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Abstract

We present a new analysis of thd = 1/2 rule in K — 77 decays and th&,- param-

eter. We use thé/N, expansion within the effective chiral lagrangian for pseudoscalar
mesons and compute the hadronic matrix elements at leading and next-to-leading order
in the chiral and thé /N, expansions. Numerically, our calculation reproduces the dom-
inantAl = 1/2 K — nm amplitude. Our result depends only moderately on the choice
of the cutoff scale in the chiral loops. Thel = 3/2 amplitude emerges sufficiently sup-
pressed but shows a significant dependence on the cutoffBZhgarameter turns out to

be smaller than the value previously obtained intj\&. approach. It also shows a sig-
nificant dependence on the choice of the cutoff scale. Our results indicate that corrections
from higher order terms and/or higher resonances are large faxthe 3/2 K — =«
amplitude and th¢|AS| = 2) K° — K° transition amplitude.
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1 Introduction

Over the last few decades the kaon system has provided us with a rich field of phe-
nomenology which has been important for developing our theoretical understanding of
the interplay of weak and strong interactions. The nonleptonic kaon decays are espe-
cially interesting because they provide a testing ground for QCD dynamics at long dis-
tances. Two outstanding problems in the field are the explanation dfithe 1/2 rule
in K — 7 decays and the calculation of tti#. parameter which measures the non-
perturbative contributions to tHeA S| = 2) K° — K° transition amplitude. An accurate
knowledge ofBj is necessary for theoretically investigating the indirect CP violation in
the neutral kaon mass matrix, as well as, itie— Ks mass difference. ThAl = 1/2
rule is particularly important because it gives rise to the small value of thesfatiavhich
measures the direct CP violation in the— 77 decay amplitudes.

Since its first observation more than 40 years ago [1)Alle= 1/2 enhancement
has attracted a great deal of theoretical interest trying to find the dynamical mechanism
behind the approximate isospin selection rule, in particular within the standard model.
Experimentally, the ratio of th&7 = 1/2 andAT = 3/2 amplitudes inK' — 77 decays
corresponding td = 0 and] = 2 in the final state, respectively, was measured to be

Reny  Re(K — (7m)1-)
Ren, Re(K — (7m7)=2)

= 22240.1, (1)

1
- =
with A; = a;exp(id;) andd; the final state interaction phases. This result was partic-
ularly enigmatic before the advent of QCD when only the current-current opepator
arising from thé?” exchange was included in the analysis and, consequently/Reu;

was expected to be around one. With the establishment of QCD our understanding of
the AT = 1/2 selection rule improved considerably. Using the operator product expan-
sion, theK — w7 amplitudes are obtained from the effective low-energy hamiltonian for
|AS| = 1 transitions [2 - 4],

o= % Eu 2_1: ci(p) Qi) (1< me), (2)
ci(p) = zi(p) + 7yi(p) T=—&/6u, §0=VyVaa - (3)

The arbitrary renormalization scaleseparates short- and long-distance contributions to
the decay amplitudes. The Wilson coefficient functieyig) contain all the information

on heavy-mass scales. For CP conserving processes onlydrenumerically relevant.

The coefficient functions can be calculated for a sgalgs 1 GeV using perturbative
renormalization group techniques. They were computed in an extensive next-to-leading



logarithm analysis by two groups [5,6]. The local four-quark operafp(g:) can be
written, after Fierz reordering, in terms of color singlet quark bilinears:

Q1 = 45,9"dy, Uy, Qs = 45,y ur ury,dy, (4)
Q:; = 4 ZELv”dL qLYulL Qs = 4 ZEL’Y“(]L qrLYudr ©))
q q
Qs = 4 Z 5y QrYudr Qs = -8 Z SLqr qrdr, (6)
q q
3 L 3 _
Qr = 4 zq: 260517 dr, QrYudR Qs = -8 zq: 364 5LaR qrdr, (7)

where the sum goes over the light flavays< «, d, s) and

qr,, = %(1 + v5)q, e, = (2/3,-1/3, —1/3). (8)

Q3, ..., Qs arise from QCD penguin diagrams involving a virtl&l and ac or ¢ quark,
with gluons connecting the virtual heavy quark to light quarks. They transfof8yasy)
underSU(3);, x SU(3)r and solely contribute tA] = 1/2 transitions.(); andQs are
electroweak penguin operators [7,8] which are less important for\the= 1/2 rule.
Long-distance contributions to the amplitudég are contained in the hadronic matrix
elements of the four-quark operators,

Q)1 = (rm, 1] Qi) |K°) ©)

which are related to thet 7~ and#’#? final states through the isospin decomposition
@ = = Q| QKT + (7 G |K) (10)
@ = = ((r | QK - (07 QU KT) = \/§<w+w°|@i|f<+>. (12)

They are difficult to calculate but can be estimated using non-perturbative techniques
generally fory around a scale aof GeV.

Major progress in the understanding of thé = 1/2 rule was made when it was
observed that the short-distance (quark) evolution, which is represented by the Wilson
coefficient functions in the effective hamiltonian of Eq. (2), leads to both an enhancement
of thel = 0 and a suppression of thle= 2 final state. Theoctet enhancemefi2] in
the (@1, Q») sector is dominated by the increasezgfwhen i, evolves fromMy,, down
to u ~ 1 GeV, whereas the suppression of thé = 3/2 transition results from a partial



cancellation between the contributions from peand(), operators owing to a destruc-

tive Pauli interference in th&+ — 777" amplitude. Another important short-distance
enhancement was found to arise in the sector of the QCD penguin operators, in particular
for z¢, through the proper inclusion of the threshold effects (and the associated incomplete
GIM cancellation above the charm quark mass) [9]. Nevertheless, it was concluded that
the perturbative QCD effects are far from sufficient to describettie= 1/2 rule and

QCD dynamics at low energies must be addressed. The long-distance enhancement of the
matrix elements of the QCD penguin operators over the matrix elemeds ahd ()

was first conjectured and estimated in Ref. [3] in the vacuum saturation approximation
(VSA) [10]. The VSA approach, however, fails completely in explainingve= 1/2

rule, and a more refined method for the calculation of the hadronic matrix elements is cer-
tainly needed.

Due to the non-perturbative nature of the long-distance contribution, a large variety
of techniques has been proposed to estimate it (for some recent publications see Refs. [11 -
16]). Among the analytical methods, th¢N. expansion [17] IV, being the number
of colors) associated with the effective chiral lagrangian is particularly interesting. In
this approach, QCD dynamics at low energies is represented by the ‘meson evolution’ of
the operators, from zero momentum;tpin terms of the chiral loop corrections to the
matrix elements [9,18]. The authors of Ref. [18] calculated the loop corrections to the
matrix elements of); and @, and included the gluon penguin operafgy at the tree
level, consistent with thé/N. expansion. They obtained an additional enhancement and
suppression of the\/ = 1/2 and Al = 3/2 amplitudes, respectively, systematically
continuing the octet enhancement in tf@,, ;) sector to the long-distance domain.
Numerically,a, was reproduced with an accuracy of 70 to approximately’40@hereas
ap [for Ager = 300 MeV andm(1 GeV) = 125-175MeV] was found to be aroune -

80 % of the measured value, suggesting that the bulk of the physics behindithe
1/2 rule in kaon decays is now understood. One might note that the agreement with
experiment is not improved by including the next-to-leading order values faf; {48)].

In this article we present a new calculation of the hadronic matrix elements in
K — 7 decays in the /N, expansion for pseudoscalar mesons. The paper contains
several improvements over the original approach of Ref. [18] which are conceptually
and numerically important. One improvement concerns the matching of short- and long-
distance contributions to the amplitudes, by adopting a modified identification of virtual
momenta in the integrals of the chiral loops. To be explicit, we consider the two currents
or densities in the chiral representation of the operators to be connected to each other
through the exchange of an effective color singlet boson, and identify its momentum with
the loop integration variable. The effect of this procedure is to modify the loop integrals,



which introduces noticeable effects in the final results. More important it provides an
unambiguous matching of tHe' V. expansion in terms of mesons to the QCD expansion

in terms of quarks and gluons. The approach followed here leads to an explicit classifi-
cation of the diagrams into factorizable and non-factorizable. Factorizable loop diagrams
refer to the strong sector of the theory and give corrections whose scale dependence is
absorbed in the renormalization of the chiral effective lagrangian. The non-factorizable
loop diagrams have to be matched to the Wilson coefficients and should cancel scale de-
pendences which arise from the short-distance expansion. In a recent publication together
with W.A. Bardeen and E.A. Paschos [20] we used this method to calculate the hadronic
matrix elements of)s and@s which dominate the ratig /<. In this paper we focus on the

CP conserving amplitudes which, to a large extent, are governed by the current-current
operators); andQ@s,.

In Ref. [18] a mass scale replacing the complete dependence of the exact expres-
sions on the meson masses was introduced in the chiral logarithms. Another improvement
of this paper is that we investigate the exact expressions for the matrix elements using the
matching prescription discussed above, i.e., we evaluate the complete finite terms from
the non-factorizable diagrams. Moreover, we calculate the whole of the matrix elements,
that is to say, we also take into account the subleading penguin operators. For consis-
tency with Ref. [20] we also include the small effects of the singdetin the numerical
analysis we take special care to separate the different contributions. In particular, we
discuss the effect of the final state interaction phases which were not taken into account
in Ref. [18]. Uncertainties arising from the short-distance part of the calculation are
estimated by comparing the amplitudes obtained from the LO and the NLO Wilson coef-
ficients, respectively. Finally, we also investigate the size of higher order corrections to
the hadronic matrix elements to critically examine the stability of our results within the
pseudoscalar approximation.

In the second part of this work we investigate the matrix element of thé|(= 2)

K° — K° amplitude in thel /N, expansion following the same lines of thought. The
introduction to this calculation we postpone to the beginning of Section 5. Our results for
the K — 77 matrix elements were already discussed in part in Refs. [21,22]. For a more
detailed presentation of the general method we refer the reader to Refs. [20,23].

The paper is organized as follows. In Section 2 we review the general framework of
the effective low-energy calculation and discuss the matching of short- and long-distance
contributions to the decay amplitudes. Then, in Section 3 we investigaké therm ma-
trix elements. We show explicitly that the scale dependence of the factorizable loop dia-
grams is absorbed in the renormalization of the bare couplings, the meson wave functions
and masses. We next calculate the non-factorizable loop corrections in the cutoff regu-



larization scheme. In Section 4 we match them to the Wilson coefficients to obtain the
isospin amplitudes. In Section 5 we extend the analysis to|th8|(= 2) K° — K°
transition. We compute the matrix element and match it to the short-distance coefficient
function to determine th&, parameter. In both sections we present our numerical results
and compare them with those of the existing analyses. The conclusions can be found in
Section 6.

2 General Framework

Following the lines of Ref. [20] we calculate the hadronic matrix elements of the local
four-quark operators (with)AS| = 1, 2) in thel /N, expansion. To this end we start from
the chiral effective lagrangian for pseudoscalar mesons which involves an expansion in
momenta where terms up @(p*) are included [24]. Keeping only terms 6f(p*) which
contribute to thel — 77 or the K° — K° matrix elements and are leading/ it reads!

2 o

f
Loy = Z((D#UTD”U)+4N

c

U = U)? + r(MUT + UMY)) (12)
+rLs(D, U DFU(MIU + U M)) + 7 L MTUMU + MUT MUY,

with DU = 0,U —ir, U + iUl,, M = diag(m,,, mq, m,), and(A) denoting the trace

of A. [, andr, are left- and right-handed gauge fields, respectivélgndr are free
parameters related to the pion decay constgnand to the quark condensate, with=
—2(gq)/ f*. The complex matriXJ is a non-linear representation of the pseudoscalar
meson nonet:

U = exp %H, M =n%),, Do) = 264 , (13)
where, in terms of the physical states
0+ Jean + \/gbn’ V2t V2K
1= V27 —70 4 %an + \/gbn’ V2K° . (14)
V3K~ VK b+ 3a
with
a = cosf —/2sinf, V2b = sinf + v/2 cos 8, (15)

The various conventions and definitions we use are in agreement with Ref. [20]. In par-
ticular, we introduce the singlet in the same way and with the same value forlthé1)

One might note that the mass tesmLg contributes only to the matrix elements@§ andQs which
were computed in Ref. [20]. Here we include it for completeness.



symmetry breaking parameter,= m% + m%, —2m? ~ 0.72 Ge\#, corresponding to the
n — 1’ mixing angled = —19° [25]. The bosonic representation of the quark currents is
defined in terms of (functional) derivatives of the chiral action:

39S f?

A e Lt ha T AN
ey = 0(1u(7))i5 " U10°0);:

+ir Ly (0*UTM — MTo*U + 0*UTUMTU — UTMUTO*U) (16)

jis
and the right-handed currents are obtained by parity transformation. Eq. (16) allows us to
express the current-current operators in terms of the pseudoscalar meson fields.

The1/N., corrections to the matrix elemen(i9;); are calculated by chiral loop di-
agrams in line with Ref. [20]. The factorizable contributions, on the one hand, refer to the
strong sector of the theory and give corrections whose scale dependence is absorbed in
the renormalization of the chiral effective lagrangian. This property is obvious in the case
of the (conserved) currents and was demonstrated explicitly in the case of the bosonized
densities [20,23]. Consequently, the factorizable loop corrections can be computed within
dimensional regularization. The non-factorizable corrections, on the other hand, are UV
divergent and must be matched to the short-distance part. They are regularized by a fi-
nite cutoff which is identified with the short-distance renormalization scale [18,19,26,27].
The definition of the momenta in the loop diagrams which are not momentum translation
invariant was discussed in detail in Ref. [20]. A consistent matching is obtained by con-
sidering the two currents or densities to be connected to each other through the exchange
of a color singlet boson and by assigning the same momentum to it at long and short dis-
tances [28 - 31]. The identification of this momentum with the loop integration variable
leads to modified integrals in the chiral loop diagrams compared to those of Refs. [18,26].
The numerical implications for the isospin amplitudesin— 77 decays and thé
parameter will be addressed in Sections 4 and 5.

In this paper we investigate the hadronic matrix elements at leading and next-to-
leading order in the chiral and the/ N, expansions. In particular, we calculate the
O(p*/N.) corrections to the current-current operators, that is to say, the one-loop cor-
rections over th&(p?) lagrangian. The matrix elements of the density-density operators
(s andQg are taken from Ref. [20]. In the numerical analysis of the= 1/2 rule and
the By parameter we use the leading logarithmic (LO), as well as, the next-to-leading
logarithmic (NLO) values [5,6,32,33] for theXS| = 1, 2) short-distance coefficient
functions? In general, the lack of any reference to the renormalization scheme depen-

2We treat the coefficient functions as leading ordet jiV, since the large logarithms arising from
the long renormalization group evolution frofm;, M) to u ~ O(1 GeV) compensate for thé/N,
suppression.



dence in the effective low-energy calculation prevents a complete matching at the next-
to-leading order [34]. Nevertheless, a comparison of the amplitudes obtained from the
LO and NLO coefficients is meaningful in order to test the validity of perturbation theory.
In the following sections we calculate the long-distari¢é/. corrections to the

K — nw amplitudes and th&y parameter. First, we investigate the factorizable correc-
tions and show their absorption in the low-energy constants. Secondly, we determine the
non-factorizable loops within the modified momentum prescription. Finally, we perform

a numerical analysis and compare our results with those of the existing studies.

3 K — mm Decays

In this section we present the hadronic matrix elements of the current-current operators
for the physical decay modés’ — 77— and K° — 7%z up to O(p*) andO(p?/N.)

in the parameter expansion. From these results we derive the isospin amplitudes
(77)1—0,2, heading for an explanation of the/ = 1/2 selection rule in kaon decays.

3.1 Factorizablel/N, Corrections

The (bare) tree level of th& — 77 matrix elements, up t®(p*) in the chiral expansion,
as well as, the factorizablig/ N, corrections to thé(p?) can be calculated from the tree
and loop topologies depicted in Fig. 1. From the sum of these diagrams we’obtain

4 Ly

(o QK = V3 f (ml —m2) {1 +12 (+4m) 17)

1 5

where
(rt 7 |Qel KO = (nt7 7 |QuK)" = —(x'7°|Qy|K°)T
= (R IQIKY)T = QKT ()
and
(T |Qs| K" = 0 for i€ {1,3,5,7} (19)
(rO 7% Q| KO = 0 for i€ {2,3,5}. (20)

3In distinction to Ref. [20] the factoi referring to the weak vertex is included in the definition of the
matrix element.
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Figure 1: Factorizable diagrams for the matrix elements of the current-current operators
in the isospin limit. Crossed circles represent the bosonized currents, black circles the
strong vertices. The lines denote the pseudoscalar mesons. The external legs represent all
possible permutations of the kaon and the pions.

The ellipses in Eg. (17) denote finite terms we omit here for the analysis of the ultraviolet
behaviour (in particular, they provide the reference scale for the logarithms). We spec-
ify our results in the cutoff regularization scheme to demonstrate the absorption of the
quadratic, as well as, the logarithmic divergences as required by current conservation. We
note that all factorizable terms quadratic and logarithmic in the cutoff are independent of
the momentum prescription in the looj. is the cutoff for the factorizable diagrams. We
introduce two different scales since the factorizable and the non-factorizable corrections
refer to disconnected sectors of the theory (strong and weak sectors). Having demon-
strated the absence of UV divergent terms in the sum of the factorizable diagrams, in the
numerical analysis of the full expressions we will use dimensional regularization, as in
pure chiral perturbation theory, which is momentum translation invariant.

If we renormalize the wave functions of the kaon and the pions= Z;/zm)),
as well as, the bare decay constdry using Egs. (14)-(17) and (25) of Ref. [20], we
arrive at the renormalized (factorizable) matrix elements of thé'( = 1) current-current
operators:

~

4 L%
<7r+7r_|Q2|K0>f;) = V2F, (mg( — mfr) 14 F25 m2| (22)
where the constarﬁg is defined through the relation [20]
F ALY
?K =1+ F25 (m3 —m?2), (22)

“The full expressions for the wave function and the decay constants are given in terms of integrals in
Appendix A of Ref. [20].
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Figure 2: Non-factorizable diagrams for the matrix elements of the current-current oper-
ators in the isospin limit.

and the remaining matrix elements can be obtained from Eqgs. (18)-(20).

We notice that for the four-quark operat@ps of the current-current type the diver-
gent terms are absorbed by the renormalization procedure. In addition, the factorizable
1/N. corrections vanish completely, that is to say, the divergent as well as the finite terms.
This property has been observed numerically, within dimensional regularization, because
the complexity of all factorizable contributions prevents us from doing a fully analytic
calculation. Since the factorizable scaledisappears through renormalization, the only
matching between long- and short-distance contributions is obtained by identifying the
cutoff scaleA.. of the non-factorizable diagrams with the QCD renormalization scale.

Finally, we note that in the next-to-leading order term of Egs. (21) and (22) we
usedl/F, rather thanl/f as it was done in Ref. [18]. Formally, the difference repre-
sents higher order effects. Nevertheless, the appearanicéf aives rise to a residual
dependence on the factorizable sc&lewhich has no counterpart at the short-distance
level and will be absorbed by factorizable loop corrections to the matrix elements at the
next order in the parameter expansion. Consequently, it is a more adequate choice to
use the physical decay constant in the expressions under consideration. Ingteddeof
kaon decay constari;, could be used as well. Both choices will be considered in the
numerical analysis, which gives a rough estimate of higher order corrections.

3.2 Non-factorizable1 /N, Corrections

The non-factorizablé/N, corrections to the hadronic matrix elements constitute the part
to be matched to the short-distance Wilson coefficient functions; i.e., the corresponding
scaleA, has to be identified with the renormalization scalef QCD. We perform this
identification, as we argued in Section 2, by associating the cutoff to the effective color
singlet boson. Then, at th@(p?) in the chiral expansion, from the diagrams of Fig. 2 we

10



obtain in theSU (2) limit:

V2 (m2% —m?) 1
+ - KO\NF K ™ A2 [ 22 2  log A2+ ---| (2
(7 1K) o ) [anz— (G ) oz (@3)
V2 (m% —m?2) [3 3

+ - KOVWNF K m) |2 A2 2 _Zm?2 ) loo A2+ .- 24

(7 1QulK°) o e Sz (- Sz ) nogaze | @9
- O\NF __ \/E(m%(_mzr) 2 2

(rT77|Qs| K°) = L6n2F. 2mz: log A% + - - - (25)

- V2 (m% —m?2) [9 3 5
@iy = PR S (B - St ) oz | (@9)

V2 (m% +2m?)

(r Qe KON =

1672 F;,
9.0 1 2 2 Gm;lr 2
X [4Ac 3 <3mK—i-7m7r—i-m%(Jr2mgr log A7 + (27)
V2 (m? —mfr 9 3
(R QulT = YU D2y 2 (- om) log A2+ (29)
V2 (mi —m?)
0.0 O\NF __ K T
<7T m |Q4|K> - 167T2Fﬂ—
9 1
y [5A3+Z(3m§(—10mi) logAz+---] | (29)
where
<7I'+7r_|Q3|KO>NF — <7r07r0|Q3|K0>NF — —<7T07T0|Q5|K0>NF
1
= §<WOWO|Q7|KO>NF = —<7T+W7|Q5|KO>NF (30)
and
(r'7°|Q. | KON = 0. (31)

One might note that in Egs. (23)-(29) [as in Eq. (17)] we replaﬁé,dn%,, and the mixing
anglef by m?2 andm? using the octet-singlet mass matrix of Ref. [25].

At this stage of the calculation we find quadratic, as well as, logarithmic divergences
of the non-factorizable corrections. We note that already the leadin'g’) terms depend
on the momentum prescription. The quadratic terms were calculated in Ref. [30] in the
background field method. In this paper we investigate the full expressions for the matrix
elements needed for the numerical analysis of the amplitudes. The results contain finite

11



terms, originating from the solutions of the integrals listed in Eq. (48) and in Appendix B
of Ref. [20], which we neglect here for brevity and denote by the ellipses. We also note
that in the case af); the solution of the integrals brings along a quartic dependence on
the cutoff which has to be cancelled by adding a specific contact interaction proportional
to 6(Y(0) to the Feynman rules of the truncated meson theory [30,35].

Even though the scale dependence of the perturbative coefficient functions is only
logarithmic, the full long-distance contribution including the quadratic terms has to be
matched to the short-distance part. The quadratic dependence on the cutoff is physical
and is necessary for several reasons. First, in the chiral (imjt= 0) all corrections
vanish except for tha? terms, which bring in the only scale to be matched to the short
distance. Secondly, they stabilize thyeV. expansion and generally improve the matching
of the meson and the quark pictures [18]. Finally, they provide us with a rough estimate
of the contributions from higher resonances.

We note that in Eqgs. (23)—(29) we used the physical decay constaather thary
in the same way as for the factorizable diagrams. Again the difference represents higher
order effects. However, the (factorizable) scale dependentéa$ no counterpart in the
short distance and will be absorbed at the next order in the chiral expansion. As for the
factorizable contributions the choice bf; instead ofF;, would be also appropriate.

4 Numerical Analysis

In this paragraph we list the numerical values for the hadronic matrix elements. We next
match them to the Wilson coefficients and study #he— (77);-,» iSOspin amplitudes.

In Section 4.1 we discuss in detail théN. corrections to the matrix elements. In this
context we also calculate the bag parameters, which quantify the deviations from the
results obtained in the vacuum saturation approximation and, therefore, are convenient
for a comparison with other works. The main results of the present analysis can be found
in Section 4.2. Therein we give the amplitudgsanda, as functions of the matching
scale and compare them with the data.

12



4.1 Hadronic Matrix Elements

Throughout the numerical analysis we use the following values for the parameters [36]:

my = (mgp+my+)/2 = 137.3 MeV, F, = 92.4 MeV,

mg = (mgo+mg+)/2 = 495.7 MeV, Fx = 113 MeV,

m, = 547.5MeV, 0 = —19°,

my = 957.8 MeV, Gr = 1.1664-107° GeV 2,
Vel = 0974, Vis| = 0.22.

Substituting them in Eq. (22) we complﬁ@ =2.07 x 1073,

We parameterize our results in terms of the non-perturbative bag pararﬂ&l@?s
and B®*/?, which quantify the deviations from the values obtained in the vacuum satura-
tion approximation [10]:

B2 Re(Qi)o

M= R 1€ {Lsh, (32)
BP? = ?Sigii, i € {1,2,7,8}, (33)

with (@;); containing both factorizable and non-factorizable contributions. The VSA
expressions for the matrix elements are taken from Egs. (XIX.11)-(XI1X.28) of Ref>[19].
The numerical values for the matrix elements of the current-current operators are given in
Tables 1 and 2(Q5)y>" and(Qr)y3" are functions oRR = 2m3. /(m + my) ~ 2m3./m,

and, consequently, depend on the renormalization scale. For comparison, in the tables
we also show the results obtained in the largelimit, see Egs. (18)-(21). One might
note that the different values generally do not coincide, even if the sfhall) term
proportional tom? in Eq. (21) [which contributes only at the level ®f% of the O(p?)

tree level term] is neglected, since in the vacuum saturation approximation Fierz terms are
taken into account which are subleadingVn In particular, the matrix eleme€); )"

differs by a factor of(1 — 2/N.) from the result obtained at th@(p?) in the largea.

limit. We notice that the inclusion in part of thig/ N, corrections in the VSA method
leads to a suppression and enhancement of thé) and/ = 2 amplitudes, respectively,

in complete disagreement with the data.

In Tables 3 and 4 we list our results for the hadronic matrix elements at next-to-
leading order in the chiral and tH¢ N, expansions. The matrix elements of the current-
current operators are calculated from Egs. (18)-(31) including the finite terms denoted by

>Note that our definition of the pion decay constafit & 92.4 MeV) differs by a factor ofl /v/2 from
the one used in Ref. [19].

13



‘ H <Q1>0 ‘ <Q2>0 ‘ <Q3>0 ‘ <Q4>0 ‘ <Q5>0 ‘ <Q7>o ‘

VSA || —4.03 | 20.2 12.1 36.3 | —11.7-R? | 182+ 325 - R?
tree || —12.3 24.6 0 37.0 0 18.5

Table 1: I = 0 matrix elements of the current-current operators: VSA vs. tree level
(large-V, limit), in units of 10° - MeV? (R in units of GeV).

| | (Qi)2 | (@) ] (Qr)2 |

VSA || 22.8 22.8 | —25.7+ 189  R?
tree 17.4 174 | —26.1

Table 2: Same as in Table 1, now the- 2 matrix elements.

the ellipses. The results for the operat@s and (s are taken from Ref. [20]. These
results contain the leading plus next-to-leading order terms in the chiral expansion of
the density-density operators, as well as, the leadifflg. corrections, that is to say,
the O(p%), O(p?), andO(p°/N.). Note that the matrix elements generally contain a non-
vanishing imaginary part (scale independent at the one-loop level) which is due to on-shell
(m — ) rescattering effects.

The isospin amplitudes are largely dominated by the operglpend(@,. There-
fore it is instructive to analyze in detail thg N, corrections to these two operators. To
this end we next give the analytic expressions for the isospin matrix elemeftsanfd

Q2:

~
r

1 4L 1
<Q1>0 = —ﬁFﬁ (m%( — m?r) 1 + F25 ’I”I”L72r + W (34)
1 A?
x | 6AZ — <§m% + 6m72r) log (1 + m—g))] + ayo[m]
2 AL" 1
<Q2>0 = ﬁFﬂ— (m%( — mi) 1+ F25m721_ + (47T)2F2 (35)
15 11 15 A? -
X (ZAE + (gm% — Zmi) log (1 + m—;))} + ago[m]
2 ALT 1
Q1) = (@), = ng (mik —m2) |1+ F25m72r+ (i) (36)
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—

. [[0.5GeV]0.6 GeV]|0.7GeV][0.8 GeV]0.9 GeV| 1.0 GeV | |
—274 | =332 | —402 | —482 | —57.3 | —67.4 |—5.55i

[y
o

2)0 50.0 58.8 68.8 79.9 92.4 106 11.12

3)0 0.04 0.05 0.03 —0.02 —0.12 —0.26 0

4)0 77.5 92.1 109 128 150 173 16.62
—0.04 —0.05 —0.03 0.02 0.12 0.26 0

—44.1 —38.6 —33.7 —29.4 —25.5 —-21.9 0
34.4 40.1 46.6 54.1 62.6 72.2 8.327
118 119 119 119 118 117 36.71

=2}
(=)

-~
(=)

ISESISIS ISR

oo
(=)

.....

of R? - MeV) in the isospin limit for thel = 0 amplitudes, shown for various values of
the cutoffA.,.

| A [0.5GeV]|0.6GeV]0.7GeV][0.8 GeV|0.9 GeV|1.0 GeV| |

(Q1)2 6.54 251 —2.26 —7.77 —14.0 —21.1 | —3.45
(Q2)2 6.54 251 —2.26 —7.77 —14.0 —21.1 | —3.45
(Q7)2 || —14.5 —10.7 —6.27 —1.15 4.67 11.2 0.187
(Qs)2 39.9 35.3 31.2 27.2 23.2 18.8 —11.5¢

Table 4: Same as in Table 3, now for the- 2 amplitudes.

X (—3/\% + (im%{ + 3m72r) log (1 + %—%))] + ag[m].

Egs. (34)-(36) allow us to compare our results with the analytic expressions of Ref. [18].
First, we note that the modified matching which was discussed in Section 2 increases the
terms quadratic in the cutoff by a factor of 3/2 relative to the results presented therein.
This was already observed in Ref. [30]. The modification of the quadratic terms provides
an additional octet enhancement in the long-distance domain. The logarithmic terms, on
the other hand, are modified only on account of the presence af tli® be explicit, in

the octet limit [i.e., in the absence of thg witha = b = 1 andm], = (4mj — m?)/3]

the coefficient of the logarithm in Eq. (34) is reducedt@}- /2 + 10m?2/3) whereas the

other terms remain unchanged. The separation of the logarithmic and the finite terms
in Egs. (34)-(36) is arbitrary and is done, for comparison with Ref. [18], by introducing

a mass scale replacing the dependence of the exact expressions on the meson masses
in the chiral logarithms. The logarithmic and the finite terfag) defined in this way
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| I @) | @) | (@) | (@) ]

tree —12.3 174 24.6 174
Az —34.5 —24.4 43.1 —24.4
log A.[m] 4.43 3.13 10.0 3.13
finite —5.83—-5.557 | —3.90 —3.457 | 2.20+11.1¢ | —3.90 — 3.45¢
total —48.2 — 5551 | =777 —3.45¢ | 799+ 11.1¢ | —7.77 — 3.45:

Table 5: Different contributions to the hadronic matrix element3 cand(@)- (in units of
108 - MeV?) for A, = 800 MeV andm = 300 MeV.

each depend on the choice of the mass séalevhereas the sum of all contributions is
independent of this parameter. We calculated the complete finite terms arising from the
non-factorizable loop diagrams using the matching prescription advocated in Refs. [20,
30].° These terms were not included in Ref. [18]. Consequently, the numerical values of
the matrix elements reported therein exhibit a dependence on the specific choice of the
mass scale in the logarithms which is absent in the present calculation.

In Table 5 we split up the numerical values for the- 0 and/ = 2 matrix elements
of ), and(, with respect to the quadratic, the logarithmic, and the finite terms, respec-
tively, at a cutoff scale of\. = 800 MeV. From the table we see that the finite terms are of
the same order of magnitude as the logarithmic ones and, therefore, must be considered at
the same level in the numerical analysis. These terms are generally suppressed by a factor
of § = mi . /(4nF;)* < 20 % with respect to the leadin@(p?) tree level. In addition, as
can be seen from Egs. (34)-(36) and Table 5, no coefficient larger than one or two which
could significantly enhance them has been found. This is different from the quadratic
terms which are not suppressed as their relative size is determindd=by\?/ (47 F,)?
and, moreover, they appear with larger prefactors [even as large as six in Ed. 39}
sequently, in the case of tHe= 0 matrix elements o), and(), both the logarithmic

For details on the computation of the loop integrals see Appendix B of Ref. [20].

"It is interesting to note that the non-suppression of the quadratic terms presumably could be important
for Qg but less important fo€)s. On the one hand, the first non-vanishing tree level contribution to the
operator€)s andQs is of the O(p?) and O (p®), respectively. On the other hand, the first non-vanishing
quadratic corrections to both operators are ofdtg*/N..) (terms of theD(p° /N..) were found to be only
logarithmic [20]). Consequently, in the case(@§ the quadratic terms are (chirally) suppressed by a factor
of p? - A with respect to the (leading) tree level contribution whereas in the ca@g thfey bring in only a
factor of A. Quadratic terms, even though subleadingVin could therefore significantly affect the matrix
element of)s especially if large prefactors are observed agfpand(@- in Egs. (34)-(36). This difference
between th&)s andQs operators could play an important role fdye. This point will be investigated in
Ref. [37].
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and the finite corrections are moderate, and the chiral limit gives a satisfactory represen-
tation of the full amplitude provided that the matching scale is taken sufficiently large
(A Z 500-600 MeV). In the case of thé = 2 matrix elements we also observe that the
quadratic terms are enhanced with respect to the tree level, whereas the logarithmic and
the finite terms are largely suppressed. However, in this case the quadratic corrections
counteract the tree level, and the sum of both contributions is no longer large compared
to the logarithmic and the finite terms. Therefore the neglect of either of the terms is no
longer justified. In particular, we observe that for thé = 3/2 channel the chiral limit

gives a better approximation to the exact result than a calculation which includes only the
logarithms without taking into account the finite terms. This remark also holds for the
matrix element{ (), ),. Finally, we note that variation of the mass scale in the logarithms
[m. < m < mg]in Ref. [18] has a noticeable effect on the numerical value of the2
amplitude.

When comparing the results of the present analysis with those of Ref. [18] one has
to take into account another difference in the treatment of the next-to-leading order terms:
in Egs. (34)-(36) we used/F; rather than the bare parametetf as it was done in
Ref. [18]. Formally, the difference concerns higher order effects, as we already discussed
above. However, since the factorizable scale which appears in the bare cguplithpe
absorbed by factorizable loop corrections to the matrix elements at the next order in the
parameter expansion, it has not to be matched to any short-distance contribution. Conse-
quently, itis a more adequate choice to use the physical decay constant in the expressions
under consideration. The effect of this different treatment of the next-to-leading order
terms will be further discussed in Section 4.2.

In Tables 6 and 7 we list the values we compute for the bag paranﬁft]é?é and
BP?_ We find a large enhancement Bt'/? and B{'/? over the VSA result, which
constitutes the dominant contribution, at long distances, ta\the= 1/2 transition in
K — 7nr decays. Moreover, we obtain the correct scale dependence counteracting the
scale behaviour of the Wilson coefficientsandz,, which leads to an acceptable match-
ing (see Section 4.2). In view of the large corrections one might question the convergence
of the 1/N,. expansion. However, there is no strong reason for such doubts because the
non-factorizable contribution we consider in this paper represents the first term in a new
type of a series absent in the large-limit. It is reasonable to assume that this lead-
ing non-factorizable term carries a large fraction of the whole contribution [18] (see also
the discussion in Section 4.2B{"/? and B{"/? turn out to be very close to zero. This
property is due to the vanishing tree level, as well as, to the simall corrections pro-
portional tom? /(47 F;)?, see Egs. (25) and (30). We notice that the small contribution
of the operator); to <’/ is even further reduced when replacing the VSA expression for
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| A. []0.5GeV]|0.6GeV][0.7GeV][0.8 GeV]0.9 GeV|1.0 GeV|

BYP | 6.75 8.24
B2 247 2.91
B2 0.003 | 0.004
B 212 2.54
B2\ 0.0004 | 0.0009
B{MP | 126 1.10
B\ 0.15 0.16
B{MP | 1.20 1.21

9.98
3.41
0.002
3.00
0.0005
0.96
0.18
1.21

12.0
3.96
—0.002
3.53
—0.0003
0.84
0.21
1.21

14.2
4.57
—0.010
4.13
—0.0014
0.72
0.23
1.20

16.6
0.23
—0.021
4.75
—0.0020
0.62
0.26
1.19

Table 6: Bag parameters for tlhe= 0 amplitudes, shown for various values of the cutoff.
B{'/?} depend onR =~ 2m% /m, and are calculated for a running, (1 = A.) at the
leading logarithmic orderXq, = 325 MeV) with m, (1 GeV) = 175 MeV.

| A. []0.5GeV]|0.6GeV]0.7GeV]0.8 GeV|0.9 GeV| 1.0 GeV |

BB 0.29 011 | —0.10 | —0.34 | —0.61 | —0.92
B | 0.29 011 | —0.10 | —0.34 | —0.61 | —0.92
B¥P | —015 | —0.10 | —0.06 | —0.01 | 0.04 0.09
B | 0.72 0.64 0.56 0.49 0.42 0.34

Table 7: Same as in Table 6, now for the- 2 amplitudes.

(@s)0, Which is commonly used in the analysis=6f= [34], by the result presented in this
paper.B{"? and B*/? are also found to be significantly reduced with respect to vacuum
saturation approximation. In particula!is’,g?’/” turns out to be negative for small values

of the cutoff® We also notice a decrease of th6*/? and B{*® parameters, which are
relevant forA,. However, as we will see below, their scale dependence largely overcom-
pensates for the variation of the short-distance coefficient functions. Nevertheless, as the
values are found to be reduced, they generally account for the reduction bf-the
amplitude. FinaIIyBél/Z) receives only small corrections Where%S/Q) comes out to be

8Very recently [38] the first non-trivial / N.. corrections to the matrix elements@f were evaluated us-
ing the methods of Ref. [39]. The numerical results were also sensitive to the choice of the renormalization
scale. In particular, negative values fBém) andB§3/2) were found below: < 1.3 GeV, in qualitative
agreement with the results of the present analysis but in disagreement with the large positive values obtained
in the chiral quark model at a matching scalé&GeV [40].
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substantially reduced relative to the VSA result [20]. The numerical implications for

will be investigated elsewhere [37]. One might note that the numerical vaIuB§3/c?f
shown in Table 7 differ from the ones given in Table 2 of Ref. [20]. This is due to the fact
that in the present paper we include only the real part of the hadronic matrix elements in
the definition of theB; parameters (see Section 4.2).

4.2 TheAI =1/2Rule

We next investigate the CP conserving amplitudes,Rend Re,. To this end we start
from the expression for the isospin amplitudeswhich contain thef{ — ) strong inter-
action phase shift for the = 0 and thel = 2 final states, respectively,

G
Armop = —= ViVl > i) (Qi1)) =02 - (37)
V2 ,-
Then
Reyy = CE v v > 2 (Qi)| = Cry ye L > 2 Re(Q;) (38)
I_ﬂudus i 7 lI_ﬂUdUSCOS(SIi 7 i)l -

Within an exact realization of non-perturbative QCD the two expressions in Eg. (38)
are equivalent. However, in the approximate low-energy calculation of the present work
the long-distance imaginary part which we computed at the one-loop level (see Tables 3
and 4) is not expected to be of the same accuracy as the real part obtained at this level.
In particular, as the one-loop (long-distance) imaginary part is scale independent, it can-
not compensate for the scale dependence of the Wilson coefficjdietading to a scale
dependent imaginary part of the total amplitude. This requires a calculation of the (long-
distance) imaginary part at least at the two-loop level which will introduce a scale de-
pendence. In addition, the two-loop contribution is expected to be of the same order
of magnitude as the one-loop contribution which only appears at the level of the finite
terms, as it will bring in a quadratically divergent term. This situation is analogous to
the non-suppression of the one-loop contribution to the real parh} with respect to

the tree level. The two-loop contribution to the real part, on the other hand, is expected
to be suppressed by at least a factop efith respect to the tree level and the one-loop
contribution. This is analogous to the one-loop logarithmic and finite terms which are
suppressed by a factor ofwith respect to the tree level. For the numerical analysis
we will therefore consider only the real part of the matrix elements [see the second ex-
pression in Eq. (38)] using the experimental values of the final state interaction phases,
65" = (37 £ 3)° andds® = (—7 + 1)° [41]. This procedure has also been followed in
Ref. [42]. However, as the imaginary part is a loop effect (suppressed by a factor of
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with respect to the tree level contribution), its effect on the absolute value of the ampli-
tude strictly speaking is of the two-loop order. Consequently, we will also compare our
results with the ones obtained by taking the (long-distance) imaginary part to zero, i.e.,
by taking) _, z; (Qi)1r = >, z R&(Q;);. This holds for an estimate of the size of higher
order effects which is generally disregarded in the literature.

In Table 8 we show the numerical values of the amplitudes for various values of
the matching scale and fixed values/of, = A%) and the strange quark mass. The
numerical analysis is done using the leading logarithmic, as well as, the next-to-leading
logarithmic values of the Wilson coefficients listed in the appendix. The NLO values
are scheme dependent and are calculated within naive dimensional regularization (NDR)
and in the 't Hooft-Veltman scheme (HV), respectivélyhe difference between the two
NLO results at a given scale reveals the uncertainty due to the lack of any reference to the
renormalization scheme dependence in the effective low-energy calculation.

Reu, Reu,
A, [O | NDR | HV [O | NDR | HV
0.5 GeV 3.90 0.74 4.48 0.063 0.086 0.063
0.6 GeV 3.50 2.58 3.57 0.027 0.032 0.028
0.7GeV 3.53 2.89 3.45 —0.025 —0.028 —0.025
0.8GeV 3.75 3.13 3.58 —0.090 —0.101 —0.095
0.9GeV 4.08 3.42 3.83 —0.167 —0.188 —0.178
1.0GeV 4.49 3.76 4.17 —0.257 —0.289 —0.274
| exp. | 3.33 | 0.15 |

Table 8: Re, and Re, (in units of 107* MeV) for m,(1GeV) = 175MeV, Agep, =
A%) = 325 MeV, and various values of the matching scale- A..

In Fig. 3 we show Re, calculated with leading order Wilson coefficients for vari-
ous values of\;, as a function of the matching scale. We take the (conservative) range
of Agep = 325 + 80 MeV which corresponds ta, (M) = 0.118 + 0.005 [34]. First, we
note that our result foi, shows an additional enhancement (aro@fd50 % of the ex-
perimental value) compared to the result of Ref. [18] which renders the amplitude in good
agreement with the observed value for low values of the scale or even larger than the ex-
perimental value for large values of the scale. A significant enhancement arises from the
(2, and (), operators due to the modified matching prescription in the non-factorizable

9We are very thankful to M. Jamin for providing us with the numerical values of the Wilson coefficients
used in this section.
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Figure 3: Re, (in units of MeV) with LO z; for m,(1 GeV) = 175 MeV and various
values ofA ., as a function of the matching scale = .

sector we discussed above. Numerically, at a scala.o= 800 MeV the modified
momentum routing accounts for approximat2ly’ of the final number(s) presented in

Fig. 3. Another enhancement with respect to Ref. [18] originates from the correction of
the real part by the experimental phase [see Eg. (38)]. Neglecting completely the effect of
the (r — 7) phase shift would reduce our result by a factoe@fo, ~ 0.8. The remainder

is due to the choice of the physical valtiginstead off in the next-to-leading order terms

of the factorizable and non-factorizable corrections. Our result depends only moderately
on the matching scale although the stability falls off for large values of the scale around
1 GeV. We observe a cancellation between the scale dependence of the short- and long-
distance contributions, i.e., the operator evolution in the quark picture is continued with
the same pattern in the meson picture. The main uncertainty displayed in Fig. 3 originates
from the dependence of the Wilson coefficients/oR,. The uncertainty increases for
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Figure 4: Re, (in units of MeV) with LO and NLOz; for m,(1 GeV) = 175 MeV and
various values of\,.; as a function of the matching scale = ..

very low values of the scale reflecting the poor perturbative behaviour expected at those
scales especially for the large value/of, = 405 MeV. Within the (conservative) range
of Agep = 325 £+ 80 MeV we considered, the valu#5 MeV leads to the most distinct
deviation from the experimental result which, however, does not exceed approximately
20 % of the observed value in the rang@) MeV < A, < 800 MeV where the minimum
occurs and the dependence on the scale is weak.

In Fig. 4 we compare the results for iRewve obtain using the LO and NLO Wilson
coefficients, respectively. In the HV scheme, for moderate valueg,gfintroducing
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Figure 5: Re, (in units of MeV) with LO z; for Ao, = 325 MeV and various values of
m(1 GeV) as a function of the matching scale = ..

the NLO coefficients does not significantly affect the numerical values of\the- 1/2
amplitude which is found to be only slightly suppressed with respect to the LO result.
The main effect of the NLO coefficients is that they further reduce the dependence on the
matching scale. This statement does not hold within the NDR scheme. In this scheme,
for Aoco = 245 MeV the effect of the NLO coefficients is also moderate but noticeably
increases for large values af, leading to a distinct suppression of the LO result. For
values of Ay, as large as 405 MeV both the HV and the NDR results rapidly diverge
for low values of the matching scal& (700 MeV) indicating the loss of perturbativity.
Taking into account the fact that we do not incorporate the effects of higher resonances and
cannot adopt too high values of the scale, a choicg&.airound700 - 800 MeV seems to

be most appropriate. Fdr,c, = 325 MeV (245 MeV) the effect of the NLO coefficients is

less pronounced, and scales as low@s- 650 MeV (500 MeV), where the LO minimum
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occurs, appear to be acceptable. Above these scales the deviation of the NLO results
from the experiment does not exce2@- 25 % of the experimental value. Moreover,
the difference between LO and NLO (HV and NDR) values is moderate, of the order
of at most20-25 % of the observed valu€. In all the cases the tendency for a large
enhancement of the required size remains present.

In Fig. 5 we show the weak dependence oz jRéwith LO Wilson coefficients)
on the strange quark mass which arises from the matrix element of the gluon penguin
operator {Qs)o o< 1/m?]. We notice that the contribution froms to the AT = 1/2
amplitude for small values of the cutoff(600 MeV) roughly varies betweeh0 - 20 %
of the total value and significantly decreases for large values.ofThis behaviour is
also found when the NLO coefficients are used. The effect of the remaining (penguin)
operators is very small (below?% of the total result except fof), which contributes
at the level of—3 %). For comparison, in Fig. 5 we also show®Realculated in the
chiral limit. We observe that the result obtained in the chiral limit, for reasons explained
above, is rather close to the numerically exact one, that is to say, the logarithmic and the
finite terms in the non-factorizable corrections to the matrix elements are minor important
provided that the matching scale is taken sufficiently largex 500 - 600 MeV). Finally,
we note that the presence of thedoes not affect the numerical values of the amplitudes
(in the octet limit the numbers given in Table 8 change by less 15ai.

In distinction to theAl = 1/2 amplitude, theAl = 3/2 amplitude depicted in
Fig. 6 (with LO Wilson coefficients) is highly unstable. In addition, the numerical values
lie well below the measured value. The amplitude even changes sign [due to the large
negative coefficient of the quadratic term in Eq. (36)]. The large uncertainty can be un-
derstood, as we already discussed above, from the fact that the two numerically leading
terms, the tree level and the one-loop quadratically divergent term, have approximately
the same size but opposite sign. On the one hand, this property is generally welcomed
as it explains the origin of the suppression of thé = 3/2 amplitude which turns out
to be sufficiently suppressed whatever the particular chosen scale is betwadeV
and 900 MeV. On the other hand, the large cancellation implies that the result will be
significantly affected by higher order terms which are expected to be of the order of the
one-loop logarithmic and finite terms. We note that the agreement with the experimental
value is not improved in the chiral limit. We also notice that the numerical values depicted
in Fig. 6 depend only weakly on the choice/of.,. In Fig. 7 we compare the results for
Reu, we obtain using the LO and NLO Wilson coefficients, respectively. We observe
that the effect of the NLO coefficients is negligible with respect to the large discrepancy

10The comparison of the LO and NLO coefficients should be used with caution as it partly originates
from a change in the value of the QCD coupling for a chosen valug;9{19].
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Figure 6: Re, (in units of MeV) with LO z; for various values of\, as a function of
the matching scal&, = p.

between our results and the observed value. The small effect of the NLO coefficients
indicates the validity of perturbation theory and further supports the supposition that the
discrepancy is due the lack of accuracy in the low-energy part of the calculation.

The typical size of higher order effects in the calculation of the hadronic matrix
elements can be estimated in various ways. First, as we already mentioned above, one
may replace in all NLO terms the coefficientF, by 1/Fx. The results obtained in this
case [denoted by (b)] are shown in Figs. 8 and 9. Alie= 1/2 amplitude is suppressed
by approximately20 % with respect to the result we obtained usind’, [denoted by (a)]
and is even in better agreement with the observed valueAThe 3/2 amplitude, on the
other hand, is enhanced but still far too much suppressed. Another estimation of higher
order effects can be done, as we explained above, by completely neglecting the imaginary
part of the matrix elements (c). This suppresses,Rg a factor ofcos d;° ~ 0.8 but does
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Figure 7: Re, (in units of MeV) with LO and NLOz; for various values of\,., as a
function of the matching scalg, = p.

not affect Re,. Similarly the absolute value of the amplitudes can be calculated by taking
directly the imaginary part from Tables 3 and 4 without using the experimental phases (d).
This procedure suppressesdgén the same way as in the previous case but largely re-
stabilizes Re,, indicating that the results obtained for thd = 3/2 amplitude (unlike

those obtained for Rg) indeed can be significantly affected by higher orders corrections.

It is unlikely, however, that higher order terms alone can account for the large discrepancy
between our result and experiment, and effects from higher resonances are also expected
to be non-negligible for the smalll = 3/2 amplitude. Finally, the coefficient/ F. in the
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Figure 8: Re, (in units of MeV) with LO z; for m(1GeV) = 175MeV and Ay, =
325 MeV within different treatments of higher order corrections as explained in the text.

next-to-leading order terms can also be replaced by the bare coupliras it was done in
Ref. [18]. Even though this would introduce an unphysical dependence on the factorizable
scale, formally the difference also concerns higher order efféct¥e observe that this
choice (e) leads to a result for &ewhich is approximately scale independent. It also
gives a more stable result for &ewhich, however, still is too much suppressed.

In summary, in all cases we discussed aboveAlie= 1/2 amplitude is obtained
around the measured value with an uncertainty of less th&t @5in most cases even
less than 150.!12 The result for Re, is consequently solid and presumably could be

"The relation betweett, and f is given in Eq. (62) of Ref. [20] and we obtajh= 105, 112, 120,
128, 136, 145 MeV for A. = 500, 600, 700, 800, 900, 1000 MeV, respectively.

12The only exception to this is the case where the large value @f = 405MeV is taken at LO or
NLO (HV scheme) using a matching scale as high~ag GeV. In this (unfavourable) case the deviation
from the observed value can be as larg8®asi0 %.
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Figure 9: Re, (in units of MeV) with LO z; for Aocp = 325 MeV within different treat-
ments of higher order corrections as explained in the text.

significantly affected only by higher resonances. In view of the good agreement with the
experiment we obtained at the pseudoscalar level their effect a priori is expected to be
small. TheAI = 3/2 amplitude, on the other hand, though showing the qualitatively
correct behaviour of being suppressed with respect to the VSA result, emerges too much
suppressed and is very unstable. However, higher order corrections to the matrix elements
have been estimated large and could re-enhance it. In the same way higher resonances
could easily enhance the result obtained at the pseudoscalar level. Vector mesons can be
incorporated in a straightforward (however lenghty) way, and it would be very interesting
to investigate their effect in the present calculation. This also would allow more safely to
choose higher values for the matching scale for which the short-distance contributions are
more reliable.

We close this section by a brief review of several other attempts which have been
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made to explain the\] = 1/2 rule using different methods for the computation of the
hadronic matrix elements. Interesting tendencies for an enhancementAf thel/2
channel were found in particular in Ref. [11] by integrating out the quark fields in a
gluonic background and in Ref. [12] in the framework of QCD sum rules at the level of the
inclusive two-point function. In Ref. [13] quantitative results reproducing both\the-
1/2 andAI = 3/2 channels were obtained adopting the point of view that in addition
to 1/N, effects due to one-loop corrections (similar to those of Fig. 2) diquark states
play an important role. The results for tief = 1/2 amplitude obtained in the present
approach suggest that there are no large diquark effects not already taken into account
in the1/N, corrections we calculated. Thel = 1/2 rule has also been investigated in
the framework of chiral perturbation theory [14] and the chiral quark model [15]. At the
present state of these methods the rafio = 22.2 cannot be predicted but is used to fit
parameters of the models. Very recently the matrix elements relevant farithe 1/2
rule were studied in lattice QCD with improved statistics [16]. The authors used lowest-
order chiral perturbation theory to relate the matrix elemémtsQ;| K°) to (7 |Q;| K )
and (0|Q;|K°) calculated on the lattice. The ratio of the amplitudes computed in this
way confirms the significant enhancement of the = 1/2 channel although systematic
uncertainties preclude a definite answer. Whereas\the= 1/2 amplitude is obtained
larger than the experimental value by approximattlys (quenched ensemble 3 =
6.0) the AT = 3/2 amplitude suffers from ambiguities in the choice of the meson mass
due to the ignorance of higher order chiral corrections to the relation betwegmaftkthe
By parameter. Taking the meson mass = (m3 +m?2)/2 and using the quenched value
of Bk in the continuum limit the authors obtain a value fouR@hich also over-estimates
the data by approximatelyp %. The ratio of the amplitudes exhibits a strong dependence
on the meson mass (see Fig. 11 of Ref. [16]) due to the chiral behaviouragf Re
lattice perturbation theory unlike in analytical methods, the matching of the renormalized
operators to the Wilson coefficients can be rigorously done, at least in principle (see e.g.
Ref. [45] and references therein). On the other hand, analytical methods lik¢Xhe
approach followed in this paper allow for a direct evaluation ofkche+ w7 amplitudes
without the need of using reduction formulas to relate these amplitudes to the off-shell
K — 7 amplitudes (for this point see also Ref. [46] and references therein).

While this paper was written an analysis of thé = 1/2 rule was published [47]
which follows similar lines of thought as our work. In their analysis the authors used
the 1/N,. expansion in the chiral limit in the framework of chiral perturbation theory and

I3Quantitative estimates of quenching effects on the coefficients of the chiral logarithms in the one-loop
contributions to theX’ — 7w amplitudes were presented in Refs. [43,44]. In Ref. [43] finite volume effects
on the lattice were also investigated.
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the Extended Nambu-Jona-Lasinio model, respectively. We agree on the coefficients of
the quadratically divergent terms in th@NV, corrections to the matrix elements quoted
therein. In the present analysis we did not investigate the method proposed in Ref. [47] to
treat the scheme dependence appearing at the next-to-leading logarithmic order.

5 K°— K°Mixing

The contributions from short-distance physicgid®— K° mixing can be calculated from
an effectiveAS = 2 hamiltonian, valid below the charm threshold, in which the heavy
degrees of freedom are integrated out [32],

— _ g
Hejy ™t = Flmi,m, My Vo) G o ()] {H#Jg} Oas=,  (39)

whereOxs—, is the following four-quark operator:

Oas=2 = spytdr spyudy, (40)

with o, (1) being the QCD running coupling with three active flavors dnd renormal-
ization scheme dependent coefficient appearing at the next-to-leading logarithmic order.
F(m?,m2, M%,, Veuu) is @ known function of the heavy quark masses Jtheoson mass,
and CKM matrix elements. It incorporates the basic electroweak (box diagram) loop con-
tributions [48], as well as, the perturbative QCD effects described through the correction
factorsny, 1, 73 which have been calculated at the leading logarithmic [4,49] and the
next-to-leading logarithmic order [32,33]. Terms depending.dm) are factored out ex-
plicitly to exhibit the renormalization scale (and scheme) dependence of the coefficients
which has to cancel the corresponding scale (and scheme) dependence of the hadronic
matrix element 0l0xs—5 [19]. The short-distance hamiltonian fa&xS = 2 transitions
in Eqg. (39) dominates the indirect CP violation in the neutral kaon system parameterized
by . Contributions toK® — K° mixing changing strangeness by two units through two
AS = 1 transitions at long distances which are relevant forithe- K5 mass difference
[29] are not considered in this article.

The hadronic matrix element 61, s—- is usually parameterized in terms of tBg
parameter which quantifies the deviation from the value obtained in the vacuum saturation
approximation:

(K°|Oas=2(p)|K®) = Br(p) (K°|Oas=2| K )vsa, (41)

where A
<K0|0AS:2|KO>VSA = gFlz(m%( (42)
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(ds)(ds) (ds)(ds) (ds)(ds)

Figure 10: Factorizable contributions to the matrix element offe- K° mixing am-
plitude in the isospin limit.

It is convenient to introduce the renormalization group invariant parameter [19,50]

i ol o) [ % (NDR)
Bx = Bg(n) [os(p)] {H J?l 7 s = { 9L (HV)

47
162

,  (43)

in which the scale (and scheme) dependences of the long- and short-distance contributions
cancel within an exact realization of both perturbative and non-perturbative QCD. How-
ever, from the results for thAl = 3/2 K — 77 amplitude discussed in the previous
section we do not expect that th#, we will obtain within the pseudoscalar approxi-
mation used in the low-energy calculation will exhibit a negligible dependence on the
matching scale; the 27-plet operators which indice = 1 (A7 = 3/2) andAS = 2
transitions are components of the same irreducible tensor $ider) ;, x SU(3) g, that is

to say, to leading order in the chiral expansionkife- K° amplitude can be related to the

AT = 3/2 part of theK — 77 amplitude using U (3) symmetry [51,52]. Consequently,

we expect a similar pattern, i.e., a large negative quadratic term ih/tNgcorrections

to the matrix element which partly cancels the tree level contribution and renders the re-
sult more sensitive to corrections from higher order terms and higher resonances. On the
other hand, we expedU(3) breaking effects im\S = 2 transitions to be more pro-
nounced than iM\S = 1 transitions [53]. In the following we will see that thHg N,
expansion restricted to the pseudoscalar mesons indeed leads to a significantly scale de-
pendent result foB;.. However, the scale dependence is less pronounced than the one of
the A7 = 3/2 amplitude due to corrections beyond the chiral limit. Finally, as we already
discussed above, the low-energy calculation does not allow any reference to the renormal-
ization scheme dependence. Nevertheless, a comparison Bfthparameter obtained

from the LO and NLO coefficient function @, s—, can be used to to test the validity of
perturbation theory and to estimate the uncertainties arising from the short-distance part.

5.1 Factorizable Loop Corrections

To obtain the factorizable non-perturbative corrections tatfe= 2 transition we have
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(ds)(ds)

(ds)(ds) (ds)(ds) (ds)(ds)

Figure 11: Non-factorizable contributions to the matrix element ofifHe- K° mixing
amplitude in the isospin limit.

to calculate the diagrams in Fig. 10. Using the chiral representation of the quark current
in Eq. (16) and reducing the result to the basic integrals listed in Appendix B of Ref. [20]
we obtain the unrenormalized (bare) matrix element:

16Ls
e
_9%2 ((a +2b)° I[my] +2 (a — b)* [[my] + 18 I[mg] + 9[1[m7r]>} , (44)

(K°|Oag=2| K%Yy = mif? |1+

with ¢ andb defined in Eq. (15). Multiplying Eq. (44) witlf ', i.e., including a factor
Z'* for each external kaon field (compare Eqgs. (16) and (59) of Ref. [20]), we arrive at

(K°|Opg=2| KO = mi(fz[l—i—sf—[;‘r’m%(
—%fz (9 Lmg] +18 Limg] + (a +2b)* I[m,] + 2 (a — b)® Il[mn,])] . (45)

Comparing Eq. (45) with Egs. (26) and (63) of Ref. [20] we observe that the correction
factor in the brackets which is due to the higher order (factorizable) contributions to the
matrix element is completely absorbed (including the finite terms) in the renormalization
of the kaon decay constant, as it is required by current conservation, leading to the final
result for the (renormalized) factorizable matrix element

<K0|0AS:2|K0>5) = m%FIQ{ (46)

Eq. (46) represents the largé-limit for the K°— K° matrix element, i.e By~ = 3/4,
to be compared with the VSA value one.

5.2 Non-factorizable Loop Corrections

The 1/N, corrections to Eq. (46) can be calculated from the non-factorizable loop di-
agrams depicted in Fig. 11. We determine the loop momenta along the lines developed
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in Section 2, that is to say, by associating the cutoff to the effective color singlet boson
connecting the two currents. The simple structure of the non-factorizable diagrams makes
it possible to specify the complete analytic result for the matrix element in terms of loop
integrals. In theSTU (2) limit the expression in which the integrals are reduced to the basic
ones reads

] A
<KO|OAS:2|KO>NF = 3972 + 6 (4m§( — 2]9%( — (XQ + X3))[1 [mK]
1 2 2,2 L 2
- 6()(2 + X3 + 2my + 2px)miI3[mi, mi, 0] — 5(1?[( + my)la[my, pr]
3 3 .
~3 cos® 0 (p; + m%)lg[mn,pl(] ) sin? 0 (p;, + m?],) Limy, pr]
1 3 3 .
+ ZL;[mﬂ,pK] + 1 cos? 0 I,jmy, p| + 1 sin® 0 Ismyy, pk] - 47

Here we replaced andb by then — ' mixing anglef and explicitly distinguished be-
tween the masses coming from the external kaon momentum, the explicit mass term in
the lagrangian, and the propagators in the loops. In addition to the logarithmically and
quadratically divergent integrald;( I, I3) listed in Appendix B of Ref. [20] Eq. (47)
contains the integral, which exhibits a quartic dependence on the cutoff. Following
the steps discussed in Ref. [20] we can give the analytic expressidn iioterms of a
Taylor-series:

. 2
¢ q
[4[m7p] - (271')4 /d4q (q_p)Q_mz (48)
1 Ly 2 | A2 2 A?
— 167[_2{—§Ac+m [Ac—m log 1+W
2.2 2
pm 3.4 2.2 2 2\2 A;
— | =AP+ A — (A | 1+ —=£
+(Ac+m2)2 {2 .+ Am® — (A2 +m”) og( +m2)]
476 6A6, 2
prAL 2 2 p’Aem s 2 4 8
— ¢ (A7 -2 — ¢ AT —— )
a8 20 g (12 50°) 000

We note that the logarithmically divergent integkain Eq. (47) only appears with vanish-

ing external momentum and therefore can be largely simplified compared to the general
expression in Eq. (75) of Ref. [20]. From Eqg. (47) one can easily calculate the divergent
terms. Taking the external momentum on-shell we obtain

<K0|0A5:2|K0>NF —
3A2 (4m3 — 2mim2 + m3)

log A2+ | , (49
@mR2FZ T (dn)PFim, ogic ) (49)

2 12
myFi | —
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[0.5GeV][0.6GeV|0.7GeV | 0.8GeV]0.9GeV|1.0GeV|

(Oass) tree 314 | 314 | 314 | 314 | 314 | 3.14
(Ong—2) 5 —1.17 | =168 | —2.29 | —2.99 | —3.78 | —4.67
(Oas=2)log+fin| 057 | 0.76 0.96 1.15 1.32 1.49
(Ons—) 254 | 2.22 1.81 130 | 0.68 | —0.04
Br(A,) 0.61 053 | 043 | 031 | 0.6 | —0.01

Table 9: Different contributions to the hadronic matrix elementafs_, (in units of
10° - MeV*) and By, shown for various values of the cutoff.

where the tree level result is factored out and the ellipses denote the finite terms we do not
specify analytically. We observe that the quartic dependence on the cutoff is cancelled as
required by chiral symmetry.

To illustrate the effect of the modified momentum routing we also recalculate the
non-factorizable loop contributions in the approach used by Bardeah [26] who
associated the cutoff to the momentum of the virtual meson in the loop diagrams (see also
the discussion in Ref. [20]):

, 1
(R|0ssa KOWE = ——

+3 (m + m3) Liimx] + 9 cos® 0 (my +m) I1[my] + 9sin® 0

2 (x2 + x3 — 2m%) i[mk]

X (m%( + m?],) [1[m,7/] + Qm% (XQ + X3 + 4m§() Ig[m[(, meg, 0] 5 (50)
where the external momentum is already taken on-shell. For comparison with Eq. (47) in
Eq. (50) we included the small effect of the singjgt Solving the integrals we obtain the
divergent part of the non-factorizable loop corrections:
(K°|Oas—2|K*)gae =
2A2
(4m)2F}

(4m% — 2m%m2 + ml)

loc A2 + ...
AmeFgms,  ete T

(51)

2 12
my Fg

to be compared with Eq. (49). We note that the results obtained in both calculations differ
with respect to the quadratic cutoff dependence, as well as, with respect to the finite terms
we do not give explicitly here for brevity.
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5.3 Numerical Results

As a numerical input we use the values listed in Section 4.1. In Table 9 we show our
results for thek® — K matrix element and3x(A,.) obtained in the full calculation, i.e.,
including the effect of they, in Eq. (47). In Fig. 12 we depict the renormalization group
invariant parameteBy calculated with the leading order Wilson coefficient.

The decrease dBx(A.) with A, = p is qualitatively consistent with the depen-
dence of the coefficient function in Eq. (43), that is to say, the long-distance evolution
counteracts the evolution in the short-distance domain. This property is due to the pres-
ence of the quadratic terms in théN, corrections which compensate for the (weaker)
increase of the logarithmic terms. However, the decrease is found to be significant, and
the scale dependence largely exceeds what is required to have an exact cancellation of
both evolutions over a large range of the scale. As a result an acceptable statljty of
is obtained only for low values of, ~ 500 - 600 MeV. The small values 0By depicted
in Fig. 12 (lower set of curves) come from the negative coefficient of the quadratic term
in Eq. (49) which is found to be enhanced by a factoB tf compared to the result of
Ref. [26]. This coefficient is the same as the one ofAfe= 3/2 K — = amplitude
except forSU(3) breaking effects (responsible féix # F;) which reduce the negative
slope of Bx. As can be seen from Table 9, the difference between the exact result and the
one obtained in the chiral limit (i.e., in the absence of chiral logarithms and finite terms)
is more pronounced than in the case of the— =7 amplitudes. This is due mainly to
the numerical coefficient of the leading term {n%) in front of the logarithm in Eq. (49)
which as expected is found largerAnS = 2 transitions than i\ S = 1 transitions. Be-
cause of the large positive coefficient the logarithmic term re-stabilzesizably with
respect to the result obtained in the chiral limit. This also explains whzthparameter
even if significantly scale dependent is much more stable thannthe 3/2 amplitude.

The finite terms beyond the logarithms in Eq. (47) [i.e., beyonddg@ + A? /m?) terms]

give a negative contribution tB (A.) roughly between-0.05 and—0.08 for A, around

600 -900 MeV. Consequently, they are non-negligible in particular for large values of the
scale where the cancellation between the tree level and the quadratic terms is large. Fi-
nally, we note that the presence of tlgedoes not significantly affect the numerical values

of the K° — K matrix element (in the octet limit the numbers given in Table 9 change by
less thar8 % ).

To illustrate the effect of the momentum routing, in Fig. 12 we also sBawob-
tained from Eq. (50) (upper set of curves). We use the same set of parameters as in
Table 9 and also include thg. Comparing the two results we notice that (A.) calcu-
lated within the modified momentum routing lies below the values found in the previous
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Figure 12: B with LO Wilson coefficient for various values 0f,c, as a function of the
matching scalé\. = u. The lower set of curves shows the results of the present analysis,
the upper set allows a comparison with Ref. [26].

approach. Matching the long-distance results with the short-distance contribution we
observe that thé3,, parameter obtained in the present analysis exhibits a significantly
stronger dependence on the matching scale. However, as we already discussed above, the
quadratically divergent terms (and the finite terms) depend on the way we define the inte-
gration variable inside the loop. This can be seen from the different numerical factors in
front of the quadratic terms in Eqgs. (49) and (51). Therefore we are forced to find a direct
link between the short- and long-distance part of the calculation, as it is done by keeping
track of the effective color singlet boson in both parts of the calculation. A consistent
matching is then obtained by assigning the same momentum to the color singlet boson at
long and short distances and by identifying this momentum with the loop integration vari-
able (see Section 2). This property is absent in the previous approach. The modification
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unambiguously determines the coefficient in front of the (quadratically and logarithmi-
cally) divergent terms and allows us to identify the ultraviolet cutoff of the long-distance
terms with the short-distance renormalization s¢ald herefore we advocate the use of
the modified matching prescription, even though the stability of our result is rather poor.
The satisfactory stability obtained in Ref. [26] on the other hand is somehow inconclu-
sive, as there is no underlying argumentation determining the quadratic terms. Our result
also implies that the uncertainties due to the idealized identification of the cytafith
the upper limit of the meson momentum in the loop in Ref. [26] might have been under-
estimated. In a complete meson theory the dependence on the momentum routing should
be absent. However, as long as we are working in an effective low-energy approach as
chiral perturbation theory we have to pay attention to this point.

Numerically, we find a range of acceptable stability in the energy regime from
500 MeV to 700 MeV (see Fig. 12) leading to values {8 in the range of).4 < By <
0.6. The lower bound corresponds to a valueA\gf, = 405 MeV, whereas the upper
bound corresponds th,., = 245 MeV. Comparing our result with the one of Ref. [26]
we observe a tendency féa to be decreased to values bel6w. This behaviour is due
to the enhancement of the negative coefficient in front of the quadratic term i/ e
corrections to thé(® — K° matrix element and, to a smaller extend, also due to the finite
terms omitted in Ref. [26]. However, our result suffers from a sizable dependence on the
matching scale which precludes a precise answer.

In Fig. 13 we compare the results B we obtain with the LO and NLO coefficient
function. ForA., = 325 MeV in the HV scheme, introducing the NLO coefficient does
not significantly affect the numerical values of tBg parameter which is found to be
only slightly enhanced with respect to the LO result. In the NDR scheme, the effect of the
NLO coefficient is also moderate for large values of the scale but noticeably increases for
low values. For very low values df,. ~ 500 MeV the NLO result can differ from the LO
one by as much as 0.2. However, for these scales the scheme dependence increases rapidly
and it is desirable to take (at least) a matching scale ar60me650 MeV where By is
still relatively smooth and roughly varies betwe@d5 and0.6. For Ao, = 245 MeV
in both the HV and NDR schemes a matching scale as loa0ad/leV appears to be
acceptable, and within the rande ~ 500 - 650 MeV By is obtained betweef.5 and
0.7. On the other hand we observe that the pseudoscalar approximation would simply fail
if Aqcp Was found as large @95 MeV, as a satisfactory perturbative behaviour is obtained
only for A, > 700 MeV, that is to say, for values of the scale where the stabiliti gfis
found to be poor.

In summary, for values ah,, = 350 MeV an estimate of3, is hindered by the
loss of perturbativity in the range where the pseudoscalar approximation is expected to
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Figure 13: B with LO and NLO Wilson coefficient for various values &f., = Afﬂi‘s) as
a function of the matching scale. = x. For each value ol the lower (intermediate,
upper) curve shows the LO (HV, NDR) result.

be valid, and for lower values of, (taking into account the scheme dependence) our
calculation favours low values @y in the range

0.4 < Bxg < 0.7. (52)

However, a satisfactory smooth behaviour is obtained only in a narrow range of the cutoff
and, in addition, for values of the cutoff as low as the kaon mass or just above. Therefore
the incorporation of higher resonances is clearly required as fahthe 3/2 K — n7
amplitude discussed above. On this issue, the analysis d# thearameter is similar to
the one of the\I = 3/2 amplitude, even if numerically the matching obtained B is
better than the one obtained for théd = 3/2 amplitude.

The K° — K° system has been studied in the past with various methods leading to
different results forB.. The present status of quenched lattice calculations [54 - 57] has
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been reviewed in Ref. [58]. The value reported by the authBris= 0.86 + 0.06 == 0.06.

Very recently the JLQCD Collaboration has presented a new analysis based on chiral
Ward identities to non-perturbatively determine the mixing coefficients of\tie= 2
operator [59]. The numerical results given in Ref. [59] are in agreement with the lattice
calculations quoted above. In the chiral quark model a value as hiGh as 1.1+0.2 has

been obtained [15]. Lower values fé#; have been found in the QCD hadronic duality
approach [60] Bx = 0.39 + 0.10), by usingSU (3) symmetry and PCAC [51¢ 1/3),

or using chiral perturbation theory at next-to-leading order [6 42X + 0.06). QCD sum

rules give results arounflx = 0.5 - 0.6 with errors in the range df.2-0.3 [62,63]. One

might note that a value faB significantly below).7 requires simultaneously high values

of |Vis/ V| @and|V,,| to be able to fit the experimental value=f[19]. Finally, we note

that the B, parameter was also investigated in the framework ofl{fé. expansion in

Ref. [50]. In this work the matching was not performed at the level of Aile— K°

matrix element but at the level of a related 2-point Green function. Numerically, the
matching was found unsatisfactory good. We agree with this conclusion, as we discussed
above, although in Ref. [50] the quadratic dependence on the UV cutoff was obtained in
disagreement with the present analysis due to the use of a different momentum routing.
This has been corrected very recently in Ref. [47], and we agree with the results for the
1/N, corrections to thek® — K° matrix element obtained there in the chiral limit. In

the present paper we investigated the corrections beyond the chiral limit and found that
they are sizable. On the other hand, the authors of Ref. [47] investigated higher order
corrections calculated in the framework of the Extended Nambu-Jona-Lasinio model. As
a result they obtained a better stability of thg parameter. This shows that corrections
from higher order terms and higher resonances are expected to be large. Nevertheless
the values ofByx we obtained in this analysis by performing a full calculation at the
pseudoscalar level are meaningful and can be considered as reference values for further
investigations incorporating the effects of higher resonances.

6 Conclusions

Thel/N. approach developed in Refs. [18,26] when modified along the lines of Ref. [20]
leads to interesting results in the current-current sector ai\tfie= 1 and in theAS = 2
transitions. The main result of the present analysis is an additional enhancement of the
AT = 1/2 channel in thek’ — 77 amplitudes. This channel has been found sufficiently
enhanced, in good agreement (with an accurac0db approximatelyi00 %) with the
experiment, and widely stable over a large range of values of the matching scale roughly
betweer600 MeV and900 MeV. It is certainly premature to say that the dynamical mech-
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anism behind thé\] = 1/2 enhancement is completely understood. An agreement at the
level obtained in the present analysis a priori is not expected in an effective theory with
only pseudoscalar mesons taken into account. Nevertheless we believe that the additional
enhancement reported here is a further important indication that/tlieapproach can
account for the bulk of the\/ = 1/2 amplitude. This statement is also supported by
the fact that higher order corrections both of short-distance origin and of long-distance
origin at the pseudoscalar level, as we discussed above, are not expected to largely af-
fect the size of the\l = 1/2 enhancement. The agreement with the experiment also
tends to show that the origin of the long-distance enhancement has to be found at the
level of the pseudoscalar mesons and at energies below the rho mass or even below the
kaon mass. Certainly this has to be checked explicitly incorporating at least the effects
of vector mesons. We also believe that theéV,. approach can account for the bulk of

the suppression of thA7 = 3/2 channel. For this channel, however, the approxima-
tions made in the present analysis fell short of the desired accuracy. In particular, a large
scale dependence has been found clearly requiring the incorporation of higher order terms
and/or higher resonances. We note that the scale behaviour of the ratio of the two isospin
amplitudes is dominated by the one of thé = 3/2 channel, and therefore it leads to a
comparable uncertainty. Similarly, tHex parameter suffers from a sizable dependence

on the matching scale. Our calculation favours very low values of the sgale)(MeV)

leading to values foBy in the range of).4 < By < 0.7. However, the large uncertain-

ties associated with this result preclude a definite answer, and also make the incorporation
of higher order terms and higher resonances very desirable.
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A Numerical Values of the Wilson Coefficients

In this appendix we list the numerical values of the LO and NLO (HV and NDR) Wilson
coefficients forAS = 1 transitions used in Section 4.2. These values were supplied
to us by M. Jamin. Following the lines of Ref. [5] the coefficientsare given for a 10-
dimensional operator bagi§),, . . ., Q1o }. Below the charm threshold the set of operators
reduces to seven linearly independent operators [see Eqs. (4)-(7)] with

Qs = Q1+ Q2+ Q3 ngng—%Q?ﬂ QIOZ%QI‘i‘QQ_%QS- (53)

At next-to-leading logarithmic order in (renormalization group improved) perturbation
theory the relations in Eq. (53) receil®«,) andO(«) corrections [5,19]. In the present
analysis we use the linear dependence at the level of the matrix ele(@ghtsi.e., at the
level of the pseudoscalar representation where modifications to the relations in Eq. (53)
are absent. We note that the effect of the different treatment of the operator relations at
next-to-leading logarithmic order which is due to the fact that in the long-distance part
there is no (perturbative) countingdn is numerically negligible.

The following parameters are used for the calculation of the Wilson coefficients:

My = 80.2GeV, sin? @y = 0.23, a=1/129,

m; = 170 GeV, my(my) = 4.4GeV, me(m.) = 1.3GeV.
| [0.6GeV[0.7GeV[0.8GeV]0.9GeV|1.0GeV |
2z || —0.937 | —0.826 | —0.748 | —0.690 | —0.645
2 1.576 | 1.491 | 1.433 | 1.391 | 1.359
23 0.016 | 0.011 | 0.007 | 0.005 | 0.003
z4 || —0.037 | —0.027 | —0.019 | —0.014 | —0.009
25 0.011 | 0.008 | 0.006 | 0.004 | 0.003
% || —0.045 | —0.031 | —0.021 | —0.015 | —0.010
zr/a || 0.023 | 0.017 | 0.012 | 0.008 | 0.005
zg/a || 0.007 | 0.004 | 0.002 | 0.001 | 0.0004
zo/a || 0.027 | 0.019 | 0.013 | 0.009 | 0.006
zip/a || —0.006 | —0.003 | —0.002 | —0.001 | —0.0004

Table 10:AS =1 LO Wilson coefficients for\ ., = 245 MeV.
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1 ]0.6 GeV]0.7 GeV]0.8 GeV|0.9 GeV]| 1.0 GeV|
z || —1.192 | —=1.010 | —0.893 | —0.811 | —0.748
2 1779 | 1.632 | 1.541 | 1.479 | 1.433
23 0.025 | 0.016 | 0.010 | 0.007 | 0.004
zg | —0.054 | —0.036 | —0.026 | —0.018 | —0.012
25 0.015 | 0.011 | 0.008 | 0.006 | 0.004
z | —0.070 | —0.044 | —0.029 | —0.019 | —0.013
zr/a | 0.033 | 0.023 | 0.017 | 0.012 | 0.008
zg/a | 0.012 | 0.006 | 0.003 | 0.001 | 0.001
zo/a | 0.040 | 0.027 | 0.019 | 0.013 | 0.008
zio/ || —0.010 | —0.005 | —0.003 | —0.001 | —0.001

Table 11:AS = 1 LO Wilson coefficients for\ ., = 325 MeV.

1 ]0.6 GeV]0.7 GeV]0.8 GeV|0.9 GeV| 1.0 GeV|
2 || —1.576 | —1.246 | —1.065 | —0.947 | —0.861
2 2104 | 1.824 | 1.676 | 1.582 | 1.517
23 0.041 | 0.023 | 0.014 | 0.009 | 0.006
zg | —0.082 | —0.051 | —0.034 | —0.023 | —0.015
25 0.022 | 0.015 | 0.010 | 0.007 | 0.005
z | —0.119 | —0.066 | —0.041 | —0.026 | —0.016
zr/a || 0.044 | 0.031 | 0.022 | 0.015 | 0.010
zg/a | 0.024 | 0.010 | 0.005 | 0.002 | 0.001
zg/a | 0.056 | 0.037 | 0.025 | 0.017 | 0.011
210/ || —0.017 | —0.008 | —0.004 | —0.002 | —0.001

Table 12:AS = 1 LO Wilson coefficients for\ o, = 405 MeV.
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| 1 [[0.6GeV]|0.7GeV]0.8 GeV]0.9GeV| 1.0 GeV |
z | —0.668 | —0.578 | —0.516 | —0.470 | —0.435
2 1.391 | 1.326 | 1.282 | 1.252 | 1.229
23 0.038 | 0.023 | 0.016 | 0.012 | 0.009
zg | —0.088 | —0.059 | —0.043 | —0.032 | —0.025
25 0.007 | 0.009 | 0.008 | 0.007 | 0.006
z | —0.102 | —0.064 | —0.044 | —0.032 | —0.025
zr/a | 0.018 | 0.012 | 0.008 | 0.006 | 0.005
zg/a | 0.069 | 0.039 | 0.024 | 0.015 | 0.009
zo/a | 0.045 | 0.029 | 0.020 | 0.014 | 0.010
zio/ || —0.032 | —0.021 | —0.014 | —0.009 | —0.006

Table 13:AS = 1 NLO Wilson coefficients (NDR) for\ ¢, = Afﬂi‘s) = 245 MeV.

| u

| 0.6 GeV|[0.7 GeV|0.8 GeV|0.9 GeV| 1.0 GeV |

21
)
<3
Z4
<5
26
27/
28/
29/ v
Zlo/Oé

—0.898
1.569
0.033

—0.060
0.012

—0.060

—0.005
0.046
0.023

—0.038

—0.739
1.444
0.019

—0.038
0.008

—0.036

—0.005
0.027
0.012

—0.024

—0.644
1.373
0.012

—0.025
0.006

—0.024

—0.004
0.017
0.006

—0.016

—0.579
1.326
0.007

—0.017
0.004

—0.016

—0.004
0.011
0.003

—0.010

—0.531
1.292
0.005

—0.011
0.003

—0.010

—0.003
0.007
0.001

—0.007

Table 14:AS = 1 NLO Wilson coefficients (HV) fotAq, = A%’ = 245 MeV.
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| 1 [[0.6GeV]|0.7GeV]0.8 GeV]0.9GeV| 1.0 GeV |
z | —0.805 [ —0.712 | —0.623 | —0.558 | —0.509
2 1.495 | 1424 | 1.359 | 1.312 | 1.278
23 0.095 | 0.046 | 0.027 | 0.018 | 0.013
zg | —0.193 | —0.104 | —0.068 | —0.048 | —0.035
z5 | —0.019 | 0.005 | 0.009 | 0.009 | 0.008
z | —0.261 | —0.121 | —0.072 | —0.049 | —0.035
zr/a | 0.039 | 0.025 | 0.018 | 0.014 | 0.011
zg/a || 0181 | 0.079 | 0.042 | 0.024 | 0.014
zo/a | 0.086 | 0.054 | 0.036 | 0.025 | 0.018
zip/ || —0.056 | —0.034 | —0.021 | —0.013 | —0.008

Table 15:AS = 1 NLO Wilson coefficients (NDR) for\ ¢, = Afﬂi‘s) = 325 MeV.

| u

| 0.6 GeV|[0.7 GeV|0.8 GeV|0.9 GeV| 1.0 GeV |

21
)
<3
Z4
<5
26
27/
28/
29/ v
Zlo/Oé

—1.381
1.982
0.090

—0.129
0.016

—0.137

—0.008
0.107
0.052

—0.077

—1.011
1.662
0.040

—0.068
0.011

—0.067

—0.003
0.050
0.027

—0.042

—0.827
1.513
0.022

—0.041
0.008

—0.038

—0.002
0.027
0.015

—0.025

—0.716
1.427
0.013

—0.026
0.006

—0.024

—0.002
0.016
0.009

—0.016

—0.640
1.370
0.007

—0.016
0.004

—0.014

—0.002
0.010
0.005

—0.010

Table 16:AS = 1 NLO Wilson coefficients (HV) fotAq, = A%’ = 325 MeV.
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| 1 [0.6GeV]0.7GeV]0.8 GeV]0.9GeV|1.0GeV |
2z | —0.176 || —0.795 | —0.738 | —0.657 | —0.592
z | 0911 | 1.485 | 1.444 | 1.384 | 1.336
zz | 0350 | 0.108 | 0.052 | 0.030 | 0.019
zg | —0.637 | —0.218 | —0.117 | —0.074 | —0.050
z5 | —0.318 | —0.027 | 0.004 | 0.009 | 0.009
7 | —1.172 | —0.288 | —0.132 | —0.077 | —0.050
zr/a | 0.119 || 0.042 | 0.029 | 0.023 | 0.018
zg/a | 0.699 | 0.185 | 0.081 | 0.042 | 0.023
zo/a | 0.132 | 0.089 | 0.059 | 0.040 | 0.029
zi0/or | —0.077 || —0.054 | —0.033 | —0.020 | —0.012

Table 17:AS = 1 NLO Wilson coefficients (NDR) for\ ¢, = Afﬂi‘s) = 405 MeV.

| u

| 0.6 GeV|[0.7 GeV|0.8 GeV|0.9 GeV| 1.0 GeV |

21
)
<3
Z4
<5
26
27/
28/
29/ v
Zlo/Oé

—2.603
3.138
0.370

—0.403
0.035

—0.463

—0.063
0.342
0.111

—0.179

—1.494
2.084
0.102

—0.140
0.014

—0.141

—0.009
0.105
0.051

—0.078

—1.102
1.739
0.044

—0.072
0.010

—0.067

—0.002
0.048
0.028

—0.042

—0.901
1.573
0.023

—0.042
0.007

—0.037

—0.001
0.026
0.016

—0.024

—0.778
1.475
0.012

—0.025
0.005

—0.021

—0.001
0.014
0.009

—0.014

Table 18:AS = 1 NLO Wilson coefficients (HV) forAq, = A%’ = 405 MeV.
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