermally activated flux flow10) and flux

flow when the magnetic field dependence is neglected;
b) highly non-linear (stepwise) I-V characteristics as in the Bean model11), where the solution

is described by the critical state which should be recovered in the zero frequency limit.
In transverse geometry (thin platelets or films in a perpendicular magnetic field) recent

analytical results have extended the Bean model to thin strips12), disks and squares 13-15),
accounting also for the finite thickness of specimen16).

In the presence of ac fields, a discussion of the frequency and amplitude dependence of the
threshold between a linear and non-linear response has been reported for the vortex liquid and
vortex glass states17,18).

Some of the experimental features of the temperature dependence of χ'n and χn" have
been successfully explained by the critical state model and its generalizations19-21). However,
the observed frequency dependence of the fundamental22-25) and higher harmonics26-29) cannot
be described within the framework of the critical state. As a consequence, the simultaneous
presence of hysteretic and dynamic losses has to be included in the model description.
Numerical methods have therefore to be applied for solving the non-linear magnetic diffusion
problem. Within such approach, the time evolution of flux profiles and magnetization curves
have been calculated by many authors30,31). Moreover, results have been also reported in
literature for the complex rf magnetic permeability in a parallel static magnetic field32) and for
the ac susceptibility in presence of a dc bias magnetic field, calculated in the flux creep
regime33). Recently, the ac response of thin superconductors has been studied in the flux creep
regime by numerically solving the integral equation which describe the flux diffusion in the
transverse geometry34). Some authors suggested21,35) the possibility of an universal behavior
described by the single scaling parameter δ(ω,T), i.e. the effective penetration length, which is
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related to a frequency dependent critical current. In this approach the susceptibilities can be
written as: χn=fn(δ(ω,T)). Such behavior has been also considered26) on the basis of a
comparison between the experimental temperature dependence of the third harmonic
susceptibility and a semi-analytical approach.

To our knowledge, while the frequency dependence of the peak temperature has been
extensively studied22,36-38), an issue that has not received a careful inspection is the frequency
dependence of the peak amplitude χ1", which has been reported in a few experimental works39-

44). Furthermore, also the theoretical description of the frequency dependence of the higher
harmonics26,27) has not been fully developed .

In this paper we shall focus on the temperature and frequency dependence of the ac
susceptibility χn(T) (fundamental and its harmonics) without dc bias magnetic fields, starting
from the numerical solution of the non-linear magnetic diffusion equation. As a novelty with
respect to previous literature works, the diffusivity has been described in terms of a "parallel
resistor model" 45-48), incorporating both flux creep and flux flow resistivities. In such way
different non-linear behaviors naturally arise in different regions of the I-V characteristic: at very
low current values the "Taff" regime corresponds to a linear behavior, while for currents close
to the critical one an exponential increase of the voltage appears, leading again to a linear
behavior for J >Jc in the flux flow regime. In general, the approach usually reported in
literature49,50) is to consider the same non-linear behavior for the overall I-V characteristic (for
instance a power law, V α In, with n>>1 ). On the contrary, our approach accounts for changes
of the non linear behavior produced by variations of the currents induced by the ac magnetic
driving field. As a consequence a non-universal behavior appears, especially in the general
shape of the temperature dependence of higher harmonics.

The paper is organized as follows. In Sec. II the non-linear diffusion problem is
formulated in terms of a partial differential equation, together with the parallel resistor model for
the I-V characteristics. To study in some detail the effects of thermally activated processes in
different cases, we have chosen different temperature functional dependencies for the pinning
potential, Up(T), and the critical current density, Jc(T), related to particular pinning models.
Local magnetic field profiles, magnetization cycles and χn(T) are discussed in Sec.III.
Moreover, a comparison of numerical results with available experimental data and analytical
approximated predictions is also presented. Finally, Sec.IV is devoted to summary and
conclusions.

2 – THE NON-LINEAR DIFFUSION EQUATION
We consider a hard superconductor in the geometry of an homogeneous-infinite slab with

thickness 2d, in presence of an ac external magnetic field, Bext(t) = Bosin(2πνt), applied
parallel to the sample surface. In such a one-dimensional case the non-linear diffusion equation
for the local magnetic field B inside the sample is reduced to:

∂B
∂t

= ∂
∂x

ρ(B,J)
µ0







∂B
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 (1)
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where ρ(B,J) is the resistivity which, in absence of a dc magnetic field, strongly depends on

the local field B17). Such resistivity is taken as the parallel (ρpar), between the "flux creep"

(ρcr)51,52 and the "flux flow" (ρff)53 resistivities:

1
ρ(B,J)

= 1
ρpar

= 1
ρcr

+ 1
ρff

 (2)

ρcr (J) = 2ρc

Jc (t)
J





 e

−
U p (T)

KT sinh
JUp (t)

Jc (t)KT







(3)

ρff = ρn (T)
B

Bc2 (t)
(4)

where t = T Tc  is the reduced temperature, Up(t) is the pinning potential, Jc(t) the critical
current density, J the current density deduced by the local magnetic profile and Bc2(t) is the
upper critical field written as32):

Bc2 (t) = Bc2 (0)
(1 − t2 )
(1 + t2 )

 (5)

The prefactor54),ρc , in eq.3 is determined by the condition ρcr (Jc ) = ρff  , so that ρc = ρff.
For JUp Jc KBT <<1, the "Taff" resistivity limit (ρTf) of ρcr(J) is recovered:

ρTf = 2ρn

B
Bc2 (t)







Up (t)

KT
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−
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Within this approach the fluctuations effects in the resistivity are neglected; indeed, since
Up(t) and Jc(t) vanish as T->Tc, the normal state value of the resistivity is recovered in such a
limit. The resistivity decrease due to fluctuations should lead only to a smearing of the
temperature dependencies near Tc.
Moreover, to identify the dominant dissipative process in different temperature and/or frequency
regions, the diffusion equation has been also studied using some limits of eq.2 i.e. ρTf, ρcr or
ρff .

The description of the total resistivity by means of a parallel resistor model is based on the
assumption that dissipation processes are a sequence of independent flux creep and flux flow
events46. Within such approach the different regimes of flux motion ("Taff", "Creep", "Flow")
are smoothly connected in the E-J characteristic. As the increase of the frequency of the
magnetization cycle corresponds to an increase of the electric field, the crossover from a weak
("Creep") to a strong ("Flow") frequency dependence, is recovered in a natural way.
Equation (1) is numerically solved by means of the FORTRAN NAG55) routines, where

adimensional variables have been introduced: x̃ = x
d

 ; t̃ = t
t0

 ; t0 = µ0d
2

ρ*  ; ρ* = 1µΩm .

Moreover, the normalized frequency ν∗  is related to the frequency ν of the applied magnetic
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field by the following: ν* = µ0d
2ν

ρ*  where ν is the frequency in Hertz and

µ0 = 4π ×10−7 N A2 .
The boundary and initial conditions are respectively:

B(1, t̃ ) = B(−1, t̃ ) = B0 sin(2πυ* t̃ )

B( x̃ ,0) = 0 (7)

where B0 and ν∗  are the amplitude and frequency of the magnetic field respectively.
The algorithm computes the time evolution of the local field profile by integrating the discrete
version of eq.(1) using the method of lines and Gear's method for a fixed number of spatial
meshes (typically 100). The periodic steady magnetization loops M(B) are calculated from the
difference between <B( t̃ )>, that is the volume average of the profile B(x̃, t̃ ), and the
instantaneous value of the applied magnetic field Bext( t̃ ). In particular, the calculated

magnetization loop is considered as a steady state when the difference δB ≡ B t̃n+1( ) − B t̃n( )
is lower than 10-3Bo, being t̃n = 1

υ*




 n + 1

4




  and n an integer. The complex susceptibilities

χ'n and χn" are then calculated as:

χ' n = 1
πB0

M(ω* t̃ )sin(ω* t̃ )d(ω* t̃
0

2π

∫ ) 8a)

χ"n = 1
πB0

M(ω* t̃ )cos(ω* t̃ )d
0

2π

∫ (ω* t̃ ) 8b)

where ω* = 2πν*.
In order to account for the temperature dependence of the susceptibility, the temperature

dependencies of Up(t) and Jc(t) have to be specified. A natural choice is to rely on pinning
models invoked in the literature for explaining experimental data on irreversible magnetic
properties. In particular, three functional temperature dependencies have been considered,

corresponding to different 
dUp T( )

dT
 and 

dJc T( )
dT

 in the limit T → Tc .

In the first one I9,56), we have:

Up (B, t) = U0 1 − t4( ) 9a)

Jc (t) = J0

1 − t2( )5 2

1 + t2( )1 2 9b)
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where U0 ≡ Up (T=0). Such temperature dependencies of Up and Jc arise within the collective
pinning model, where vortices are supposed to be pinned by randomly distributed weak pinning
centers, possibly related to local variations of the electronic mean free path. Such a model has
been used to describe the behavior of stoichiometric yttrium-based thin films.

In the second form (II), assuming the Ginzburg-Landau temperature dependencies for the
thermodynamical critical magnetic field Bc(t) (eq.5) and the coherence length

ξ t( ) = ξc0

1 + t2( )1 2

1 − t2( )1 2  ,we have the following:

Up (B, t) = U0

1 − t2( )1/ 2

1 + t2( )1/ 2
 10a)

Jc (t) = J0

1 − t2( )
1 + t2( )  10b)

Indeed in such model, the pinning potential Up is estimated57,58) as the condensation
energy density Hc2(t) times a volume ξ3. In this case it has been assumed that a fluxoid
intersects a small pinning site of volume ξ3 (core interaction). The elementary pinning force is
given by fp=Up/ξ and the macroscopic force Fp results from a procedure of direct summation of
elementary forces fp51,59).

In the last pinning model (III), a fast decrease of Up(t) with the temperature is assumed,
whereas a decrease of Jc(t) intermediate between the first two cases has been chosen:

Up (B, t) = U0

1 − t2( )3/ 2

1 + t2( )1/ 2
 11a)

Jc (t) = J0 1 − t2( )2
 11b)

Similar dependencies have been introduced to account for the existence of the "giant flux
creep" 60-61, taking the pinning potential as Up = Hc

2 (t)∗(a0
2ξ) , where a0

2 = φ0 B is the area of
a unit cell of the flux lines lattice59). The macroscopic force Fp results also in this case from a
direct summation procedure of elementary pinning forces, fp=Up/λ, where λ is the London
penetration depth. The temperature dependence of Up and Jc in Eq. 10a,b stems from the
temperature dependence of Hc2(t), ξ(t) and λ(t). In a first approximation, a weak temperature
dependence of κ , κ = κ0 (1 + t2 )−1 2 and the Gorter-Casimir temperature dependence of λ have
been assumed. It should be noted however, that for high Tc superconductors experimental
evidence exists62) in favour of temperature dependencies other than the "two-fluid model".
Nevertheless, experimental data reported by different groups are not entirely consistent with a
unique temperature dependence of λ; therefore the "two-fluid model" has to be regarded as a
useful starting point. The comparison of the different temperature dependencies of the pinning
potentials (normalized to the zero temperature value), reveals that:
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1) Up(I) >> Up(III) for all the reduced temperatures;
2) Up(I) > Up(II) up to t=0.9, while near Tc the opposite behavior occurs;
3) Up(I) is quite constant up to t=0.6; for t > 0.6 it decreases very quickly if compared to the

other cases;
4) Up(III) describes a fast decrease of the pinning potential with temperature.

For Jc we have: Jc(I) < Jc(III) < Jc(II) at any temperature.

3 – RESULTS AND DISCUSSION
3.1 – Magnetic field profiles and stationary magnetization cycles

The material parameters used for the simulations pertain to an YBCO slab of thickness
2d = 2cm ,  Tc = 92.3K ,  Bc2 (0) = 112T,  U0 (0) Κ = 2∗104 K ,  Jc (0) = 1010 A m2 .
Neglecting fluctuations around Tc, the normal state resistivity is: ρn (T̂) = ρ0 1 + αT̂( ) , where
α = 5.5∗10−3 K−1 , ρ0 T0( ) = 2 *10−6 Ωm  and T̂ = T − T0  32,63).

Our analysis has been restricted to the case a small applied ac magnetic field in absence of
a superimposed large dc component; therefore the magnetic field dependencies of Jc and Up are
very weak and they can be neglected. Moreover, any explicit spatial dependencies of the
pinning parameters have not been considered. In any case, being thermally activated processes
negligible at low temperature, we have firstly verified that at low temperature and for low
frequencies, the solutions of the diffusion equation reproduce the critical state picture
corresponding to an effective critical current density Jc* close but lower than Jc.

As suggested by several authors35), the increase of the frequency results in the increase of
the electrical field, corresponding to higher values of Jc*. Nevertheless, at higher frequencies,
significant deviations from the critical state description are present due to the flux flow
component of the parallel model, in such way that, at ν∗ =1, the parallel result is practically
equal to the flux flow one .

The field profiles for ρpar at different frequencies are reported in Fig.1, where the external
field is equal to B0 and Up/KT=260K and Jc=2.4KAm-2 corresponding to the pinning model I
at T=91.5K. The profiles corresponding to the critical state, to ρcr at ν∗ =10-4 and to ρff at
ν∗ =10-1 are also plotted for comparison.

At the lowest frequency (ν∗ =10-4 ) the creep profile is practically identical to the parallel
one. For frequencies larger than ν∗ =10-1 the field profiles determined by the "parallel
resistivity" are practically identical to the flux flow ones. It should be noted that the "parallel
resistivity" gives at ν∗ =10-4 a constant field gradient which apparently suggests a behavior
similar to the critical state with a value of Jc*< Jc. However, the inspection of profiles at
different times of the cycle shows, also in such a case, large differences from the critical state
determined by Jc*.
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FIG.1 - Magnetic field profiles at T=91.5K for B0=2mT and ωt= π/2, evaluated for different
normalized frequencies, ν*=µ0d2ν/ρ*, in the case of the parallel resistivity, ρpar, and collective
pinning model I. The parallel is calculated between creep and flow resistivity, i.e.
ρpar = ρcr ρff . The value of ρ* is 1µΩm  .Symbols refer to : ( )ν*= 10-4 ; ( )ν*=10-

3;( )ν*=10-2,( )ν*=10-1, ( )ν*= 1.

As the transition temperature (Tc=92.3K) is approached, the contribution of the flux flow
component has a larger weight even at lower frequencies. In Fig.2a we report the frequency
dependence of the magnetization cycles at 92K, whereas Fig.2b shows the magnetization
cycles, computed at ν∗ =10-4 for different resistivities with the pinning model I. The critical state
result is plotted too, but just for reference purpose. As a result, the field diffusion at low
frequency is determined, close to Tc , by the flux flow resistivity.

We wish to remark the unexpected and somewhat surprising shape of the cycles, which
seems to be the result of a critical state with a magnetic field dependence of critical current
density. Such result confirms what previously reported by other authors 31. We ascribe such an
anomalous behavior mainly to the field dependence of the flux flow resistivity, i.e. ρff= ρn

B/Bc2(t): physically, the collapse of the cycle for increasing absolute values of the applied field
can be explained by the increasing of the resistivity with the field. By the way, the field
dependence is present also in the creep resistivity through the coefficient ρc. From the analysis
of the field profiles it comes out that the origin of the bump corresponding to Bext= 0.26mT in
Fig.2b, is related to the presence of regions of the sample in which the field and the
corresponding resistivity are close to zero, so that a vanishing diffusion coefficient determines
larger difference between the internal and the external field. However, the presence of the
anomalous bump in the magnetization cycle appears only at low frequency and close to Tc.
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FIG.2 - Magnetization cycles calculated at T=92K and B0=2mT in the pinning model I
case: a) with ρpar for different normalized frequencies ν*: ( )10-4; ( )10-3;
( )10-2; ( )10-1; ( )1; b) for ν*=10-4 with different resistivities ρ: ( )ρpar;
( )ρcr; ( )ρff. The Bean prediction is also shown for comparison (solid line).

3.2 – Susceptibilities
3.2.1 – Fundamental harmonic

In this section we analyze the temperature dependence of the first harmonic ac
susceptibility (χ'1, χ"1) at different frequencies by comparing the behaviors predicted by the

three pinning models. The "parallel" resistivity, ρpar, will be used in the numerical analysis as

well as the resistivities describing single loss regimes ("Taff" resistivity, ρTf; "creep" resistivity,

ρcr; "flux flow" resistivity, ρff). To clarify the notation, we remark that the symbols χ'n (α;β)

and χ"n (α;β) denote the susceptibilities, with α = I,II,III, (pertaining to the pinning models)

and β= par, Tf, cr, ff (pertaining to the resistivity loss mechanism).

In general, from the analysis of magnetic field profiles and magnetization cycles it is
expected that at low frequency and low temperature, the behavior of susceptibilities should be
critical state-like. On the contrary, as the frequency or/and the temperature increases, the
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diffusion of the magnetic field due to ρTf or ρcr and ρff becomes more and more relevant.
Moreover, near Tc or at higher frequencies the ρff dominates the diffusion process. Since the
relevance of thermally activated processes is strictly related to the value of the ratio U/KT, we
expect that in the model III at any temperature, the influence on the susceptibilities of diffusive
phenomena should be larger than for the other two models. The model II should exhibit a larger
influence of activation processes up to 85K if compared to the model I. However, an opposite
behavior is expected between 85K and the transition temperature.

Our simulations have been performed for two values of the ac magnetic field amplitude
B0=2mT, 20mT. The 2mT results are closer to accessible experimental data, whereas, due to
the well known amplitude dependence of the susceptibilities, the 20mT simulations are intended
to give a better understanding of the behavior at lower temperatures. The temperature
dependencies of the ac susceptibilities in the model I, χ'1(I;par) and χ"1(I;par) are shown in
Fig.3a,b at different frequencies for B0= 20mT. The critical state predictions are also reported
in the same plots in order to stress the relevance of thermally activated processes.

The main features can be summarized in the following:
- at low frequency the calculated temperature behavior is critical-state like; however the zero

frequency limit of the ac susceptibility is different from the critical state prediction and, in
particular, the peak temperatures Tp, is lower than the Bean predicted value;

- the maxima of χ"1(I;par) are always higher than the critical state value (χ"1(Bean)max≈
0.24);

 - both the peak temperatures and amplitudes increase with frequency.

At the highest frequency considered, the peak amplitude is χ"1(I;par)max≈ 0.5 whereas for a
constant resistance the value is χ"1(ρ)max≈ 0.42. As previously shown in Sec.3.1, the magnetic
flux diffusion at high frequency is essentially dominated by the flux flow; therefore the
explanation of the large value of the peak amplitude should be found in the dependence of ρff on
the local magnetic field.

All the features found for 20mT appear for 2mT at higher temperatures, where the
thermally activated processes become more relevant and enhance the differences respect to the
critical state behavior.

As far as the temperature dependence of χ'1(I;par) is concerned, the transition is sharper
at lower amplitudes B0 and higher frequencies. The analysis of χ '1(I;par) as a function of
frequency at fixed temperature reveals that the relative variation with frequency (i.e.

1
χ1

' ( I;par )

dχ1
' ( I;par )

dν*  ) is much higher near Tc. Indeed, near Tc, the shielding effects are only due to

the frequency induced dissipative currents, which vanish in dc conditions; however, a

significant shielding exists at low temperature also in the zero frequency limit, due to the critical

current. Moreover, a distinctive feature with d 2 χ1
' ( I;par )

dT 2 < 0  appears at T≈90.6K and ν∗ =10-2

(Fig.3a): such behavior is related to the crossover between regimes dominated by "creep" and

"flux flow" phenomena.
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FIG.3 - First harmonic susceptibilities vs temperature for B0=20mT, calculated for
different normalized frequencies ν* in the case of ρpar and pinning model I:
(a) real parts, (χ '1); b) imaginary parts, (χ"1).Symbols refer to: ( ) ν*=10-4;
( )ν*=10-3; ( )ν*=10-2; ( )ν*=10-1; ( ) ν*=1.The Bean prediction is also
shown (solid line)

Indeed, at ν∗ =10-2 and for T<90K, the χ"1(I;par) curve merges with the pure ρcr result,
which appears closer to the critical state prediction in the whole temperature range. On the
contrary for T> 90.7K, the ρff contribution becomes more and more relevant.

At frequencies lower than ν∗ =10-3 the behavior of χ"1(I;par) is described by ρcr, whereas
for frequencies above ν∗ =10-1 χ"1(I;par) coincides with χ"1(ff), in the whole temperature
range investigated. By the way, in the model I, the ρTf resistivity is ruled out in describing the
temperature dependence of χ"1 .

A similar analysis has been performed for the models II and III (not shown for sake of
brevity). In both cases the susceptibilities in different resistivity regimes have been compared to
understand the dominant resistivity regime.

In the model II, for t >0.3, Jc is higher compared to the model I, particularly near Tc. For
this reason at each frequency the peak of χ"1(II;par) is sharper in the model II and the transition
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width of χ'1(II;par) is narrower, all such features developing in a very narrow temperature
range around Tc.

By the way the main features obtained are:
a) at low frequencies, i.e. ν∗ =10-4-10-3, the behavior of χ"1(II;par) above Tp is essentially

determined by the "ρTf". To strengthen such a statement, the "Taff condition",
J Jc t( ) × U KT) << 1, has been also checked. For T<Tp, the behavior of χ"1(II;par) is
essentially the same of χ"1(II;cr);

b) at intermediate frequency ν∗ =10-2 - 10-1 the χ"1(II;par) merges in χ"1(II;cr) for all
temperatures;

c) for ν∗ =1 near Tc (± 0.1K) the "flux flow resistivity " gives a small contribution to
χ"1(II;par).

In the pinning model III, the temperature dependence of Jc is intermediate between
models I and II; on the contrary, the pinning potential vanishes in a quicker fashion, so that the
giant creep phenomenon is expected to be more relevant also at lower temperatures (T≈80K),
inducing large differences between the critical state and the actual diffusion of the magnetic
field. The main features of the χ"1(III) temperature dependencies are:
a) for ν∗ =10-4, the temperature dependencies of χ"1(III;par), χ"1(III;cr) and χ"1(III;Tf) are

very similar;
b) differences between χ"1(III;par), and χ"1(III;Tf) ( which is close to χ"1(III;cr) ) appear

for 10-3 ≤ν∗≤ 10-2 : such differences are amplified just above the peak temperatures and the
behavior could be ascribed to a significant ρff contribution;

c) the differences  between χ"1(III;par) and χ"1(III;cr) seems to be negligible for  10-1≥ν∗≥ 1.
It should be noted that an anomalous behaviors occurs at low frequencies in a few tenth

below Tc: as the temperature increases, a decreasing of χ'1(III;par) as well as an increase of
χ"1(III;par) occur. Such results are due to the unphysical non-monotonic increase with
temperature of the ρ T f  resistivity in the model I I I , showing a maximum,
ρTf

Max (91.5K) ~ 3∗10−2 Ωm . For such reason the results obtained at T>91.5K, where the "Taff"
is relevant, have to be rejected.

The frequency dependence of the χ"1 peak amplitude and peak temperature (Tp) for the
models I,II,III are summarized in Figs.4 and 5.
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FIG.4 - Calculated peak amplitude χ"1(Tp), vs frequency for different pinning models
in the ρpar case. The symbols are (  ) I for collective , ( -...-...- ) II for core
interactions, ( -  -  - ) III for  giant flux creep.The parameter values are
U0 (0) Κ = 2∗104 K , Jc (0) = 1010 A m2  , Bc2 (0) = 112T, B0=20mT is the amplitude
of the ac applied magnetic field Bac.

As far as the peak amplitude is concerned, its frequency variation is the first clear evidence
of the absence of a universal behavior, which should otherwise leads to a constant peak value.

In the pinning model I, the low frequency behavior is close to the critical state with χ"1

(Tp) ≈0.3. On the contrary, as the frequency increases, the increasing contribution of the flux
flow resistance leads to a smooth growth of χ"1 (Tp) up to values larger than 0.5. As
previously stated, such large value is determined by the implicit non-linearity present in the
magnetic field dependence of the flux flow resistivity.

By the way, in pinning model II such a high value of the peak of χ"1(II;par) appears for
each frequency; thus such feature is again related to a "magnetic field dependent" linear or a
"weakly moderate non-linear" I-V characteristic, as in the case of the ρTf dominant resistivity. In
such case however, as the frequency increases, the exit from the Taff condition towards a
stronger non-linear behavior causes a reduction of the peak.

Finally, in the model III the overlap of the Taff and the flux flow resistivities induces an
almost constant peak value ≈ 0.5.

For these reasons, in the analysis of experimental data, the different frequency
dependencies of the peak amplitude for the three models can give first indication of the actual
dominant dynamic process.

Usually ac susceptibility data are often reported in arbitrary unit, making a quantitative
comparison between experimental and numerical results very difficult to perform. Therefore,
the analysis has to be necessarily restricted to a qualitative discussion of the trend of data with
frequency and/or temperature. Furthermore, a quantitative comparison with published
experimental data in absence of an high dc magnetic field is not achievable. Nevertheless the
increase of the peak amplitude of χ"1 with the frequency is evident in some papers 39-41.

As far as the peak temperature is concerned, a general result common to the critical state
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descriptions, is its relation to the value of the critical current density Jc: the peak temperature is
closer and closer to Tc as Jc increases.

In the analysis of the frequency dependence of peak temperature, using an approach similar
to that of the present paper, many authors 22,38,64 suggested an Arrhenius-like relationship
between the frequency and the inverse of Tp :

1
Tp

= C − K

Up Tp( )








 ln(f ) (12)

where C is a constant. In a very small frequency range, corresponding to very small Tp

variations, Up can be considered constant, so that the linear dependence of 1/Tp on ln(f) has
been used to derive the value of the pinning potential. For larger frequency ranges, as Tp

increases with the frequency, Up decreases, so that eq.12 predicts a slope increasing with the
frequency. On the contrary, the results of the numerical solutions of the diffusion equation,
reported in Figs.5a,b for the three pinning models, show a monotonic increasing slope only for
the model III.

As expected from eq.12, the comparison among the numerical frequency Tp dependencies
shows that larger slopes are present in pinning models with lower pinning potentials, so that the
slope analysis can give a qualitative indication of the actual pinning model. Conversely, a
quantitative proportionality of the slope with 1/Up, predicted by eq.12, is not verified. In fact in
figs.5a,b for the three models the linear dependencies predicted by the eq.12 ( determined by
the value of Up corresponding to Tp (0.8Hz ) ) are depicted by full lines intersecting the
corresponding numerical results. Large slope differences with the numerical solutions clearly
appear. Finally in fig.5b the numerical results are also compared with the analytical frequency
dependence of Tp derived from the condition yielding the χ"1 peak for a pure resistance ρ 65 :

d
ωµ0

ρ






1 2

= 1.2 2  .

In the case of the Taff resistivity, the peak frequency fTf is:

f Tf = f(Tp ) ⋅ e
−

U p (T p )

KT p (13)

where f Tp( ) = 2.88
ρn

πd2µ0

B
Bc2 (Tp )

Up (Tp )

KTp

For magnetic field B values comparable to the amplitude of the ac field, the agreement
between the numerical solutions and eq.13 is reasonable. Considering an effective value of B
equal to 1/2 of the maximum amplitude Β0, the agreement is very good.
For such reason the large difference between eq.12 and eq.13, shown in fig. 5, implies that the
factor f(Tp) cannot be neglected, since it strongly changes the slope of the 1/Tp curve.
Following the above discussion, a qualitative comparison with experimental data can be
performed: fig.5a shows data referring to Y1Ba2Cu3O7 grown by melt-powder-melt-growth
method 43 and YBaCuO single crystal 44. As a matter of fact, only few published measurements
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have been taken in absence of large dc magnetic fields. In spite of the somewhat arbitrary choice
of the parameters ( U0 (0) Κ = 2∗104 K , Jc (0) = 1010 A m2 , d=1cm, ρc=ρff) used in our

numerical analysis, the behavior of the melt-grown sample appears to be similar to the II model
dependence. Due to the error bars appearing in published data, a best fit procedure is
meaningless, however in order to fit the melt-grown sample data with the other two models, too
large values of Jc (0) and U0 (0) should be supposed.

For the single crystal the increase of the slope with the frequency appears to be close to
the collective pinning prediction (model I). However, also in this case, the uncertainty of the
actual sample size and the presence of non-negligible geometrical effects gives only a qualitative
meaning to the fit procedure. By assuming the size of the single crystal equal to d ≈ 1mm (1/10
of the sample thickness used in our numerical simulations), a two order of magnitude frequency
shift should be expected.
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FIG.5 - a) Calculated Tc/Tp(χ"1), vs frequency for different pinning models, the symbols are:
(  ) I, ( -...- ) II, ( - - ) III.The three short full lines represent the Arrhenius-like
dependencies (eq.12), obtained by the Up(Tp) values corresponding to intersecting points with
the numerical results in the respective pinning model. The literature data for YBCO single
crystal, ( ) and YBCO semi-fused data ( ) are also shown. b) a detail of the Tc/Tp(χ"1) vs
f(Hz) for model II (-...-), where ( ) are Tp(χ"1) values calculated with "Taff resistivity",
equation (6). The solid line present the Arrhenius-like relationship.
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As reported in fig.5a a qualitative agreement appears.Once again, in order to fit the single
crystal data with the model III, too large values of Jc (0) and U0 (0)should be supposed.

Moreover the single crystal data cannot be fitted with the model II since , as shown in fig.5b,
this model predicts a decrease of the slope with the frequency increase in opposition to the
experimental results and pinning model I. In any case, our key result is the large difference
between numerical solutions and the slope of the 1/Tp curve (eq.12); therefore, the derivation of
the pinning potential from the frequency dependence of the first harmonic susceptibility should
be exploited very carefully.

3.2.2 – Third harmonic
As expected, in absence of a dc magnetic field, even harmonics are found to be equal to zero.
The analysis of profiles, cycles and first harmonic has shown that for the pinning models
considered, the magnetic flux diffusion is in many cases dominated by the ρff or ρTf resistivity:
in such linear cases, (i.e. a linear I-V characteristic) higher harmonics1 should be absent.
However, the magnetic field dependence of the two resistivities, ρcr and ρff can induce, even in
presence of an ac field only, a non-linear behavior in the diffusion equation. Therefore, in this
case too, higher harmonic components are present in the susceptibility. As an example, χ'3(ff)
and χ"3(ff) calculated for ρff are reported in Figs. 6a,b, whereas χ '3(I;Tf) and χ"3(I;Tf)
calculated for ρTf are shown in Figs. 7a,b for the pinning model I. The real parts display
negative values and bell-like shapes, with peak temperatures increasing as the frequency
increases; at the highest frequency, ν∗ =1, χ'3(I;Tf) and χ'3(ff) are negligible except that in a
few tenths of a Kelvin around Tc. On the other hand, the imaginary parts show an oscillatory
behavior : it displays positive values on approaching Tc and negative values at lower
temperatures. As the frequency increases, such behavior of χ"3(I;Tf) and χ"3(ff) occurs closer
and closer to Tc.

Following the scheme of the previous section, we start the study of odd harmonics in the
pinning model I using the parallel resistivity.
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FIG.6 - Third harmonic susceptibilities vs temperature for B0= 20 mT , evaluated
with the flux flow resistivity, ρff, for different normalized frequencies ν*: a) real part,

(χ'3), b) imaginary part, (χ"3).

Symbols refer to: ( ) ν∗= 10-4; ( )ν∗= 10-3; ( ) ∗= 10-2; ( )ν∗= 10-1; ( )

ν∗=1 .
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FIG.7 - Third harmonic susceptibilities vs temperature evaluated for B0=20mT and
different normalized frequencies ν*, with the "Taff" resistivity, in the pinning model I:

a) real parts, (χ '3) ; b) imaginary parts, (χ"3). Symbols refer to ( ) ν∗= 10-4;

( )ν∗= 10-3; ( )ν∗= 10-2; ( )ν∗= 10-1 ; ( ) ν∗=1 .

Even in such a case, the single components of the third harmonic (χ'3, χ"3) are analyzed
separately, because their features cannot be unfolded from the analysis of the modulus.

The temperature dependencies of the real and imaginary part of the third harmonic
χ'3(I;par) and χ"3(I;par) for the parallel resistivity, are reported in Figs.8a and 8b for different
frequencies and B0=20 mT; the Bean critical state result is also plotted for comparison. In such
cases, the increase of the frequency gives rise to meaningful qualitative differences in the
temperature dependencies and, as a consequence, it is not possible to describe the susceptibility
components in terms of a single scaling parameter 21.
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FIG.8 - Third harmonic susceptibilities vs temperature evaluated for B0=20mT and
different normalized frequencies ν*, with ρpar in the pinning model I :  a) real parts,

(χ'3) ; b) imaginary parts, (χ" 3) .Symbols refer to: ( ) ν∗= 10-4; ( ) ν∗= 10-3;

( ) ν∗= 10-2; ( )ν∗= 10-1.

In particular, for ν∗ =10-4, the overall shape of the curve resembles the critical state
behavior but with some differences. In the critical state, the real part is always positive whereas
the diffusion calculation yields negative values for T<90.7K (Fig.8a). Moreover, for
temperatures around Tc, the critical state χ"3(I) has a negative value whereas the diffusive
process yields small positive values.
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FIG.9. Third harmonic susceptibilities vs temperature evaluated for B0=20mT and
different normalized frequencies ν*, with the "creep" resistivity in the pinning model I:

a) real parts, (χ '3);  b) imaginary parts, (χ"3).Symbols refer to : ( ) ν∗= 10-4;

( ) ν∗= 10-3; ( ) ν∗= 10-2; ( ) ν∗= 10-1.

The temperature dependence of the third harmonics, calculated with ρpar for ν∗ =10-2 and
ν∗ =10-1 (Fig.8 a,b), show large differences from the critical state prediction. Indeed, χ'3(I) is
always positive for the critical state, while for ν∗ =10-2, χ'3(I;par) has large negative values
with the presence of two minima around T=90.5K and T=92K . For ν∗ =10-1 only a negative
peak appears just below Tc .

As far as χ"3(I;par) at ν∗ =10-2 is concerned, qualitative deviations from the critical state
behavior appear above T=90.2K, with the presence of a positive maximum around T=92.2K
whose amplitude increases with the frequency.

As previously stated for the first harmonics, such behaviors are essentially determined by
the flux flow resistivity; in fact for ν∗> 10-2 and T>91.5K the results of the parallel model
(Figs. 8a,b) coincide with the flux flow one ( Figs.6a,b).

It can be shown (Fig.9a,b) that results obtained at different frequencies using the creep
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resistivity only yield a mere shift (∆T≈0.5K) of the curve toward Tc. Furthermore, if larger ac
fields are applied or a lower critical current density is assumed, all the structures of the curves
shift to lower temperature. For values such that the χ'3(I;cr) peak is placed below 85 K, the
diffusion result is practically identical to the critical state one.
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FIG.10 - Third harmonic susceptibilities vs temperature evaluated for B0=20mT and
different normalized frequencies ν*, with ρpar in the pinning model II:

a) real parts, (χ'3) b) imaginary parts, (χ"3).Symbols refer to :( )ν∗= 10-4; ( )

ν∗= 10-3 ; ( ) ν∗= 10-2; ( ) ν∗= 10-1.

Within the framework of the pinning model II, the temperature dependencies of the third
harmonics, are shown in Figs.10a,b for different frequencies at B0=20mT. The Bean critical
state prediction is also plotted for comparison. The analysis of χ'3(II;par) and χ"3(II;par)
confirms the results obtained for the first harmonic, but with some differences: indeed, the shift
of χ '3(II;par) and χ"3(II;par) with frequency develops in a narrower temperature range
(∆T=0.2K).

An immediate feeling of the dominant contribution to the diffusion process comes from
the χ'3(II;par) plots. Indeed χ'3(II;par) always takes negative values with a large negative peak
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similar to "Taff" and "flux flow" behaviors, opposite to the Bean model result. In particular, the
following statements can be made on χ3(II):

a) at the lowest frequencies, the parallel result is close to the "Taff" one
b) as the frequency increase, the parallel result is similar to the flux creep behavior
Therefore for the pinning model II, as the frequency increases, the "parallel resistivity"

show a transition from "Taff" to "creep" regime, with a significant contribution of the flux flow
at the highest frequency investigated.

Even for the pinning model III, the analysis of higher harmonic is confirmed to be a more
stringent test with respect to the fundamental harmonic. In such case, due to the lower values of
both critical current and pinning energy, the main features of the third harmonic appear in a
temperature range wider than for the other pinning models.

Results for χ'3(III;par) and χ"3(III;par), are presented in Figs.11a,b. The χ'3(III;par)
plot displays negative values in a wide temperature range, clearly differing from the positive
critical state prediction. For frequencies above ν∗≥  10-3 , the negative peak of χ'3(III;par) and
the oscillations of χ"3(III;par) disappear. By analyzing the behaviors of χ"3(III;par) obtained
with different resistivities forms it can be argued that:

a) for 10-4≤ν∗≤ 10-2 the behavior of χ"3(III;par) is similar to that of χ"3(III;Tf) up to
88.8K, differing for higher temperatures; for the same frequencies "creep" and "Taff"
yield very similar results;

b) for 10-1 ≤ν∗  ≤ 1 the χ"3(III;par) and χ"3(III;cr) curves merge; only very near Tc the
"flux flow" give some contribution.

A general fact common to the different pinning models, is that the increase of the frequency
determines a change in the non linearity of the dominant resistivity and of the related magnetic
flux diffusion coefficient. Such variation produce significant qualitative changes of the shape of
the temperature dependencies which cannot be described by a single scaling parameter, δ(ω,T).
In other terms, the susceptibilities cannot be written as, χn= fn(δ(ω,T)), since any frequency
change determines variations of the functions fn(δ(ω,T)).
As far as a comparison with experimental data is concerned, to the best of our knowledge
susceptibility data collected in absence of dc fields are not available at the present time.
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FIG.11 - Third harmonic susceptibilities vs temperature evaluated for B0=20mT and
different normalized frequencies ν*, with ρpar in the pinning model III:
a) real parts, (χ'3); b) imaginary parts,(χ"3). Symbols refer to:
( ) ν∗= 10-4; ( ) ν∗= 10-3 ; ( ) ν∗= 10-2; ( )ν∗= 10-1.

4 – SUMMARY AND CONCLUSIONS
The temperature dependencies of the first and higher harmonics of the complex magnetic

susceptibility have been analyzed by numerically solving the diffusion equation for the local
magnetic field, using a parallel resistivity model which takes into account both creep and flux
flow processes. Within such approach different non-linear behaviors are present in different
regions of the I-V characteristic. The simulations refer to an YBCO slab in presence of
longitudinal ac magnetic fields of 2 and 20 mT, in the frequency range 0.8 - 8*103 Hz. The
absence of a dc field restricts our analysis only in a few K below Tc. The material parameters
relevant for the calculation are: the critical current density at T=0K ( Jc(0)=1010 Α/m2), the
upper critical field ( Hc2(0)=112T), and the pinning potential at T=0 K (Up(0)/KB=2 x 104 K).
In any case, the main results are not affected by the exact parameters values chosen for the
calculations.
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Three distinct pinning models have been considered, which determine different
temperature dependencies of the pinning potential and the critical current density. The first (I) is
the collective pinning model; the third (III) resembles the "giant flux creep" model, while the
second (II) shows larger pinning potentials and very larger critical current densities in a
temperature range of 10K below Tc.

In general, the performed analysis points out that the current densities generated by the ac
fields determine different regimes of flux motion ("Taff", "creep", "flow") in temperature and
frequency ranges, which depend on the pinning models. The transition between different
regimes induces a non universal behavior in the temperature dependence of the susceptibilities.
This crossover cannot be analyzed in simpler models previously used in the literature.

In particular, for the collective pinning model I and for the lowest investigated
frequencies, a behavior similar to the critical state is found in some regions of the magnetization
cycle, with an effective current density Jc*(T,ν) < Jc(T). Such differences are more significant
close to Tc. In any case, the value of Jc*(T,ν) increases with the frequency. In such cases the
diffusion process is determined by the creep phenomenon with the presence of currents high
enough to drive the system far from the "Taff" limit. In such conditions the overall behavior can
be described, in a first approximation, by a single scaling parameter. However, as the
frequency increases, the induced currents increase in such way that the flux flow contribution
cannot be neglected, so that at the highest frequencies and close to Tc, the magnetization cycles
are completely determined by the flux flow process. In these conditions an overall behavior far
from the critical state is found so that the scaling procedure is not allowed.

For the pinning model II, the higher values of the critical currents are such that the main
features of the susceptibilities develop within 1K below Tc, so that thermally activated
processes become relevant. In this case at low frequencies the parallel resistivity is in the "Taff"
limit, which in turn goes to the "creep" regime for temperatures above 92.1K. Only at the
highest frequencies investigated and within a few tenth of K near Tc, the "flow" component
gives some contribution.

In the model III the lower values of the pinning potential determine a larger relevance of
the thermally activated processes also at lower temperatures, so that the main features of the low
field susceptibilities appear in a range of ≈ 10K below Tc. Even in such a case, at the lowest
frequency and below 87.5K, the susceptibilities are determined by the "Taff" resistivity
whereas, at higher temperatures and higher frequencies, the diffusion process is no more in the
Taff limit and a flux flow contribution appears.

A key new result of this work is the frequency dependence of the amplitude of the peak of
χ"1 which is related to different non-linear behaviors of the different ranges of the I-V
characteristic, determined by the current values induced by the magnetic field variations.
Indeed, the peak amplitude generated by a field dependent linear resistivity (flux flow or Taff) is
of about 0.5, whereas the highly non-linear behavior of the "creep" resistivity gives rise to a
peak value closer and closer to the critical state prediction (0.24) as the non-linearity increases.
For such reason in our conditions for the model I, as the frequency increases, the transition
from creep resistivity to a flux flow one generates an increase of the peak value. On the
contrary, in the II model, the transition from "Taff" to "creep" regime, generated by the
increase of the frequency, yields a reduction of the peak. Finally, a constant peak value ≈0.5 is



— 25 —

found in the model III for the "Taff" to "flux flow" transition.
These three different behaviors give a first experimental criterion for the identification of

the actual pinning model; however, for this purpose, the absolute calibration of the
susceptibility apparatus is necessary. Anyhow, a more pressing experimental criteria for the
choice among different pinning models can be given by the inspection of the frequency
dependence of both peak amplitude and temperature.

Indeed, as far as the frequency dependence of the peak temperature is concerned, Tp

clearly increases within any model since it is related to the increase of the induced currents
driven by the field frequency. However such dependencies appear to be qualitatively different in
the different pinning models which show a similar frequency dependence of the amplitude. For
instance, the amplitude analysis can give similar results (χ"1(peak)≈0.5) even for very different
dynamic regimes (Taff, flux flow) determined by different pinning models; however these
different regimes can be discriminated by observing the frequency dependence of the peak
temperature.

As a matter of fact the numerical behavior found for the different model is in a qualitative
agreement with experimental data found in literature for different materials.

A second key result is the large difference observed between the numerical slope of 1/Tp

vs ln ω and the value -K/Up predicted by the analytical approximated approach 22. Thus, a lot
of care should be taken in the determination of Up from the frequency dependence of the peak
temperature, experimentally observed.

As far as higher harmonic components are concerned, the crossover between different
dissipative regimes, induced by the frequency increase, strongly affects the shape of their
temperature dependence.

A third novel key result is the relevant presence of high harmonics even for diffusion
processes dominated by ρff and ρTf resistivities, as long as the dependence on the local field is
introduced. These resistivities are responsible for large qualitative differences in the temperature
dependencies of the third harmonics. In this way, the analysis of real and imaginary
components of higher harmonics is confirmed to be a more stringent test for the choice of the
pinning model with respect to the fundamental harmonic.

In conclusion, the presented analysis describes temperature and frequency dependencies
of the susceptibilities in contrast with simpler models which leads to functional dependencies of
the susceptibilities χn=fn(δ(ω,T)) depending only on a single scaling parameter δ(ω,T).
Therefore we believe that no critical state description, even refined for the frequency
dependence, can describe the physical phenomena underlying low frequency - low fields
complex ac susceptibility measurements. Indeed, as the frequency increases, our numerical
analysis shows significant variations of the functions fn(T). Such variations are due to the
transitions between different dissipative processes (taff, creep, flow) .
For these reasons, the experimental criteria to discriminate among different pinning models can
be given by the frequency dependencies of the susceptibilities and in particular of the absolute
amplitude of the peak, and of the peak temperature for the imaginary part of the first harmonic.
However for a deeper analysis a full best fit procedure will be necessary, using numerical
simulations taking into account the different losses mechanisms in the different pinning models.
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