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Abstract

The temperature dependence of the harmonics ()n) of the ac magnetic susceptibility in
HTS have been investigated by numerical solutions of the non linear diffusion equation for the
magnetic flux. Within the framework of the collective pinning model, we show that the
transition between different regimes for the flux dynamics (taff, creep, flow) is determined by
the field frequency for a fixed dc field, or by the dc field for a fixed frequency. As a
consequence, a non universal behavior arises for the temperature dependence of ¥p. In
particular, in this approach the frequency dependencies of both amplitude and temperature of

the peak of the imaginary part of the first harmonic and of the modulus of the third harmonic are
discussed.
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1- INTRODUCTION

Dynamic magnetic properties in the mixed state of high T, superconductors have been
investigated by various authors both by transport and magnetic measurements. In particular, the
low frequency complex susceptibilities (fundamental and its harmonics: Xn=X'p+ 1X,") are
given by the Fourier coefficients of the steady magnetization cycles, which are determined by
the dynamics of flux quanta threading into the sample. Such processes can be accounted for
only in a first approximation by the critical state description [1-2], which cannot describe the
experimentally observed frequency dependence [3-4] of y,,. Therefore, it is necessary to study
the non-linear diffusion-like equation [5] which governs the spatial-temporal evolution of the
local magnetic field B. In this case the role of the flux diffusivity is played by the resistivity p,
which depends on the various regimes of flux dynamics, so that its dependence on temperature
(T), local field (B) and local current density (J) is determined by the different pinning
mechanisms operating in the material.

Recently, the ac response of thin superconductors has been studied in the flux creep
regime by numerically solving the integral equation which describe the flux diffusion in the
transverse geometry [6].

Some authors also suggested [7-8] the possibility of an universal behavior described
by the single scaling parameter &®,T), i.e. the effective penetration length, which is related to a
frequency dependent critical current. In this approach the susceptibilities can be written as:
xn=fn(8(co,'l')). In absence of dc bias magnetic fields, the temperature and frequency
dependence of %o(T) has been calculated by the present authors [9,10] starting from the non—
linear magnetic diffusion equation, where the diffusivity has been described in terms of a
"parallel resistor model" [11], incorporating both flux creep and flux flow resistivities. Such an
approach naturally accounts for changes of the non linear behavior produced by variations of
the currents induced in the sample by the driving ac magnetic field. As a consequence, a non—
universal behavior appears in the general shape of the temperature dependence of higher
harmonics.

Following the same approach of ref.[9] in the present paper we shall focus on the
temperature and frequency dependence of , (T) in presence of dc bias magnetic fields.

2 - THE MAGNETIC FIELD DIFFUSION PROBLEM

The one—dimensional case of an homogeneous infinite slab with thickness 2d (d=100
um) has been studied in presence of both dc and ac external magnetic fields, Bex(t) = Bgc + bo
sin(2mvt), applied parallel to the sample surface (by=2mT; 0< By. < 10T). In such case the
non-linear diffusion equation for the local magnetic field B inside the sample is:
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where p(B,J) is the resistivity, written as the parallel (Ppar), between the "flux creep” (pcr) [12]
and the "flux flow" (pgr) [13] resistivities:
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where 7=T/T, is the reduced temperature, Up(#,B) is the pinning potential, Jo(¢,B) is the critical
" current density and B¢(t) is the upper critical field written as: B, = Bcz(O)(I —12) /(14-(2). The

magnetic field dependence of both variables Up and J¢ is assumed to be of Kim type,
(=Bo/(B+By)). The current density J is proportional to the gradient of the local magnetic field (B)
and it is induced by the time derivative of B. In eq.3 p. is determined by: p_,(J.)=py. For
x=JU, /. KT<<1, sinh (x) = x, so that the linear "taff" resistivity is recovered
(Pus = (Up)/KT)exp(<U, (1)/KT)).

Equation (1) has been numerically solved by means of NAG Library routines, with
B(x,t=0)=Bgc, as initial conditions, which corresponds to field cooling situation in presence of
a strong flux pinning. The algorithm computes the time evolution of the flux profile in presence
of boundary conditions given by Beyt. The periodic steady magnetization loops have been then
calculated starting from the difference between the volume average <B(r,t)> of the profile B(r,t)
and the instantaneous value of the applied field. The susceptibilities xn=Yn"+i)Xn" Were finally
calculated by Fourier transforming. The temperature dependence of the susceptibilities are
regulated by the temperature dependencies of J. and Up which, in turn, depend upon the
pinning model. In our case the collective pinning model (14) has been assumed, yielding the
following temperature dependencies:

Up(B,1) =Up (1-1%) 5a)

J(B,1) = Jo (1-12)5/2 (1442)-1 5b)
with Up/K=2-104 K, and Jp=101! A/m2, which are a reasonable choice for YBCO.

3 - RESULTS AND DISCUSSION

Figure 1 shows the temperature behavior of the imaginary part of the first harmonic,
(%"1), calculated at v= 0.8Hz for various applied dc fields; the real part is not shown since it is
not particularly relevant for our discussion. The X"| peak temperature (Tp) shifts regularly
towards lower temperature as the dc field increases; the peak amplitude first decreases for
increasing fields up to Byc = b, and then approaches a value close to 0.417, which pertains to a
pure resistivity. Indeed, simulations carried out only using the "taff" resistivity yield a %" peak
of the same amplitude, located at the same T, of the peak obtained using the parallel resistivity.
Thus, the behavior at the largest dc fields can be explained by considering that the time varying
ac magnetic field generates electric fields, which induce currents biasing the sample in the
"taff" region of the E-J characteristic. On the other hand, the decrease of the peak value found
on lowering the dc field towards bg, can be explained considering that the "taff" resistivity
decreases, so that the electric fields induce larger currents. For such a reason the bias point in



the E-J characteristics moves towards the non-linear region close to the “critical current bias

point". As a consequence, the " peak amplitude begin to decrease towards the critical state
value (0.21).
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Fig. 1 - Calculated x"] as a
function of temperature for v=0.8Hz
and bg=2mT at different B4c values.
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Finally, the peak enhancement at B4c=0T is due to the field dependence of the resistivity
(eq.4), which can lead to peak values well above both the critical state and the normal resistance
peak value [10].

As a matter of fact, an overall behavior similar to the present finding has been reported in
literature for melt—powder—melt grown samples [15].

In order to display the hysteretic contribution to the losses, the third harmonic (both real
and imaginary parts) is plotted in fig.2a,b as a function of temperature at various dc fields.
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As far as the temperature dependence of '3 is concerned, the critical state predicts the




presence of a bell shaped positive peak (similar to ¢"1) with a peak value of=0.05. On the
contrary, the numerical results show an oscillation between positive and negative values, being
the positive peak always located at temperature higher than the negative one. Such feature is the
signature of thermally activated creep phenomena.

Concerning the temperature behavior of x"3 for dc fields larger than 0.01T, the general
shape is similar to the critical state prediction, with an oscillatory behavior with a

negative peak at temperatures higher than the positive peak. In the absence of dc fields, both the

real and the imaginary part display a more complex temperature dependence due to the interplay
between the ac and the dc fields.

The decrease of the peak temperatures with the increase of the dc field is a common
feature of the first and the third harmonic, which is related to the field dependence of the
critical current density. By the way, the presence of 3 is related to the occurrence of non-linear
processes (like "flux creep”). Therefore, as the dc field increases, the decrease of the %3
amplitude is determined by a reduction of the non-linear behavior of the material, due to a larger
relevance of the taff phenomenon. This result gives a further support to the correctness of the
analysis given for x"1.

Similar features of a transition between different regimes of the flux diffusion appears
also with the increase of the frequency of the ac field. Indeed, concerning the frequency
dependence of the temperature and amplitude of the %" peak, fig. 3 shows the numerical
results obtained at different dc fields. As discussed by some authors [3], the logarithmic
frequency dependence of Tp results from the thermally activated flux motion over effective
energy barriers (U). These processes [3] lead to a reduction of the measured critical current
density (Jc) below its value in the absence of thermal activation: J.=J.o(1-(KT/U) In(vo/V)). In
such flux—creep-based picture, the effective activation energy at fixed temperature and field is
inferred from the slope of the 1/T p Vs In v plot. However, our diffusion based numerical
calculations yield values of " peak amplitude in the range 0.32-0.42 well above the critical
state prediction (0.24). For this reason, for the frequencies and dc fields investigated, the flux
creep picture is clearly ruled out in describing the peak occurrence for By, >0.1T.

Therefore the derivation of the effective activation energy from the slope of the empirical
"linear" behavior cannot be regarded as a routine procedure.

In such a context, even the analysis of the third harmonic has to be necessarily carried out
carefully. In Figs.4a,b the frequency dependencies of the peak temperature and the peak value
of the modulus of the third harmonic are reported at different dc fields.

Despite the similar frequency and dc field dependencies of 1/Tp, shared by x"1 and I3l
(Fig.3a and 4a respectively), it should be noted that, at fixed dc field for increasing frequency,
their amplitudes display an opposite behavior. Indeed, as shown in Figs.3b and 4b, the %"
amplitude decreases, whilst the opposite occurs for the peak of ky3l. The same behavior is found
on decreasing the dc field.

Such behaviors are related to the enhancement of non linearity of the magnetic response of
the material, as long as the frequency increases or the dc field decreases, due to gradual
crossover from the "taff" to "flux creep" regime. Such an enhancement leads to a decrease of
the first harmonic and an increase of the third one.



0.016
. . s 0T
0.015 P a S 82&1}
[ ‘-""‘B-._. —a—1T
0.014f T 1
Te ' g &-10T
= Z
<, 0013
=
—
~ 0012}
0011t QWM
[} L L i L 1 i — 1
0.0100, — - — = i g Fig.3- 1/T p (@) and peak amplitude
(b) of the imaginary part of first
harmonic as a function of frequency
0.42 : at different By values.
0.40
0.38
:n.O.BG
=034
=
032
0.30
028 TR 07 10’ 0" 10°

frequency (Hz)

0.01

0.015
0.014

0.013

UT, [ 1(K™)

0.012

0.011f

Fig. 4 — 1/Tp (a) and peak amplitude o010

(b) of the third harmonic modules as a 10
function of frequency at different Bgc 0.07
values. }
0.06
0.05
—, 0.04

=]
E? 0.03




4 - CONCLUSIONS

In this paper the first and third harmonic of the ac susceptibility have been calculated in
presence of dc fields, starting from the numerical solution of non-linear diffusion-like equation
for the magnetic flux. In particular, the diffusivity has been described in terms of a "parallel
resistor model" incorporating both flux creep and flux flow resistivities. By varying the dc field
or the frequency of the driving magnetic field, it is possible to bias the sample at different
regions of its E-J characteristic, which shows a different degree of non linearity. As a
consequence, the susceptibilities %, does not show an universal behavior.

For the frequency and dc fields used in the simulations a crossover from taff to flux creep
regime has been observed. In presence of such a crossover we have found that an analysis
based only on the linearity in the 1/Tp()"1) vs log f plot does not allow, even for the third
harmonic, to distinguish the different regimes of flux dynamics. On the contrary, the unfolding
of the single contributions can be carried out only by a simultaneous inspection of the frequency
dependencies of both 1/Tp()"1) and the amplitude of the harmonics.
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