
LABORATORI NAZIONALI DI FRASCATI

SIS-Pubblicazioni

LNF-98/044(P)
16 Dicembre 1998

DO–TH 98/23
hep-ph/9902334

NEW ANALYSIS OF THE �I = 1=2 RULE IN KAON DECAYS
AND THE B̂K PARAMETER
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Abstract

We present a new analysis of the�I = 1=2 rule inK ! �� decays and thêBK param-
eter. We use the1=Nc expansion within the effective chiral lagrangian for pseudoscalar
mesons and compute the hadronic matrix elements at leading and next-to-leading order
in the chiral and the1=Nc expansions. Numerically, our calculation reproduces the dom-
inant�I = 1=2 K ! �� amplitude. Our result depends only moderately on the choice
of the cutoff scale in the chiral loops. The�I = 3=2 amplitude emerges sufficiently sup-
pressed but shows a significant dependence on the cutoff. TheB̂K parameter turns out to
be smaller than the value previously obtained in the1=Nc approach. It also shows a sig-
nificant dependence on the choice of the cutoff scale. Our results indicate that corrections
from higher order terms and/or higher resonances are large for the�I = 3=2 K ! ��
amplitude and the(j�Sj = 2) K0 � �K0 transition amplitude.
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1 Introduction

Over the last few decades the kaon system has provided us with a rich field of phe-

nomenology which has been important for developing our theoretical understanding of

the interplay of weak and strong interactions. The nonleptonic kaon decays are espe-

cially interesting because they provide a testing ground for QCD dynamics at long dis-

tances. Two outstanding problems in the field are the explanation of the�I = 1=2 rule

in K ! �� decays and the calculation of thêBK parameter which measures the non-

perturbative contributions to the(j�Sj = 2) K0 � �K0 transition amplitude. An accurate

knowledge ofB̂K is necessary for theoretically investigating the indirect CP violation in

the neutral kaon mass matrix, as well as, theKL � KS mass difference. The�I = 1=2

rule is particularly important because it gives rise to the small value of the ratio"0="which

measures the direct CP violation in theK ! �� decay amplitudes.

Since its first observation more than 40 years ago [1] the�I = 1=2 enhancement

has attracted a great deal of theoretical interest trying to find the dynamical mechanism

behind the approximate isospin selection rule, in particular within the standard model.

Experimentally, the ratio of the�I = 1=2 and�I = 3=2 amplitudes inK ! �� decays

corresponding toI = 0 andI = 2 in the final state, respectively, was measured to be

1

!
� Rea0

Rea2
� Re(K ! (��)I=0)

Re(K ! (��)I=2)
= 22:2� 0:1 ; (1)

with AI = aI exp(i�I) and�I the final state interaction phases. This result was partic-

ularly enigmatic before the advent of QCD when only the current-current operatorQ2

arising from theW exchange was included in the analysis and, consequently, Rea0=Rea2
was expected to be around one. With the establishment of QCD our understanding of

the�I = 1=2 selection rule improved considerably. Using the operator product expan-

sion, theK ! �� amplitudes are obtained from the effective low-energy hamiltonian for

j�Sj = 1 transitions [2 - 4],

H�S=1

eff =
GFp
2
�u

8X
i=1

ci(�)Qi(�) (� < mc) ; (2)

ci(�) = zi(�) + �yi(�) ; � = ��t=�u ; �q = V �
qsVqd : (3)

The arbitrary renormalization scale� separates short- and long-distance contributions to

the decay amplitudes. The Wilson coefficient functionsci(�) contain all the information

on heavy-mass scales. For CP conserving processes only thezi are numerically relevant.

The coefficient functions can be calculated for a scale� & 1GeV using perturbative

renormalization group techniques. They were computed in an extensive next-to-leading
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logarithm analysis by two groups [5,6]. The local four-quark operatorsQi(�) can be

written, after Fierz reordering, in terms of color singlet quark bilinears:

Q1 = 4 �sL
�dL �uL�uL ; Q2 = 4 �sL

�uL �uL�dL ; (4)

Q3 = 4
X
q

�sL
�dL �qL�qL ; Q4 = 4

X
q

�sL
�qL �qL�dL ; (5)

Q5 = 4
X
q

�sL
�dL �qR�qR ; Q6 = �8

X
q

�sLqR �qRdL ; (6)

Q7 = 4
X
q

3

2
eq �sL

�dL �qR�qR ; Q8 = �8
X
q

3

2
eq �sLqR �qRdL ; (7)

where the sum goes over the light flavors (q = u; d; s) and

qR;L =
1

2
(1� 5)q ; eq = (2=3; �1=3; �1=3) : (8)

Q3; : : : ; Q6 arise from QCD penguin diagrams involving a virtualW and ac or t quark,

with gluons connecting the virtual heavy quark to light quarks. They transform as(8L; 1R)

underSU(3)L � SU(3)R and solely contribute to�I = 1=2 transitions.Q7 andQ8 are

electroweak penguin operators [7,8] which are less important for the�I = 1=2 rule.

Long-distance contributions to the amplitudesAI are contained in the hadronic matrix

elements of the four-quark operators,

hQi(�)iI � h��; IjQi(�) jK0i ; (9)

which are related to the�+�� and�0�0 final states through the isospin decomposition

hQii0 =
1p
6

�
2h�+��jQi jK0i+ h�0�0jQi jK0i� ; (10)

hQii2 =
1p
3

�h�+��jQi jK0i � h�0�0jQi jK0i� =

r
2

3
h�+�0jQi jK+i : (11)

They are difficult to calculate but can be estimated using non-perturbative techniques

generally for� around a scale of1GeV.

Major progress in the understanding of the�I = 1=2 rule was made when it was

observed that the short-distance (quark) evolution, which is represented by the Wilson

coefficient functions in the effective hamiltonian of Eq. (2), leads to both an enhancement

of the I = 0 and a suppression of theI = 2 final state. Theoctet enhancement[2] in

the (Q1; Q2) sector is dominated by the increase ofz2 when� evolves fromMW down

to � ' 1GeV, whereas the suppression of the�I = 3=2 transition results from a partial
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cancellation between the contributions from theQ1 andQ2 operators owing to a destruc-

tive Pauli interference in theK+ ! �+�0 amplitude. Another important short-distance

enhancement was found to arise in the sector of the QCD penguin operators, in particular

for z6, through the proper inclusion of the threshold effects (and the associated incomplete

GIM cancellation above the charm quark mass) [9]. Nevertheless, it was concluded that

the perturbative QCD effects are far from sufficient to describe the�I = 1=2 rule and

QCD dynamics at low energies must be addressed. The long-distance enhancement of the

matrix elements of the QCD penguin operators over the matrix elements ofQ1 andQ2

was first conjectured and estimated in Ref. [3] in the vacuum saturation approximation

(VSA) [10]. The VSA approach, however, fails completely in explaining the�I = 1=2

rule, and a more refined method for the calculation of the hadronic matrix elements is cer-

tainly needed.

Due to the non-perturbative nature of the long-distance contribution, a large variety

of techniques has been proposed to estimate it (for some recent publications see Refs. [11 -

16]). Among the analytical methods, the1=Nc expansion [17] (Nc being the number

of colors) associated with the effective chiral lagrangian is particularly interesting. In

this approach, QCD dynamics at low energies is represented by the ‘meson evolution’ of

the operators, from zero momentum to�, in terms of the chiral loop corrections to the

matrix elements [9,18]. The authors of Ref. [18] calculated the loop corrections to the

matrix elements ofQ1 andQ2 and included the gluon penguin operatorQ6 at the tree

level, consistent with the1=Nc expansion. They obtained an additional enhancement and

suppression of the�I = 1=2 and�I = 3=2 amplitudes, respectively, systematically

continuing the octet enhancement in the(Q1; Q2) sector to the long-distance domain.

Numerically,a2 was reproduced with an accuracy of 70 to approximately 100%, whereas

a0 [for �QCD = 300MeV andms(1GeV) = 125 - 175MeV] was found to be around65 -

80% of the measured value, suggesting that the bulk of the physics behind the�I =

1=2 rule in kaon decays is now understood. One might note that the agreement with

experiment is not improved by including the next-to-leading order values for thezi [19].

In this article we present a new calculation of the hadronic matrix elements in

K ! �� decays in the1=Nc expansion for pseudoscalar mesons. The paper contains

several improvements over the original approach of Ref. [18] which are conceptually

and numerically important. One improvement concerns the matching of short- and long-

distance contributions to the amplitudes, by adopting a modified identification of virtual

momenta in the integrals of the chiral loops. To be explicit, we consider the two currents

or densities in the chiral representation of the operators to be connected to each other

through the exchange of an effective color singlet boson, and identify its momentum with

the loop integration variable. The effect of this procedure is to modify the loop integrals,
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which introduces noticeable effects in the final results. More important it provides an

unambiguous matching of the1=Nc expansion in terms of mesons to the QCD expansion

in terms of quarks and gluons. The approach followed here leads to an explicit classifi-

cation of the diagrams into factorizable and non-factorizable. Factorizable loop diagrams

refer to the strong sector of the theory and give corrections whose scale dependence is

absorbed in the renormalization of the chiral effective lagrangian. The non-factorizable

loop diagrams have to be matched to the Wilson coefficients and should cancel scale de-

pendences which arise from the short-distance expansion. In a recent publication together

with W.A. Bardeen and E.A. Paschos [20] we used this method to calculate the hadronic

matrix elements ofQ6 andQ8 which dominate the ratio"0=". In this paper we focus on the

CP conserving amplitudes which, to a large extent, are governed by the current-current

operatorsQ1 andQ2.

In Ref. [18] a mass scale replacing the complete dependence of the exact expres-

sions on the meson masses was introduced in the chiral logarithms. Another improvement

of this paper is that we investigate the exact expressions for the matrix elements using the

matching prescription discussed above, i.e., we evaluate the complete finite terms from

the non-factorizable diagrams. Moreover, we calculate the whole of the matrix elements,

that is to say, we also take into account the subleading penguin operators. For consis-

tency with Ref. [20] we also include the small effects of the singlet�0. In the numerical

analysis we take special care to separate the different contributions. In particular, we

discuss the effect of the final state interaction phases which were not taken into account

in Ref. [18]. Uncertainties arising from the short-distance part of the calculation are

estimated by comparing the amplitudes obtained from the LO and the NLO Wilson coef-

ficients, respectively. Finally, we also investigate the size of higher order corrections to

the hadronic matrix elements to critically examine the stability of our results within the

pseudoscalar approximation.

In the second part of this work we investigate the matrix element of the (j�Sj = 2)

K0 � �K0 amplitude in the1=Nc expansion following the same lines of thought. The

introduction to this calculation we postpone to the beginning of Section 5. Our results for

theK ! �� matrix elements were already discussed in part in Refs. [21,22]. For a more

detailed presentation of the general method we refer the reader to Refs. [20,23].

The paper is organized as follows. In Section 2 we review the general framework of

the effective low-energy calculation and discuss the matching of short- and long-distance

contributions to the decay amplitudes. Then, in Section 3 we investigate theK ! �� ma-

trix elements. We show explicitly that the scale dependence of the factorizable loop dia-

grams is absorbed in the renormalization of the bare couplings, the meson wave functions

and masses. We next calculate the non-factorizable loop corrections in the cutoff regu-
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larization scheme. In Section 4 we match them to the Wilson coefficients to obtain the

isospin amplitudes. In Section 5 we extend the analysis to the (j�Sj = 2) K0 � �K0

transition. We compute the matrix element and match it to the short-distance coefficient

function to determine thêBK parameter. In both sections we present our numerical results

and compare them with those of the existing analyses. The conclusions can be found in

Section 6.

2 General Framework

Following the lines of Ref. [20] we calculate the hadronic matrix elements of the local

four-quark operators (withj�Sj = 1, 2) in the1=Nc expansion. To this end we start from

the chiral effective lagrangian for pseudoscalar mesons which involves an expansion in

momenta where terms up toO(p4) are included [24]. Keeping only terms ofO(p4) which

contribute to theK ! �� or theK0� �K0 matrix elements and are leading inNc it reads:1

Leff =
f 2

4

�
hD�U

yD�Ui + �

4Nc
hlnU y � lnUi2 + rhMU y + UMyi

�
(12)

+rL5hD�U
yD�U(MyU + U yM)i+ r2L8hMyUMyU +MU yMU yi ;

with D�U = @�U � ir�U + iUl�, M = diag(mu; md; ms), andhAi denoting the trace

of A. l� and r� are left- and right-handed gauge fields, respectively,f and r are free

parameters related to the pion decay constantF� and to the quark condensate, withr =

�2h�qqi=f 2. The complex matrixU is a non-linear representation of the pseudoscalar

meson nonet:

U = exp
i

f
� ; � = �a�a ; h�a�bi = 2�ab ; (13)

where, in terms of the physical states

� =

0
BBBB@

�0 + 1p
3
a� +

q
2
3
b�0

p
2�+

p
2K+

p
2�� ��0 + 1p

3
a� +

q
2
3
b�0

p
2K0

p
2K� p

2 �K0 � 2p
3
b� +

q
2
3
a�0

1
CCCCA ; (14)

with

a = cos � �
p
2 sin � ;

p
2b = sin � +

p
2 cos � ; (15)

The various conventions and definitions we use are in agreement with Ref. [20]. In par-

ticular, we introduce the singlet�0 in the same way and with the same value for theUA(1)

1One might note that the mass term/ L8 contributes only to the matrix elements ofQ6 andQ8 which
were computed in Ref. [20]. Here we include it for completeness.
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symmetry breaking parameter,� = m2
� +m2

�0 � 2m2
K ' 0:72GeV2, corresponding to the

� � �0 mixing angle� = �19� [25]. The bosonic representation of the quark currents is

defined in terms of (functional) derivatives of the chiral action:

�qiL
�qjL � �S

�(l�(x))ij
= �if

2

2
(U y@�U)ji

+irL5(@
�U yM�My@�U + @�U yUMyU � U yMU y@�U)ji ; (16)

and the right-handed currents are obtained by parity transformation. Eq. (16) allows us to

express the current-current operators in terms of the pseudoscalar meson fields.

The1=Nc corrections to the matrix elementshQiiI are calculated by chiral loop di-

agrams in line with Ref. [20]. The factorizable contributions, on the one hand, refer to the

strong sector of the theory and give corrections whose scale dependence is absorbed in

the renormalization of the chiral effective lagrangian. This property is obvious in the case

of the (conserved) currents and was demonstrated explicitly in the case of the bosonized

densities [20,23]. Consequently, the factorizable loop corrections can be computed within

dimensional regularization. The non-factorizable corrections, on the other hand, are UV

divergent and must be matched to the short-distance part. They are regularized by a fi-

nite cutoff which is identified with the short-distance renormalization scale [18,19,26,27].

The definition of the momenta in the loop diagrams which are not momentum translation

invariant was discussed in detail in Ref. [20]. A consistent matching is obtained by con-

sidering the two currents or densities to be connected to each other through the exchange

of a color singlet boson and by assigning the same momentum to it at long and short dis-

tances [28 - 31]. The identification of this momentum with the loop integration variable

leads to modified integrals in the chiral loop diagrams compared to those of Refs. [18,26].

The numerical implications for the isospin amplitudes inK ! �� decays and thêBK

parameter will be addressed in Sections 4 and 5.

In this paper we investigate the hadronic matrix elements at leading and next-to-

leading order in the chiral and the1=Nc expansions. In particular, we calculate the

O(p2=Nc) corrections to the current-current operators, that is to say, the one-loop cor-

rections over theO(p2) lagrangian. The matrix elements of the density-density operators

Q6 andQ8 are taken from Ref. [20]. In the numerical analysis of the�I = 1=2 rule and

the B̂K parameter we use the leading logarithmic (LO), as well as, the next-to-leading

logarithmic (NLO) values [5,6,32,33] for the (j�Sj = 1; 2) short-distance coefficient

functions.2 In general, the lack of any reference to the renormalization scheme depen-

2We treat the coefficient functions as leading order in1=Nc since the large logarithms arising from
the long renormalization group evolution from(mt;MW ) to � ' O(1GeV) compensate for the1=Nc

suppression.
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dence in the effective low-energy calculation prevents a complete matching at the next-

to-leading order [34]. Nevertheless, a comparison of the amplitudes obtained from the

LO and NLO coefficients is meaningful in order to test the validity of perturbation theory.

In the following sections we calculate the long-distance1=Nc corrections to the

K ! �� amplitudes and thêBK parameter. First, we investigate the factorizable correc-

tions and show their absorption in the low-energy constants. Secondly, we determine the

non-factorizable loops within the modified momentum prescription. Finally, we perform

a numerical analysis and compare our results with those of the existing studies.

3 K ! �� Decays

In this section we present the hadronic matrix elements of the current-current operators

for the physical decay modesK0 ! �+�� andK0 ! �0�0 up toO(p4) andO(p2=Nc)

in the parameter expansion. From these results we derive the isospin amplitudesK !
(��)I=0;2, heading for an explanation of the�I = 1=2 selection rule in kaon decays.

3.1 Factorizable1=Nc Corrections

The (bare) tree level of theK ! �� matrix elements, up toO(p4) in the chiral expansion,

as well as, the factorizable1=Nc corrections to theO(p2) can be calculated from the tree

and loop topologies depicted in Fig. 1. From the sum of these diagrams we obtain3

h�+��jQ2jK0iF(0) =
p
2 f

�
m2

K �m2
�

� �
1 +

4L5

f 2
�
m2

K + 4m2
�

�
(17)

� 1

16�2f 2

�
3�2c �

5

4

�
m2

K + 2m2
�

�
log�2c

�
+ � � �

�
;

where

h�+��jQ2jK0iF = h�+��jQ4jK0iF = �h�0�0jQ1jK0iF

= h�0�0 jQ4jK0iF =
2

3
h�0�0jQ7jK0iF ; (18)

and

h�+��jQijK0iF = 0 for i 2 f1; 3; 5; 7g (19)

h�0�0 jQijK0iF = 0 for i 2 f2; 3; 5g : (20)

3In distinction to Ref. [20] the factori referring to the weak vertex is included in the definition of the
matrix element.
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+ (ij) (kl)

(ij)(kl)(ij)(kl) (ij)(kl)

(ij)(kl) (ij)(kl)

(ij)(kl)

Figure 1: Factorizable diagrams for the matrix elements of the current-current operators
in the isospin limit. Crossed circles represent the bosonized currents, black circles the
strong vertices. The lines denote the pseudoscalar mesons. The external legs represent all
possible permutations of the kaon and the pions.

The ellipses in Eq. (17) denote finite terms we omit here for the analysis of the ultraviolet

behaviour (in particular, they provide the reference scale for the logarithms). We spec-

ify our results in the cutoff regularization scheme to demonstrate the absorption of the

quadratic, as well as, the logarithmic divergences as required by current conservation. We

note that all factorizable terms quadratic and logarithmic in the cutoff are independent of

the momentum prescription in the loop.�c is the cutoff for the factorizable diagrams. We

introduce two different scales since the factorizable and the non-factorizable corrections

refer to disconnected sectors of the theory (strong and weak sectors). Having demon-

strated the absence of UV divergent terms in the sum of the factorizable diagrams, in the

numerical analysis of the full expressions we will use dimensional regularization, as in

pure chiral perturbation theory, which is momentum translation invariant.

If we renormalize the wave functions of the kaon and the pions(�r � Z1=2
� �0),

as well as, the bare decay constantf by using Eqs. (14)-(17) and (25) of Ref. [20], we

arrive at the renormalized (factorizable) matrix elements of the (j�Sj = 1) current-current

operators:4

h�+��jQ2jK0iF(r) =
p
2F�

�
m2

K �m2
�

� "
1 +

4 L̂r
5

F 2
�

m2
�

#
; (21)

where the constant̂Lr
5 is defined through the relation [20]

FK

F�

� 1 +
4L̂r

5

F 2
�

(m2
K �m2

�) ; (22)

4The full expressions for the wave function and the decay constants are given in terms of integrals in
Appendix A of Ref. [20].
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+ (ij) (kl)

(ij)(kl)

(ij)(kl)

(ij)(kl)(ij)(kl)

Figure 2: Non-factorizable diagrams for the matrix elements of the current-current oper-
ators in the isospin limit.

and the remaining matrix elements can be obtained from Eqs. (18)-(20).

We notice that for the four-quark operatorsQi of the current-current type the diver-

gent terms are absorbed by the renormalization procedure. In addition, the factorizable

1=Nc corrections vanish completely, that is to say, the divergent as well as the finite terms.

This property has been observed numerically, within dimensional regularization, because

the complexity of all factorizable contributions prevents us from doing a fully analytic

calculation. Since the factorizable scale�c disappears through renormalization, the only

matching between long- and short-distance contributions is obtained by identifying the

cutoff scale�c of the non-factorizable diagrams with the QCD renormalization scale.

Finally, we note that in the next-to-leading order term of Eqs. (21) and (22) we

used1=F� rather than1=f as it was done in Ref. [18]. Formally, the difference repre-

sents higher order effects. Nevertheless, the appearance of1=f gives rise to a residual

dependence on the factorizable scale�c, which has no counterpart at the short-distance

level and will be absorbed by factorizable loop corrections to the matrix elements at the

next order in the parameter expansion. Consequently, it is a more adequate choice to

use the physical decay constant in the expressions under consideration. Instead ofF� the

kaon decay constantFK could be used as well. Both choices will be considered in the

numerical analysis, which gives a rough estimate of higher order corrections.

3.2 Non-factorizable1=Nc Corrections

The non-factorizable1=Nc corrections to the hadronic matrix elements constitute the part

to be matched to the short-distance Wilson coefficient functions; i.e., the corresponding

scale�c has to be identified with the renormalization scale� of QCD. We perform this

identification, as we argued in Section 2, by associating the cutoff to the effective color

singlet boson. Then, at theO(p2) in the chiral expansion, from the diagrams of Fig. 2 we
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obtain in theSU(2) limit:

h�+��jQ1jK0iNF = �
p
2 (m2

K �m2
�)

16�2F�

�
3�2

c �
�
1

4
m2

K + 3m2
�

�
log �2

c + � � �
�

(23)

h�+��jQ2jK0iNF =

p
2 (m2

K �m2
�)

16�2F�

�
3

2
�2
c +

�
m2

K �
3

2
m2

�

�
log �2

c + � � �
�

(24)

h�+��jQ3jK0iNF =

p
2 (m2

K �m2
�)

16�2F�
2m2

� log�2
c + � � � (25)

h�+��jQ4jK0iNF =

p
2 (m2

K �m2
�)

16�2F�

�
9

2
�2
c +

�
3

4
m2

K �
5

2
m2

�

�
log �2

c + � � �
�

(26)

h�+��jQ7jK0iNF =

p
2 (m2

K + 2m2
�)

16�2F�

�
�
9

4
�2
c �

1

8

�
3m2

K + 7m2
� +

6m4
�

m2
K + 2m2

�

�
log�2

c + � � �
�

(27)

h�0�0 jQ2jK0iNF =

p
2 (m2

K �m2
�)

16�2F�

�
9

2
�2
c +

3

4

�
m2

K � 6m2
�

�
log �2

c + � � �
�

(28)

h�0�0 jQ4jK0iNF =

p
2 (m2

K �m2
�)

16�2F�

�
�
9

2
�2
c +

1

4

�
3m2

K � 10m2
�

�
log �2

c + � � �
�
; (29)

where

h�+��jQ3jK0iNF = h�0�0 jQ3jK0iNF = �h�0�0 jQ5jK0iNF

=
1

2
h�0�0 jQ7jK0iNF = �h�+��jQ5jK0iNF (30)

and

h�0�0jQ1jK0iNF = 0 : (31)

One might note that in Eqs. (23)-(29) [as in Eq. (17)] we replacedm2
�,m

2
�0 , and the mixing

angle� bym2
� andm2

K using the octet-singlet mass matrix of Ref. [25].

At this stage of the calculation we find quadratic, as well as, logarithmic divergences

of the non-factorizable corrections. We note that already the leading (� �2
c) terms depend

on the momentum prescription. The quadratic terms were calculated in Ref. [30] in the

background field method. In this paper we investigate the full expressions for the matrix

elements needed for the numerical analysis of the amplitudes. The results contain finite

11



terms, originating from the solutions of the integrals listed in Eq. (48) and in Appendix B

of Ref. [20], which we neglect here for brevity and denote by the ellipses. We also note

that in the case ofQ7 the solution of the integrals brings along a quartic dependence on

the cutoff which has to be cancelled by adding a specific contact interaction proportional

to �(4)(0) to the Feynman rules of the truncated meson theory [30,35].

Even though the scale dependence of the perturbative coefficient functions is only

logarithmic, the full long-distance contribution including the quadratic terms has to be

matched to the short-distance part. The quadratic dependence on the cutoff is physical

and is necessary for several reasons. First, in the chiral limit(mq = 0) all corrections

vanish except for the�2
c terms, which bring in the only scale to be matched to the short

distance. Secondly, they stabilize the1=Nc expansion and generally improve the matching

of the meson and the quark pictures [18]. Finally, they provide us with a rough estimate

of the contributions from higher resonances.

We note that in Eqs. (23)–(29) we used the physical decay constantF� rather thanf

in the same way as for the factorizable diagrams. Again the difference represents higher

order effects. However, the (factorizable) scale dependence off has no counterpart in the

short distance and will be absorbed at the next order in the chiral expansion. As for the

factorizable contributions the choice ofFK instead ofF� would be also appropriate.

4 Numerical Analysis

In this paragraph we list the numerical values for the hadronic matrix elements. We next

match them to the Wilson coefficients and study theK ! (��)I=0; 2 isospin amplitudes.

In Section 4.1 we discuss in detail the1=Nc corrections to the matrix elements. In this

context we also calculate the bag parameters, which quantify the deviations from the

results obtained in the vacuum saturation approximation and, therefore, are convenient

for a comparison with other works. The main results of the present analysis can be found

in Section 4.2. Therein we give the amplitudesa0 anda2 as functions of the matching

scale and compare them with the data.
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4.1 Hadronic Matrix Elements

Throughout the numerical analysis we use the following values for the parameters [36]:

m� � (m�0 +m�+)=2 = 137:3 MeV ; F� = 92:4 MeV ;

mK � (mK0 +mK+)=2 = 495:7 MeV ; FK = 113 MeV ;

m� = 547:5 MeV ; � = �19� ;
m�0 = 957:8 MeV ; GF = 1:1664 � 10�5 GeV�2 ;

jVudj = 0:974 ; jVusj = 0:22 :

Substituting them in Eq. (22) we computeL̂r
5 = 2:07� 10�3.

We parameterize our results in terms of the non-perturbative bag parametersB(1=2)
i

andB(3=2)
i , which quantify the deviations from the values obtained in the vacuum satura-

tion approximation [10]:

B
(1=2)
i =

RehQii0
hQiiVSA

0

; i 2 f1; : : : ; 8g ; (32)

B
(3=2)
i =

RehQii2
hQiiVSA

2

; i 2 f1; 2; 7; 8g ; (33)

with hQiiI containing both factorizable and non-factorizable contributions. The VSA

expressions for the matrix elements are taken from Eqs. (XIX.11)-(XIX.28) of Ref. [19].5

The numerical values for the matrix elements of the current-current operators are given in

Tables 1 and 2.hQ5iVSA
0 andhQ7iVSA

0;2 are functions ofR � 2m2
K=(ms+md) ' 2m2

K=ms

and, consequently, depend on the renormalization scale. For comparison, in the tables

we also show the results obtained in the large-Nc limit, see Eqs. (18)-(21). One might

note that the different values generally do not coincide, even if the smallO(p4) term

proportional tom2
� in Eq. (21) [which contributes only at the level of2% of theO(p2)

tree level term] is neglected, since in the vacuum saturation approximation Fierz terms are

taken into account which are subleading inNc. In particular, the matrix elementhQ1iVSA
0

differs by a factor of(1 � 2=Nc) from the result obtained at theO(p2) in the large-Nc

limit. We notice that the inclusion in part of the1=Nc corrections in the VSA method

leads to a suppression and enhancement of theI = 0 andI = 2 amplitudes, respectively,

in complete disagreement with the data.

In Tables 3 and 4 we list our results for the hadronic matrix elements at next-to-

leading order in the chiral and the1=Nc expansions. The matrix elements of the current-

current operators are calculated from Eqs. (18)-(31) including the finite terms denoted by

5Note that our definition of the pion decay constant (F� = 92:4MeV) differs by a factor of1=
p
2 from

the one used in Ref. [19].
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hQ1i0 hQ2i0 hQ3i0 hQ4i0 hQ5i0 hQ7i0
VSA �4:03 20:2 12:1 36:3 �11:7 �R2 18:2 + 32:5 �R2

tree �12:3 24:6 0 37:0 0 18:5

Table 1: I = 0 matrix elements of the current-current operators: VSA vs. tree level
(large-Nc limit), in units of 106 �MeV3 (R in units of GeV).

hQ1i2 hQ2i2 hQ7i2
VSA 22:8 22:8 �25:7 + 18:9 �R2

tree 17:4 17:4 �26:1

Table 2: Same as in Table 1, now theI = 2 matrix elements.

the ellipses. The results for the operatorsQ6 andQ8 are taken from Ref. [20]. These

results contain the leading plus next-to-leading order terms in the chiral expansion of

the density-density operators, as well as, the leading1=Nc corrections, that is to say,

theO(p0),O(p2), andO(p0=Nc). Note that the matrix elements generally contain a non-

vanishing imaginary part (scale independent at the one-loop level) which is due to on-shell

(� � �) rescattering effects.

The isospin amplitudes are largely dominated by the operatorsQ1 andQ2. There-

fore it is instructive to analyze in detail the1=Nc corrections to these two operators. To

this end we next give the analytic expressions for the isospin matrix elements ofQ1 and

Q2:

hQ1i0 = � 1p
3
F�

�
m2

K �m2
�

� "
1 +

4L̂r
5

F 2
�

m2
� +

1

(4�)2F 2
�

(34)

�
�
6�2

c �
�1
2
m2

K + 6m2
�

�
log
�
1 +

�2
c

~m2

���
+ a10[ ~m]

hQ2i0 =
2p
3
F�

�
m2

K �m2
�

� "
1 +

4L̂r
5

F 2
�

m2
� +

1

(4�)2F 2
�

(35)

�
�
15

4
�2
c +

�11
8
m2

K �
15

4
m2

�

�
log
�
1 +

�2
c

~m2

���
+ a20[ ~m]

hQ1i2 = hQ2i2 =

r
2

3
F�

�
m2

K �m2
�

� "
1 +

4L̂r
5

F 2
�

m2
� +

1

(4�)2F 2
�

(36)
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�c 0:5 GeV 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

hQ1i0 �27:4 �33:2 �40:2 �48:2 �57:3 �67:4 �5:55i
hQ2i0 50:0 58:8 68:8 79:9 92:4 106 11:1i

hQ3i0 0:04 0:05 0:03 �0:02 �0:12 �0:26 0

hQ4i0 77:5 92:1 109 128 150 173 16:6i

hQ5i0 �0:04 �0:05 �0:03 0:02 0:12 0:26 0

hQ6i0 �44:1 �38:6 �33:7 �29:4 �25:5 �21:9 0

hQ7i0 34:4 40:1 46:6 54:1 62:6 72:2 8:32i

hQ8i0 118 119 119 119 118 117 36:7i

Table 3: Hadronic matrix elements ofQ1;:::;5;7 (in units of106 �MeV3) andQ6;8 (in units
of R2 � MeV) in the isospin limit for theI = 0 amplitudes, shown for various values of
the cutoff�c.

�c 0:5 GeV 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

hQ1i2 6:54 2:51 �2:26 �7:77 �14:0 �21:1 �3:45i
hQ2i2 6:54 2:51 �2:26 �7:77 �14:0 �21:1 �3:45i
hQ7i2 �14:5 �10:7 �6:27 �1:15 4:67 11:2 5:18i

hQ8i2 39:9 35:3 31:2 27:2 23:2 18:8 �11:5i

Table 4: Same as in Table 3, now for theI = 2 amplitudes.

�
�
�3�2

c +
�1
4
m2

K + 3m2
�

�
log
�
1 +

�2
c

~m2

���
+ a21[ ~m] :

Eqs. (34)-(36) allow us to compare our results with the analytic expressions of Ref. [18].

First, we note that the modified matching which was discussed in Section 2 increases the

terms quadratic in the cutoff by a factor of 3/2 relative to the results presented therein.

This was already observed in Ref. [30]. The modification of the quadratic terms provides

an additional octet enhancement in the long-distance domain. The logarithmic terms, on

the other hand, are modified only on account of the presence of the�0. To be explicit, in

the octet limit [i.e., in the absence of the�0, with a = b = 1 andm2
� = (4m2

K �m2
�)=3 ]

the coefficient of the logarithm in Eq. (34) is reduced to(m2
K=2 + 10m2

�=3) whereas the

other terms remain unchanged. The separation of the logarithmic and the finite terms

in Eqs. (34)-(36) is arbitrary and is done, for comparison with Ref. [18], by introducing

a mass scale replacing the dependence of the exact expressions on the meson masses

in the chiral logarithms. The logarithmic and the finite terms(aiI) defined in this way
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hQ1i0 hQ1i2 hQ2i0 hQ2i2
tree �12:3 17:4 24:6 17:4

�2
c �34:5 �24:4 43:1 �24:4

log�c[ ~m] 4:43 3:13 10:0 3:13

finite �5:83� 5:55i �3:90� 3:45i 2:20 + 11:1i �3:90� 3:45i

total �48:2� 5:55i �7:77� 3:45i 79:9 + 11:1i �7:77� 3:45i

Table 5: Different contributions to the hadronic matrix elements ofQ1 andQ2 (in units of
106 �MeV3) for �c = 800MeV and ~m = 300MeV.

each depend on the choice of the mass scale~m, whereas the sum of all contributions is

independent of this parameter. We calculated the complete finite terms arising from the

non-factorizable loop diagrams using the matching prescription advocated in Refs. [20,

30].6 These terms were not included in Ref. [18]. Consequently, the numerical values of

the matrix elements reported therein exhibit a dependence on the specific choice of the

mass scale in the logarithms which is absent in the present calculation.

In Table 5 we split up the numerical values for theI = 0 andI = 2 matrix elements

of Q1 andQ2 with respect to the quadratic, the logarithmic, and the finite terms, respec-

tively, at a cutoff scale of�c = 800MeV. From the table we see that the finite terms are of

the same order of magnitude as the logarithmic ones and, therefore, must be considered at

the same level in the numerical analysis. These terms are generally suppressed by a factor

of � � m2
K;�=(4�F�)

2 < 20% with respect to the leadingO(p2) tree level. In addition, as

can be seen from Eqs. (34)-(36) and Table 5, no coefficient larger than one or two which

could significantly enhance them has been found. This is different from the quadratic

terms which are not suppressed as their relative size is determined by� � �2
c=(4�F�)

2

and, moreover, they appear with larger prefactors [even as large as six in Eq. (34)].7 Con-

sequently, in the case of theI = 0 matrix elements ofQ1 andQ2 both the logarithmic

6For details on the computation of the loop integrals see Appendix B of Ref. [20].
7It is interesting to note that the non-suppression of the quadratic terms presumably could be important

for Q6 but less important forQ8. On the one hand, the first non-vanishing tree level contribution to the
operatorsQ6 andQ8 is of theO(p2) andO(p0), respectively. On the other hand, the first non-vanishing
quadratic corrections to both operators are of theO(p2=Nc) (terms of theO(p0=Nc) were found to be only
logarithmic [20]). Consequently, in the case ofQ8 the quadratic terms are (chirally) suppressed by a factor
of p2 �� with respect to the (leading) tree level contribution whereas in the case ofQ6 they bring in only a
factor of�. Quadratic terms, even though subleading inNc, could therefore significantly affect the matrix
element ofQ6 especially if large prefactors are observed as forQ1 andQ2 in Eqs. (34)-(36). This difference
between theQ6 andQ8 operators could play an important role for"0=". This point will be investigated in
Ref. [37].
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and the finite corrections are moderate, and the chiral limit gives a satisfactory represen-

tation of the full amplitude provided that the matching scale is taken sufficiently large

(�c & 500 - 600MeV). In the case of theI = 2 matrix elements we also observe that the

quadratic terms are enhanced with respect to the tree level, whereas the logarithmic and

the finite terms are largely suppressed. However, in this case the quadratic corrections

counteract the tree level, and the sum of both contributions is no longer large compared

to the logarithmic and the finite terms. Therefore the neglect of either of the terms is no

longer justified. In particular, we observe that for the�I = 3=2 channel the chiral limit

gives a better approximation to the exact result than a calculation which includes only the

logarithms without taking into account the finite terms. This remark also holds for the

matrix elementhQ1i0. Finally, we note that variation of the mass scale in the logarithms

[m� < ~m < mK] in Ref. [18] has a noticeable effect on the numerical value of theI = 2

amplitude.

When comparing the results of the present analysis with those of Ref. [18] one has

to take into account another difference in the treatment of the next-to-leading order terms:

in Eqs. (34)-(36) we used1=F� rather than the bare parameter1=f as it was done in

Ref. [18]. Formally, the difference concerns higher order effects, as we already discussed

above. However, since the factorizable scale which appears in the bare couplingf will be

absorbed by factorizable loop corrections to the matrix elements at the next order in the

parameter expansion, it has not to be matched to any short-distance contribution. Conse-

quently, it is a more adequate choice to use the physical decay constant in the expressions

under consideration. The effect of this different treatment of the next-to-leading order

terms will be further discussed in Section 4.2.

In Tables 6 and 7 we list the values we compute for the bag parametersB
(1=2)
i and

B
(3=2)
i . We find a large enhancement ofB(1=2)

1 andB(1=2)
2 over the VSA result, which

constitutes the dominant contribution, at long distances, to the�I = 1=2 transition in

K ! �� decays. Moreover, we obtain the correct scale dependence counteracting the

scale behaviour of the Wilson coefficientsz1 andz2, which leads to an acceptable match-

ing (see Section 4.2). In view of the large corrections one might question the convergence

of the1=Nc expansion. However, there is no strong reason for such doubts because the

non-factorizable contribution we consider in this paper represents the first term in a new

type of a series absent in the large-Nc limit. It is reasonable to assume that this lead-

ing non-factorizable term carries a large fraction of the whole contribution [18] (see also

the discussion in Section 4.2).B(1=2)
3 andB(1=2)

5 turn out to be very close to zero. This

property is due to the vanishing tree level, as well as, to the small1=Nc corrections pro-

portional tom2
�=(4�F�)

2, see Eqs. (25) and (30). We notice that the small contribution

of the operatorQ5 to "0=" is even further reduced when replacing the VSA expression for
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�c 0:5 GeV 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

B
(1=2)
1 6:75 8:24 9:98 12:0 14:2 16:6

B
(1=2)
2 2:47 2:91 3:41 3:96 4:57 5:23

B
(1=2)
3 0:003 0:004 0:002 �0:002 �0:010 �0:021

B
(1=2)
4 2:12 2:54 3:00 3:53 4:13 4:75

B
(1=2)
5 0:0004 0:0009 0:0005 �0:0003 �0:0014 �0:0020

B
(1=2)
6 1:26 1:10 0:96 0:84 0:72 0:62

B
(1=2)
7 0:15 0:16 0:18 0:21 0:23 0:26

B
(1=2)
8 1:20 1:21 1:21 1:21 1:20 1:19

Table 6: Bag parameters for theI = 0 amplitudes, shown for various values of the cutoff.
B(1=2)
5; 7; 8 depend onR ' 2m2

K=ms and are calculated for a runningms(� = �c) at the
leading logarithmic order (�QCD = 325MeV) with ms(1GeV) = 175MeV.

�c 0:5 GeV 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

B
(3=2)
1 0:29 0:11 �0:10 �0:34 �0:61 �0:92

B
(3=2)
2 0:29 0:11 �0:10 �0:34 �0:61 �0:92

B
(3=2)
7 �0:15 �0:10 �0:06 �0:01 0:04 0:09

B
(3=2)
8 0:72 0:64 0:56 0:49 0:42 0:34

Table 7: Same as in Table 6, now for theI = 2 amplitudes.

hQ5i0, which is commonly used in the analysis of"0=" [34], by the result presented in this

paper.B(1=2)
7 andB(3=2)

7 are also found to be significantly reduced with respect to vacuum

saturation approximation. In particular,B(3=2)
7 turns out to be negative for small values

of the cutoff.8 We also notice a decrease of theB(3=2)
1 andB(3=2)

2 parameters, which are

relevant forA2. However, as we will see below, their scale dependence largely overcom-

pensates for the variation of the short-distance coefficient functions. Nevertheless, as the

values are found to be reduced, they generally account for the reduction of theI = 2

amplitude. Finally,B(1=2)
6 receives only small corrections whereasB

(3=2)
8 comes out to be

8Very recently [38] the first non-trivial1=Nc corrections to the matrix elements ofQ7 were evaluated us-
ing the methods of Ref. [39]. The numerical results were also sensitive to the choice of the renormalization
scale. In particular, negative values forB(1=2)

7 andB(3=2)
7 were found below� . 1:3GeV, in qualitative

agreement with the results of the present analysis but in disagreement with the large positive values obtained
in the chiral quark model at a matching scale of0:8GeV [40].
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substantially reduced relative to the VSA result [20]. The numerical implications for"0="

will be investigated elsewhere [37]. One might note that the numerical values ofB
(3=2)
8

shown in Table 7 differ from the ones given in Table 2 of Ref. [20]. This is due to the fact

that in the present paper we include only the real part of the hadronic matrix elements in

the definition of theBi parameters (see Section 4.2).

4.2 The�I = 1=2 Rule

We next investigate the CP conserving amplitudes Rea0 and Rea2. To this end we start

from the expression for the isospin amplitudesAI which contain the (�� �) strong inter-

action phase shift for theI = 0 and theI = 2 final states, respectively,

AI=0;2 =
GFp
2
VudV

�
us

X
i

ci(�) hQi(�)iI=0;2 : (37)

Then

ReaI =
GFp
2
VudV

�
us

���X
i

zi hQiiI
��� = GFp

2
VudV

�
us

1

cos �I

X
i

zi RehQiiI : (38)

Within an exact realization of non-perturbative QCD the two expressions in Eq. (38)

are equivalent. However, in the approximate low-energy calculation of the present work

the long-distance imaginary part which we computed at the one-loop level (see Tables 3

and 4) is not expected to be of the same accuracy as the real part obtained at this level.

In particular, as the one-loop (long-distance) imaginary part is scale independent, it can-

not compensate for the scale dependence of the Wilson coefficientszi leading to a scale

dependent imaginary part of the total amplitude. This requires a calculation of the (long-

distance) imaginary part at least at the two-loop level which will introduce a scale de-

pendence. In addition, the two-loop contribution is expected to be of the same order

of magnitude as the one-loop contribution which only appears at the level of the finite

terms, as it will bring in a quadratically divergent term. This situation is analogous to

the non-suppression of the one-loop contribution to the real part (� �) with respect to

the tree level. The two-loop contribution to the real part, on the other hand, is expected

to be suppressed by at least a factor of� with respect to the tree level and the one-loop

contribution. This is analogous to the one-loop logarithmic and finite terms which are

suppressed by a factor of� with respect to the tree level. For the numerical analysis

we will therefore consider only the real part of the matrix elements [see the second ex-

pression in Eq. (38)] using the experimental values of the final state interaction phases,

�exp
0 = (37 � 3)� and�exp

2 = (�7 � 1)� [41]. This procedure has also been followed in

Ref. [42]. However, as the imaginary part is a loop effect (suppressed by a factor of�
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with respect to the tree level contribution), its effect on the absolute value of the ampli-

tude strictly speaking is of the two-loop order. Consequently, we will also compare our

results with the ones obtained by taking the (long-distance) imaginary part to zero, i.e.,

by taking
P

i zi hQiiI =
P

i zi RehQiiI . This holds for an estimate of the size of higher

order effects which is generally disregarded in the literature.

In Table 8 we show the numerical values of the amplitudes for various values of

the matching scale and fixed values of�QCD = �
(4)
MS

and the strange quark massms. The

numerical analysis is done using the leading logarithmic, as well as, the next-to-leading

logarithmic values of the Wilson coefficients listed in the appendix. The NLO values

are scheme dependent and are calculated within naive dimensional regularization (NDR)

and in the ’t Hooft-Veltman scheme (HV), respectively.9 The difference between the two

NLO results at a given scale reveals the uncertainty due to the lack of any reference to the

renormalization scheme dependence in the effective low-energy calculation.

Rea0 Rea2
�c LO NDR HV LO NDR HV

0:5GeV 3:90 0:74 4:48 0:063 0:086 0:063

0:6GeV 3:50 2:58 3:57 0:027 0:032 0:028

0:7GeV 3:53 2:89 3:45 �0:025 �0:028 �0:025
0:8GeV 3:75 3:13 3:58 �0:090 �0:101 �0:095
0:9GeV 4:08 3:42 3:83 �0:167 �0:188 �0:178
1:0GeV 4:49 3:76 4:17 �0:257 �0:289 �0:274

exp. 3:33 0:15

Table 8: Rea0 and Rea2 (in units of 10�4 MeV) for ms(1GeV) = 175MeV, �QCD =

�
(4)
MS

= 325MeV, and various values of the matching scale� = �c.

In Fig. 3 we show Rea0 calculated with leading order Wilson coefficients for vari-

ous values of�QCD as a function of the matching scale. We take the (conservative) range

of �QCD = 325� 80MeV which corresponds to�s(MZ) = 0:118� 0:005 [34]. First, we

note that our result fora0 shows an additional enhancement (around30 - 50% of the ex-

perimental value) compared to the result of Ref. [18] which renders the amplitude in good

agreement with the observed value for low values of the scale or even larger than the ex-

perimental value for large values of the scale. A significant enhancement arises from the

Q1 andQ2 operators due to the modified matching prescription in the non-factorizable

9We are very thankful to M. Jamin for providing us with the numerical values of the Wilson coefficients
used in this section.
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Figure 3: Rea0 (in units of MeV) with LO zi for ms(1GeV) = 175MeV and various
values of�QCD as a function of the matching scale�c = �.

sector we discussed above. Numerically, at a scale of�c = 800MeV the modified

momentum routing accounts for approximately20% of the final number(s) presented in

Fig. 3. Another enhancement with respect to Ref. [18] originates from the correction of

the real part by the experimental phase [see Eq. (38)]. Neglecting completely the effect of

the (���) phase shift would reduce our result by a factor ofcos �0 ' 0:8. The remainder

is due to the choice of the physical valueF� instead off in the next-to-leading order terms

of the factorizable and non-factorizable corrections. Our result depends only moderately

on the matching scale although the stability falls off for large values of the scale around

1GeV. We observe a cancellation between the scale dependence of the short- and long-

distance contributions, i.e., the operator evolution in the quark picture is continued with

the same pattern in the meson picture. The main uncertainty displayed in Fig. 3 originates

from the dependence of the Wilson coefficients on�QCD. The uncertainty increases for
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Figure 4: Rea0 (in units of MeV) with LO and NLOzi for ms(1GeV) = 175MeV and
various values of�QCD as a function of the matching scale�c = �.

very low values of the scale reflecting the poor perturbative behaviour expected at those

scales especially for the large value of�QCD = 405MeV. Within the (conservative) range

of �QCD = 325 � 80MeV we considered, the value405MeV leads to the most distinct

deviation from the experimental result which, however, does not exceed approximately

20% of the observed value in the range600MeV . �c . 800MeV where the minimum

occurs and the dependence on the scale is weak.

In Fig. 4 we compare the results for Rea0 we obtain using the LO and NLO Wilson

coefficients, respectively. In the HV scheme, for moderate values of�QCD introducing
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Figure 5: Rea0 (in units of MeV) with LOzi for �QCD = 325MeV and various values of
ms(1GeV) as a function of the matching scale�c = �.

the NLO coefficients does not significantly affect the numerical values of the�I = 1=2

amplitude which is found to be only slightly suppressed with respect to the LO result.

The main effect of the NLO coefficients is that they further reduce the dependence on the

matching scale. This statement does not hold within the NDR scheme. In this scheme,

for �QCD = 245MeV the effect of the NLO coefficients is also moderate but noticeably

increases for large values of�QCD leading to a distinct suppression of the LO result. For

values of�QCD as large as 405 MeV both the HV and the NDR results rapidly diverge

for low values of the matching scale (. 700MeV) indicating the loss of perturbativity.

Taking into account the fact that we do not incorporate the effects of higher resonances and

cannot adopt too high values of the scale, a choice of�c around700 - 800MeV seems to

be most appropriate. For�QCD = 325MeV (245MeV) the effect of the NLO coefficients is

less pronounced, and scales as low as600 - 650MeV (500MeV), where the LO minimum
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occurs, appear to be acceptable. Above these scales the deviation of the NLO results

from the experiment does not exceed20 - 25% of the experimental value. Moreover,

the difference between LO and NLO (HV and NDR) values is moderate, of the order

of at most20 - 25% of the observed value.10 In all the cases the tendency for a large

enhancement of the required size remains present.

In Fig. 5 we show the weak dependence of Rea0 (with LO Wilson coefficients)

on the strange quark mass which arises from the matrix element of the gluon penguin

operator [hQ6i0 / 1=m2
s ]. We notice that the contribution fromQ6 to the�I = 1=2

amplitude for small values of the cutoff (� 600MeV) roughly varies between10 - 20%

of the total value and significantly decreases for large values of�c. This behaviour is

also found when the NLO coefficients are used. The effect of the remaining (penguin)

operators is very small (below1% of the total result except forQ4 which contributes

at the level of�3%). For comparison, in Fig. 5 we also show Rea0 calculated in the

chiral limit. We observe that the result obtained in the chiral limit, for reasons explained

above, is rather close to the numerically exact one, that is to say, the logarithmic and the

finite terms in the non-factorizable corrections to the matrix elements are minor important

provided that the matching scale is taken sufficiently large (�c & 500 - 600MeV). Finally,

we note that the presence of the�0 does not affect the numerical values of the amplitudes

(in the octet limit the numbers given in Table 8 change by less than1% ).

In distinction to the�I = 1=2 amplitude, the�I = 3=2 amplitude depicted in

Fig. 6 (with LO Wilson coefficients) is highly unstable. In addition, the numerical values

lie well below the measured value. The amplitude even changes sign [due to the large

negative coefficient of the quadratic term in Eq. (36)]. The large uncertainty can be un-

derstood, as we already discussed above, from the fact that the two numerically leading

terms, the tree level and the one-loop quadratically divergent term, have approximately

the same size but opposite sign. On the one hand, this property is generally welcomed

as it explains the origin of the suppression of the�I = 3=2 amplitude which turns out

to be sufficiently suppressed whatever the particular chosen scale is between600MeV

and900MeV. On the other hand, the large cancellation implies that the result will be

significantly affected by higher order terms which are expected to be of the order of the

one-loop logarithmic and finite terms. We note that the agreement with the experimental

value is not improved in the chiral limit. We also notice that the numerical values depicted

in Fig. 6 depend only weakly on the choice of�QCD. In Fig. 7 we compare the results for

Rea2 we obtain using the LO and NLO Wilson coefficients, respectively. We observe

that the effect of the NLO coefficients is negligible with respect to the large discrepancy

10The comparison of the LO and NLO coefficients should be used with caution as it partly originates
from a change in the value of the QCD coupling for a chosen value of�MS [19].
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Figure 6: Rea2 (in units of MeV) with LOzi for various values of�QCD as a function of
the matching scale�c = �.

between our results and the observed value. The small effect of the NLO coefficients

indicates the validity of perturbation theory and further supports the supposition that the

discrepancy is due the lack of accuracy in the low-energy part of the calculation.

The typical size of higher order effects in the calculation of the hadronic matrix

elements can be estimated in various ways. First, as we already mentioned above, one

may replace in all NLO terms the coefficient1=F� by 1=FK. The results obtained in this

case [denoted by (b)] are shown in Figs. 8 and 9. The�I = 1=2 amplitude is suppressed

by approximately20% with respect to the result we obtained using1=F� [denoted by (a)]

and is even in better agreement with the observed value. The�I = 3=2 amplitude, on the

other hand, is enhanced but still far too much suppressed. Another estimation of higher

order effects can be done, as we explained above, by completely neglecting the imaginary

part of the matrix elements (c). This suppresses Rea0 by a factor ofcos �exp

0 ' 0:8 but does
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Figure 7: Rea2 (in units of MeV) with LO and NLOzi for various values of�QCD as a
function of the matching scale�c = �.

not affect Rea2. Similarly the absolute value of the amplitudes can be calculated by taking

directly the imaginary part from Tables 3 and 4 without using the experimental phases (d).

This procedure suppresses Rea0 in the same way as in the previous case but largely re-

stabilizes Rea2, indicating that the results obtained for the�I = 3=2 amplitude (unlike

those obtained for Rea0) indeed can be significantly affected by higher orders corrections.

It is unlikely, however, that higher order terms alone can account for the large discrepancy

between our result and experiment, and effects from higher resonances are also expected

to be non-negligible for the small�I = 3=2 amplitude. Finally, the coefficient1=F� in the
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Figure 8: Rea0 (in units of MeV) with LO zi for ms(1GeV) = 175MeV and�QCD =
325MeV within different treatments of higher order corrections as explained in the text.

next-to-leading order terms can also be replaced by the bare coupling1=f as it was done in

Ref. [18]. Even though this would introduce an unphysical dependence on the factorizable

scale, formally the difference also concerns higher order effects.11 We observe that this

choice (e) leads to a result for Rea0 which is approximately scale independent. It also

gives a more stable result for Rea2 which, however, still is too much suppressed.

In summary, in all cases we discussed above the�I = 1=2 amplitude is obtained

around the measured value with an uncertainty of less than 25% or in most cases even

less than 15%.12 The result for Rea0 is consequently solid and presumably could be

11The relation betweenF� andf is given in Eq. (62) of Ref. [20] and we obtainf = 105; 112; 120;
128; 136; 145MeV for �c = 500; 600; 700; 800; 900; 1000MeV, respectively.

12The only exception to this is the case where the large value of� QCD = 405MeV is taken at LO or
NLO (HV scheme) using a matching scale as high as� 1GeV. In this (unfavourable) case the deviation
from the observed value can be as large as35 - 40%.
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Figure 9: Rea2 (in units of MeV) with LOzi for �QCD = 325MeV within different treat-
ments of higher order corrections as explained in the text.

significantly affected only by higher resonances. In view of the good agreement with the

experiment we obtained at the pseudoscalar level their effect a priori is expected to be

small. The�I = 3=2 amplitude, on the other hand, though showing the qualitatively

correct behaviour of being suppressed with respect to the VSA result, emerges too much

suppressed and is very unstable. However, higher order corrections to the matrix elements

have been estimated large and could re-enhance it. In the same way higher resonances

could easily enhance the result obtained at the pseudoscalar level. Vector mesons can be

incorporated in a straightforward (however lenghty) way, and it would be very interesting

to investigate their effect in the present calculation. This also would allow more safely to

choose higher values for the matching scale for which the short-distance contributions are

more reliable.

We close this section by a brief review of several other attempts which have been
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made to explain the�I = 1=2 rule using different methods for the computation of the

hadronic matrix elements. Interesting tendencies for an enhancement of the�I = 1=2

channel were found in particular in Ref. [11] by integrating out the quark fields in a

gluonic background and in Ref. [12] in the framework of QCD sum rules at the level of the

inclusive two-point function. In Ref. [13] quantitative results reproducing both the�I =

1=2 and�I = 3=2 channels were obtained adopting the point of view that in addition

to 1=Nc effects due to one-loop corrections (similar to those of Fig. 2) diquark states

play an important role. The results for the�I = 1=2 amplitude obtained in the present

approach suggest that there are no large diquark effects not already taken into account

in the1=Nc corrections we calculated. The�I = 1=2 rule has also been investigated in

the framework of chiral perturbation theory [14] and the chiral quark model [15]. At the

present state of these methods the ratio1=! = 22:2 cannot be predicted but is used to fit

parameters of the models. Very recently the matrix elements relevant for the�I = 1=2

rule were studied in lattice QCD with improved statistics [16]. The authors used lowest-

order chiral perturbation theory to relate the matrix elementsh��jQijK0i to h�+jQijK+i
and h0jQijK0i calculated on the lattice. The ratio of the amplitudes computed in this

way confirms the significant enhancement of the�I = 1=2 channel although systematic

uncertainties preclude a definite answer. Whereas the�I = 1=2 amplitude is obtained

larger than the experimental value by approximately40% (quenched ensemble13, � =

6:0) the�I = 3=2 amplitude suffers from ambiguities in the choice of the meson mass

due to the ignorance of higher order chiral corrections to the relation between Rea2 and the

BK parameter. Taking the meson massM2 = (m2
K+m2

�)=2 and using the quenched value

ofBK in the continuum limit the authors obtain a value for Rea2 which also over-estimates

the data by approximately40%. The ratio of the amplitudes exhibits a strong dependence

on the meson mass (see Fig. 11 of Ref. [16]) due to the chiral behaviour of Rea2. In

lattice perturbation theory unlike in analytical methods, the matching of the renormalized

operators to the Wilson coefficients can be rigorously done, at least in principle (see e.g.

Ref. [45] and references therein). On the other hand, analytical methods like the1=Nc

approach followed in this paper allow for a direct evaluation of theK ! �� amplitudes

without the need of using reduction formulas to relate these amplitudes to the off-shell

K ! � amplitudes (for this point see also Ref. [46] and references therein).

While this paper was written an analysis of the�I = 1=2 rule was published [47]

which follows similar lines of thought as our work. In their analysis the authors used

the1=Nc expansion in the chiral limit in the framework of chiral perturbation theory and

13Quantitative estimates of quenching effects on the coefficients of the chiral logarithms in the one-loop
contributions to theK ! �� amplitudes were presented in Refs. [43,44]. In Ref. [43] finite volume effects
on the lattice were also investigated.
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the Extended Nambu-Jona-Lasinio model, respectively. We agree on the coefficients of

the quadratically divergent terms in the1=Nc corrections to the matrix elements quoted

therein. In the present analysis we did not investigate the method proposed in Ref. [47] to

treat the scheme dependence appearing at the next-to-leading logarithmic order.

5 K0 � �K0 Mixing

The contributions from short-distance physics toK0� �K0 mixing can be calculated from

an effective�S = 2 hamiltonian, valid below the charm threshold, in which the heavy

degrees of freedom are integrated out [32],

H�S=2
eff = F(m2

t ; m
2
c;M

2
W ; VCKM)GF [�s(�)]

�2=9
�
1 +

�s(�)

4�
J3

�
O�S=2 ; (39)

whereO�S=2 is the following four-quark operator:

O�S=2 = �sL
�dL �sL�dL ; (40)

with �s(�) being the QCD running coupling with three active flavors andJ3 a renormal-

ization scheme dependent coefficient appearing at the next-to-leading logarithmic order.

F(m2
t ; m

2
c;M

2
W ; VCKM) is a known function of the heavy quark masses, theW boson mass,

and CKM matrix elements. It incorporates the basic electroweak (box diagram) loop con-

tributions [48], as well as, the perturbative QCD effects described through the correction

factors�1; �2; �3 which have been calculated at the leading logarithmic [4,49] and the

next-to-leading logarithmic order [32,33]. Terms depending on�s(�) are factored out ex-

plicitly to exhibit the renormalization scale (and scheme) dependence of the coefficients

which has to cancel the corresponding scale (and scheme) dependence of the hadronic

matrix element ofO�S=2 [19]. The short-distance hamiltonian for�S = 2 transitions

in Eq. (39) dominates the indirect CP violation in the neutral kaon system parameterized

by ". Contributions toK0 � �K0 mixing changing strangeness by two units through two

�S = 1 transitions at long distances which are relevant for theKL�KS mass difference

[29] are not considered in this article.

The hadronic matrix element ofO�S=2 is usually parameterized in terms of theBK

parameter which quantifies the deviation from the value obtained in the vacuum saturation

approximation:

h �K0jO�S=2(�)jK0i = BK(�) h �K0jO�S=2jK0iVSA ; (41)

where

h �K0jO�S=2jK0iVSA =
4

3
F 2
Km

2
K : (42)
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Figure 10: Factorizable contributions to the matrix element of theK0 � �K0 mixing am-
plitude in the isospin limit.

It is convenient to introduce the renormalization group invariant parameter [19,50]

B̂K = BK(�) [�s(�)]
�2=9

�
1 +

�s(�)

4�
J3

�
; J3 =

(
307
162

(NDR)
91
162

(HV)
; (43)

in which the scale (and scheme) dependences of the long- and short-distance contributions

cancel within an exact realization of both perturbative and non-perturbative QCD. How-

ever, from the results for the�I = 3=2 K ! �� amplitude discussed in the previous

section we do not expect that thêBK we will obtain within the pseudoscalar approxi-

mation used in the low-energy calculation will exhibit a negligible dependence on the

matching scale; the 27-plet operators which induce�S = 1 (�I = 3=2) and�S = 2

transitions are components of the same irreducible tensor underSU(3)L�SU(3)R, that is

to say, to leading order in the chiral expansion theK0� �K0 amplitude can be related to the

�I = 3=2 part of theK ! �� amplitude usingSU(3) symmetry [51,52]. Consequently,

we expect a similar pattern, i.e., a large negative quadratic term in the1=Nc corrections

to the matrix element which partly cancels the tree level contribution and renders the re-

sult more sensitive to corrections from higher order terms and higher resonances. On the

other hand, we expectSU(3) breaking effects in�S = 2 transitions to be more pro-

nounced than in�S = 1 transitions [53]. In the following we will see that the1=Nc

expansion restricted to the pseudoscalar mesons indeed leads to a significantly scale de-

pendent result for̂BK . However, the scale dependence is less pronounced than the one of

the�I = 3=2 amplitude due to corrections beyond the chiral limit. Finally, as we already

discussed above, the low-energy calculation does not allow any reference to the renormal-

ization scheme dependence. Nevertheless, a comparison of theB̂K parameter obtained

from the LO and NLO coefficient function ofO�S=2 can be used to to test the validity of

perturbation theory and to estimate the uncertainties arising from the short-distance part.

5.1 Factorizable Loop Corrections

To obtain the factorizable non-perturbative corrections to the�S = 2 transition we have
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Figure 11: Non-factorizable contributions to the matrix element of theK0 � �K0 mixing
amplitude in the isospin limit.

to calculate the diagrams in Fig. 10. Using the chiral representation of the quark current

in Eq. (16) and reducing the result to the basic integrals listed in Appendix B of Ref. [20]

we obtain the unrenormalized (bare) matrix element:

h �K0jO�S=2jK0iF(0) = m2
Kf

2

�
1 +

16L5

f 2
m2

K

� 1

9f 2

�
(a+ 2 b)2 I1[m�] + 2 (a� b)2 I1[m�0 ] + 18 I1[mK ] + 9 I1[m�]

��
; (44)

with a andb defined in Eq. (15). Multiplying Eq. (44) withZ�1
K , i.e., including a factor

Z
�1=2
K for each external kaon field (compare Eqs. (16) and (59) of Ref. [20]), we arrive at

h �K0jO�S=2jK0iF = m2
Kf

2

�
1 +

8L5

f 2
m2

K

� 1

12f 2

�
9 I1[m�] + 18 I1[mK ] + (a + 2 b)2 I1[m�] + 2 (a� b)2 I1[m�0 ]

��
: (45)

Comparing Eq. (45) with Eqs. (26) and (63) of Ref. [20] we observe that the correction

factor in the brackets which is due to the higher order (factorizable) contributions to the

matrix element is completely absorbed (including the finite terms) in the renormalization

of the kaon decay constant, as it is required by current conservation, leading to the final

result for the (renormalized) factorizable matrix element

h �K0jO�S=2jK0iF(r) = m2
KF

2
K : (46)

Eq. (46) represents the large-Nc limit for theK0� �K0 matrix element, i.e.,BNc!1
K = 3=4,

to be compared with the VSA value one.

5.2 Non-factorizable Loop Corrections

The 1=Nc corrections to Eq. (46) can be calculated from the non-factorizable loop di-

agrams depicted in Fig. 11. We determine the loop momenta along the lines developed
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in Section 2, that is to say, by associating the cutoff to the effective color singlet boson

connecting the two currents. The simple structure of the non-factorizable diagrams makes

it possible to specify the complete analytic result for the matrix element in terms of loop

integrals. In theSU(2) limit the expression in which the integrals are reduced to the basic

ones reads

h �K0jO�S=2jK0iNF =
�4
c

32�2
+

1

6

�
4m2

K � 2p2K � (�2 + �3)
�
I1[mK ]

� 1

6
(�2 + �3 + 2m2

K + 2p2K)m
2
KI3[mK ; mK; 0] � 1

2
(p2K +m2

�)I2[m�; pK]

� 3

2
cos2 � (p2k +m2

�)I2[m�; pK] � 3

2
sin2 � (p2k +m2

�0) I2[m�0 ; pK]

+
1

4
I4[m�; pK] +

3

4
cos2 � I4[m�; pK] +

3

4
sin2 � I4[m�0 ; pK] : (47)

Here we replaceda andb by the� � �0 mixing angle� and explicitly distinguished be-

tween the masses coming from the external kaon momentum, the explicit mass term in

the lagrangian, and the propagators in the loops. In addition to the logarithmically and

quadratically divergent integrals (I1; I2; I3) listed in Appendix B of Ref. [20] Eq. (47)

contains the integralI4 which exhibits a quartic dependence on the cutoff. Following

the steps discussed in Ref. [20] we can give the analytic expression forI4 in terms of a

Taylor-series:

I4[m; p] =
i

(2�)4

Z
d4q

q2

(q � p)2 �m2
(48)

=
1

16�2

�
� 1

2
�4
c +m2

�
�2
c �m2 log

�
1 +

�2
c

m2

��

+
p2m2

(�c +m2)2

�
3

2
�4
c + �2

cm
2 � (�2

c +m2)2 log

�
1 +

�2
c

m2

��

+
p4�6

c

6(�2
c +m2)4

(�2
c � 2m2) +

p6�6
cm

2

2(�2
c +m2)6

�
�2
c �

2

3
m2

��
+O(p8):

We note that the logarithmically divergent integralI3 in Eq. (47) only appears with vanish-

ing external momentum and therefore can be largely simplified compared to the general

expression in Eq. (75) of Ref. [20]. From Eq. (47) one can easily calculate the divergent

terms. Taking the external momentum on-shell we obtain

h �K0jO�S=2jK0iNF =

m2
KF

2
K

�
� 3�2

c

(4�)2F 2
K

+
(4m4

K � 2m2
Km

2
� +m4

�)

(4�)2F 2
Km

2
K

log �2
c + � � �

�
; (49)
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�c 0:5GeV 0:6GeV 0:7GeV 0:8GeV 0:9GeV 1:0GeV

hO�S=2i tree 3:14 3:14 3:14 3:14 3:14 3:14

hO�S=2i�2
c

�1:17 �1:68 �2:29 �2:99 �3:78 �4:67
hO�S=2i log+ fin 0:57 0:76 0:96 1:15 1:32 1:49

hO�S=2i 2:54 2:22 1:81 1:30 0:68 �0:04
BK(�c) 0:61 0:53 0:43 0:31 0:16 �0:01

Table 9: Different contributions to the hadronic matrix element ofO�S=2 (in units of
109 �MeV4) andBK, shown for various values of the cutoff�c.

where the tree level result is factored out and the ellipses denote the finite terms we do not

specify analytically. We observe that the quartic dependence on the cutoff is cancelled as

required by chiral symmetry.

To illustrate the effect of the modified momentum routing we also recalculate the

non-factorizable loop contributions in the approach used by Bardeenet al. [26] who

associated the cutoff to the momentum of the virtual meson in the loop diagrams (see also

the discussion in Ref. [20]):

h �K0jO�S=2jK0iNFBBG = � 1

12

�
2
�
�2 + �3 � 2m2

K

�
I1[mK ]

+3
�
m2

K +m2
�

�
I1[m�] + 9 cos2 �

�
m2

K +m2
�

�
I1[m�] + 9 sin2 �

� �m2
K +m2

�0

�
I1[m�0 ] + 2m2

K

�
�2 + �3 + 4m2

K

�
I3[mK; mK ; 0]

�
; (50)

where the external momentum is already taken on-shell. For comparison with Eq. (47) in

Eq. (50) we included the small effect of the singlet�0. Solving the integrals we obtain the

divergent part of the non-factorizable loop corrections:

h �K0jO�S=2jK0iNFBBG =

m2
KF

2
K

�
� 2�2

c

(4�)2F 2
K

+
(4m4

K � 2m2
Km

2
� +m4

�)

(4�)2F 2
Km

2
K

log �2
c + � � �

�
; (51)

to be compared with Eq. (49). We note that the results obtained in both calculations differ

with respect to the quadratic cutoff dependence, as well as, with respect to the finite terms

we do not give explicitly here for brevity.
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5.3 Numerical Results

As a numerical input we use the values listed in Section 4.1. In Table 9 we show our

results for theK0 � �K0 matrix element andBK(�c) obtained in the full calculation, i.e.,

including the effect of the�0 in Eq. (47). In Fig. 12 we depict the renormalization group

invariant parameter̂BK calculated with the leading order Wilson coefficient.

The decrease ofBK(�c) with �c = � is qualitatively consistent with the� depen-

dence of the coefficient function in Eq. (43), that is to say, the long-distance evolution

counteracts the evolution in the short-distance domain. This property is due to the pres-

ence of the quadratic terms in the1=Nc corrections which compensate for the (weaker)

increase of the logarithmic terms. However, the decrease is found to be significant, and

the scale dependence largely exceeds what is required to have an exact cancellation of

both evolutions over a large range of the scale. As a result an acceptable stability ofB̂K

is obtained only for low values of�c ' 500 - 600MeV. The small values of̂BK depicted

in Fig. 12 (lower set of curves) come from the negative coefficient of the quadratic term

in Eq. (49) which is found to be enhanced by a factor of3=2 compared to the result of

Ref. [26]. This coefficient is the same as the one of the�I = 3=2 K ! �� amplitude

except forSU(3) breaking effects (responsible forFK 6= F�) which reduce the negative

slope ofB̂K . As can be seen from Table 9, the difference between the exact result and the

one obtained in the chiral limit (i.e., in the absence of chiral logarithms and finite terms)

is more pronounced than in the case of theK ! �� amplitudes. This is due mainly to

the numerical coefficient of the leading term (� m4
K) in front of the logarithm in Eq. (49)

which as expected is found larger in�S = 2 transitions than in�S = 1 transitions. Be-

cause of the large positive coefficient the logarithmic term re-stabilizesB̂K sizably with

respect to the result obtained in the chiral limit. This also explains why theB̂K parameter

even if significantly scale dependent is much more stable than the�I = 3=2 amplitude.

The finite terms beyond the logarithms in Eq. (47) [i.e., beyond thelog(1+�2
c=m

2) terms]

give a negative contribution toBK(�c) roughly between�0:05 and�0:08 for �c around

600 -900MeV. Consequently, they are non-negligible in particular for large values of the

scale where the cancellation between the tree level and the quadratic terms is large. Fi-

nally, we note that the presence of the�0 does not significantly affect the numerical values

of theK0� �K0 matrix element (in the octet limit the numbers given in Table 9 change by

less than3% ).

To illustrate the effect of the momentum routing, in Fig. 12 we also showB̂K ob-

tained from Eq. (50) (upper set of curves). We use the same set of parameters as in

Table 9 and also include the�0. Comparing the two results we notice thatBK(�c) calcu-

lated within the modified momentum routing lies below the values found in the previous
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Figure 12:B̂K with LO Wilson coefficient for various values of�QCD as a function of the
matching scale�c = �. The lower set of curves shows the results of the present analysis,
the upper set allows a comparison with Ref. [26].

approach. Matching the long-distance results with the short-distance contribution we

observe that thêBK parameter obtained in the present analysis exhibits a significantly

stronger dependence on the matching scale. However, as we already discussed above, the

quadratically divergent terms (and the finite terms) depend on the way we define the inte-

gration variable inside the loop. This can be seen from the different numerical factors in

front of the quadratic terms in Eqs. (49) and (51). Therefore we are forced to find a direct

link between the short- and long-distance part of the calculation, as it is done by keeping

track of the effective color singlet boson in both parts of the calculation. A consistent

matching is then obtained by assigning the same momentum to the color singlet boson at

long and short distances and by identifying this momentum with the loop integration vari-

able (see Section 2). This property is absent in the previous approach. The modification
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unambiguously determines the coefficient in front of the (quadratically and logarithmi-

cally) divergent terms and allows us to identify the ultraviolet cutoff of the long-distance

terms with the short-distance renormalization scale�. Therefore we advocate the use of

the modified matching prescription, even though the stability of our result is rather poor.

The satisfactory stability obtained in Ref. [26] on the other hand is somehow inconclu-

sive, as there is no underlying argumentation determining the quadratic terms. Our result

also implies that the uncertainties due to the idealized identification of the cutoff�c with

the upper limit of the meson momentum in the loop in Ref. [26] might have been under-

estimated. In a complete meson theory the dependence on the momentum routing should

be absent. However, as long as we are working in an effective low-energy approach as

chiral perturbation theory we have to pay attention to this point.

Numerically, we find a range of acceptable stability in the energy regime from

500MeV to 700MeV (see Fig. 12) leading to values for̂BK in the range of0:4 < B̂K <

0:6. The lower bound corresponds to a value of�QCD = 405MeV, whereas the upper

bound corresponds to�QCD = 245MeV. Comparing our result with the one of Ref. [26]

we observe a tendency for̂BK to be decreased to values below0:6. This behaviour is due

to the enhancement of the negative coefficient in front of the quadratic term in the1=Nc

corrections to theK0 � �K0 matrix element and, to a smaller extend, also due to the finite

terms omitted in Ref. [26]. However, our result suffers from a sizable dependence on the

matching scale which precludes a precise answer.

In Fig. 13 we compare the results forB̂K we obtain with the LO and NLO coefficient

function. For�QCD = 325MeV in the HV scheme, introducing the NLO coefficient does

not significantly affect the numerical values of theB̂K parameter which is found to be

only slightly enhanced with respect to the LO result. In the NDR scheme, the effect of the

NLO coefficient is also moderate for large values of the scale but noticeably increases for

low values. For very low values of�c ' 500MeV the NLO result can differ from the LO

one by as much as 0.2. However, for these scales the scheme dependence increases rapidly

and it is desirable to take (at least) a matching scale around600 - 650MeV whereB̂K is

still relatively smooth and roughly varies between0:45 and0:6. For�QCD = 245MeV

in both the HV and NDR schemes a matching scale as low as500MeV appears to be

acceptable, and within the range�c ' 500 - 650MeV B̂K is obtained between0:5 and

0:7. On the other hand we observe that the pseudoscalar approximation would simply fail

if �QCD was found as large as405MeV, as a satisfactory perturbative behaviour is obtained

only for�c & 700MeV, that is to say, for values of the scale where the stability ofB̂K is

found to be poor.

In summary, for values of�QCD & 350MeV an estimate of̂BK is hindered by the

loss of perturbativity in the range where the pseudoscalar approximation is expected to
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Figure 13:B̂K with LO and NLO Wilson coefficient for various values of�QCD = �(4)
MS

as
a function of the matching scale�c = �. For each value of�QCD the lower (intermediate,
upper) curve shows the LO (HV, NDR) result.

be valid, and for lower values of�QCD (taking into account the scheme dependence) our

calculation favours low values of̂BK in the range

0:4 < B̂K < 0:7 : (52)

However, a satisfactory smooth behaviour is obtained only in a narrow range of the cutoff

and, in addition, for values of the cutoff as low as the kaon mass or just above. Therefore

the incorporation of higher resonances is clearly required as for the�I = 3=2 K ! ��

amplitude discussed above. On this issue, the analysis of theB̂K parameter is similar to

the one of the�I = 3=2 amplitude, even if numerically the matching obtained forB̂K is

better than the one obtained for the�I = 3=2 amplitude.

TheK0 � �K0 system has been studied in the past with various methods leading to

different results forB̂K. The present status of quenched lattice calculations [54 - 57] has
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been reviewed in Ref. [58]. The value reported by the author isB̂K = 0:86� 0:06� 0:06.

Very recently the JLQCD Collaboration has presented a new analysis based on chiral

Ward identities to non-perturbatively determine the mixing coefficients of the�S = 2

operator [59]. The numerical results given in Ref. [59] are in agreement with the lattice

calculations quoted above. In the chiral quark model a value as high asB̂K = 1:1�0:2 has

been obtained [15]. Lower values for̂BK have been found in the QCD hadronic duality

approach [60] (̂BK = 0:39� 0:10), by usingSU(3) symmetry and PCAC [51] (' 1=3),

or using chiral perturbation theory at next-to-leading order [61] (0:42� 0:06). QCD sum

rules give results around̂BK = 0:5 - 0:6 with errors in the range of0:2 - 0:3 [62,63]. One

might note that a value for̂BK significantly below0:7 requires simultaneously high values

of jVub=Vcbj andjVcbj to be able to fit the experimental value of" [19]. Finally, we note

that theB̂K parameter was also investigated in the framework of the1=Nc expansion in

Ref. [50]. In this work the matching was not performed at the level of theK0 � �K0

matrix element but at the level of a related 2-point Green function. Numerically, the

matching was found unsatisfactory good. We agree with this conclusion, as we discussed

above, although in Ref. [50] the quadratic dependence on the UV cutoff was obtained in

disagreement with the present analysis due to the use of a different momentum routing.

This has been corrected very recently in Ref. [47], and we agree with the results for the

1=Nc corrections to theK0 � �K0 matrix element obtained there in the chiral limit. In

the present paper we investigated the corrections beyond the chiral limit and found that

they are sizable. On the other hand, the authors of Ref. [47] investigated higher order

corrections calculated in the framework of the Extended Nambu-Jona-Lasinio model. As

a result they obtained a better stability of theB̂K parameter. This shows that corrections

from higher order terms and higher resonances are expected to be large. Nevertheless

the values ofB̂K we obtained in this analysis by performing a full calculation at the

pseudoscalar level are meaningful and can be considered as reference values for further

investigations incorporating the effects of higher resonances.

6 Conclusions

The1=Nc approach developed in Refs. [18,26] when modified along the lines of Ref. [20]

leads to interesting results in the current-current sector of the�S = 1 and in the�S = 2

transitions. The main result of the present analysis is an additional enhancement of the

�I = 1=2 channel in theK ! �� amplitudes. This channel has been found sufficiently

enhanced, in good agreement (with an accuracy of80 to approximately100%) with the

experiment, and widely stable over a large range of values of the matching scale roughly

between600MeV and900MeV. It is certainly premature to say that the dynamical mech-
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anism behind the�I = 1=2 enhancement is completely understood. An agreement at the

level obtained in the present analysis a priori is not expected in an effective theory with

only pseudoscalar mesons taken into account. Nevertheless we believe that the additional

enhancement reported here is a further important indication that the1=Nc approach can

account for the bulk of the�I = 1=2 amplitude. This statement is also supported by

the fact that higher order corrections both of short-distance origin and of long-distance

origin at the pseudoscalar level, as we discussed above, are not expected to largely af-

fect the size of the�I = 1=2 enhancement. The agreement with the experiment also

tends to show that the origin of the long-distance enhancement has to be found at the

level of the pseudoscalar mesons and at energies below the rho mass or even below the

kaon mass. Certainly this has to be checked explicitly incorporating at least the effects

of vector mesons. We also believe that the1=Nc approach can account for the bulk of

the suppression of the�I = 3=2 channel. For this channel, however, the approxima-

tions made in the present analysis fell short of the desired accuracy. In particular, a large

scale dependence has been found clearly requiring the incorporation of higher order terms

and/or higher resonances. We note that the scale behaviour of the ratio of the two isospin

amplitudes is dominated by the one of the�I = 3=2 channel, and therefore it leads to a

comparable uncertainty. Similarly, thêBK parameter suffers from a sizable dependence

on the matching scale. Our calculation favours very low values of the scale (. 700MeV)

leading to values for̂BK in the range of0:4 < B̂K < 0:7. However, the large uncertain-

ties associated with this result preclude a definite answer, and also make the incorporation

of higher order terms and higher resonances very desirable.
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A Numerical Values of the Wilson Coefficients

In this appendix we list the numerical values of the LO and NLO (HV and NDR) Wilson

coefficients for�S = 1 transitions used in Section 4.2. These values were supplied

to us by M. Jamin. Following the lines of Ref. [5] the coefficientszi are given for a 10-

dimensional operator basisfQ1; : : : ; Q10g. Below the charm threshold the set of operators

reduces to seven linearly independent operators [see Eqs. (4)-(7)] with

Q4 = �Q1 +Q2 +Q3 ; Q9 =
3

2
Q1 � 1

2
Q3 ; Q10 =

1

2
Q1 +Q2 � 1

2
Q3 : (53)

At next-to-leading logarithmic order in (renormalization group improved) perturbation

theory the relations in Eq. (53) receiveO(�s) andO(�) corrections [5,19]. In the present

analysis we use the linear dependence at the level of the matrix elementshQiiI , i.e., at the

level of the pseudoscalar representation where modifications to the relations in Eq. (53)

are absent. We note that the effect of the different treatment of the operator relations at

next-to-leading logarithmic order which is due to the fact that in the long-distance part

there is no (perturbative) counting in�s is numerically negligible.

The following parameters are used for the calculation of the Wilson coefficients:

MW = 80:2GeV; sin2 �W = 0:23; � = 1=129;

mt = 170GeV; mb(mb) = 4:4GeV; mc(mc) = 1:3GeV:

� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �0:937 �0:826 �0:748 �0:690 �0:645
z2 1:576 1:491 1:433 1:391 1:359
z3 0:016 0:011 0:007 0:005 0:003

z4 �0:037 �0:027 �0:019 �0:014 �0:009
z5 0:011 0:008 0:006 0:004 0:003
z6 �0:045 �0:031 �0:021 �0:015 �0:010
z7=� 0:023 0:017 0:012 0:008 0:005
z8=� 0:007 0:004 0:002 0:001 0:0004
z9=� 0:027 0:019 0:013 0:009 0:006
z10=� �0:006 �0:003 �0:002 �0:001 �0:0004

Table 10:�S = 1 LO Wilson coefficients for�QCD = 245MeV.
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� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �1:192 �1:010 �0:893 �0:811 �0:748
z2 1:779 1:632 1:541 1:479 1:433
z3 0:025 0:016 0:010 0:007 0:004
z4 �0:054 �0:036 �0:026 �0:018 �0:012
z5 0:015 0:011 0:008 0:006 0:004
z6 �0:070 �0:044 �0:029 �0:019 �0:013
z7=� 0:033 0:023 0:017 0:012 0:008

z8=� 0:012 0:006 0:003 0:001 0:001
z9=� 0:040 0:027 0:019 0:013 0:008
z10=� �0:010 �0:005 �0:003 �0:001 �0:001

Table 11:�S = 1 LO Wilson coefficients for�QCD = 325MeV.

� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �1:576 �1:246 �1:065 �0:947 �0:861
z2 2:104 1:824 1:676 1:582 1:517
z3 0:041 0:023 0:014 0:009 0:006
z4 �0:082 �0:051 �0:034 �0:023 �0:015
z5 0:022 0:015 0:010 0:007 0:005
z6 �0:119 �0:066 �0:041 �0:026 �0:016
z7=� 0:044 0:031 0:022 0:015 0:010
z8=� 0:024 0:010 0:005 0:002 0:001
z9=� 0:056 0:037 0:025 0:017 0:011
z10=� �0:017 �0:008 �0:004 �0:002 �0:001

Table 12:�S = 1 LO Wilson coefficients for�QCD = 405MeV.
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� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �0:668 �0:578 �0:516 �0:470 �0:435
z2 1:391 1:326 1:282 1:252 1:229
z3 0:038 0:023 0:016 0:012 0:009
z4 �0:088 �0:059 �0:043 �0:032 �0:025
z5 0:007 0:009 0:008 0:007 0:006
z6 �0:102 �0:064 �0:044 �0:032 �0:025
z7=� 0:018 0:012 0:008 0:006 0:005

z8=� 0:069 0:039 0:024 0:015 0:009
z9=� 0:045 0:029 0:020 0:014 0:010
z10=� �0:032 �0:021 �0:014 �0:009 �0:006

Table 13:�S = 1 NLO Wilson coefficients (NDR) for�QCD = �
(4)
MS

= 245MeV.

� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �0:898 �0:739 �0:644 �0:579 �0:531
z2 1:569 1:444 1:373 1:326 1:292
z3 0:033 0:019 0:012 0:007 0:005
z4 �0:060 �0:038 �0:025 �0:017 �0:011
z5 0:012 0:008 0:006 0:004 0:003
z6 �0:060 �0:036 �0:024 �0:016 �0:010
z7=� �0:005 �0:005 �0:004 �0:004 �0:003
z8=� 0:046 0:027 0:017 0:011 0:007
z9=� 0:023 0:012 0:006 0:003 0:001
z10=� �0:038 �0:024 �0:016 �0:010 �0:007

Table 14:�S = 1 NLO Wilson coefficients (HV) for�QCD = �
(4)
MS

= 245MeV.
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� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �0:805 �0:712 �0:623 �0:558 �0:509
z2 1:495 1:424 1:359 1:312 1:278
z3 0:095 0:046 0:027 0:018 0:013
z4 �0:193 �0:104 �0:068 �0:048 �0:035
z5 �0:019 0:005 0:009 0:009 0:008
z6 �0:261 �0:121 �0:072 �0:049 �0:035
z7=� 0:039 0:025 0:018 0:014 0:011

z8=� 0:181 0:079 0:042 0:024 0:014
z9=� 0:086 0:054 0:036 0:025 0:018
z10=� �0:056 �0:034 �0:021 �0:013 �0:008

Table 15:�S = 1 NLO Wilson coefficients (NDR) for�QCD = �
(4)
MS

= 325MeV.

� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �1:381 �1:011 �0:827 �0:716 �0:640
z2 1:982 1:662 1:513 1:427 1:370
z3 0:090 0:040 0:022 0:013 0:007
z4 �0:129 �0:068 �0:041 �0:026 �0:016
z5 0:016 0:011 0:008 0:006 0:004
z6 �0:137 �0:067 �0:038 �0:024 �0:014
z7=� �0:008 �0:003 �0:002 �0:002 �0:002
z8=� 0:107 0:050 0:027 0:016 0:010
z9=� 0:052 0:027 0:015 0:009 0:005
z10=� �0:077 �0:042 �0:025 �0:016 �0:010

Table 16:�S = 1 NLO Wilson coefficients (HV) for�QCD = �
(4)
MS

= 325MeV.
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� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �0:176 �0:795 �0:738 �0:657 �0:592
z2 0:911 1:485 1:444 1:384 1:336
z3 0:350 0:108 0:052 0:030 0:019
z4 �0:637 �0:218 �0:117 �0:074 �0:050
z5 �0:318 �0:027 0:004 0:009 0:009
z6 �1:172 �0:288 �0:132 �0:077 �0:050
z7=� 0:119 0:042 0:029 0:023 0:018

z8=� 0:699 0:185 0:081 0:042 0:023
z9=� 0:132 0:089 0:059 0:040 0:029
z10=� �0:077 �0:054 �0:033 �0:020 �0:012

Table 17:�S = 1 NLO Wilson coefficients (NDR) for�QCD = �
(4)
MS

= 405MeV.

� 0:6 GeV 0:7 GeV 0:8 GeV 0:9 GeV 1:0 GeV

z1 �2:603 �1:494 �1:102 �0:901 �0:778
z2 3:138 2:084 1:739 1:573 1:475
z3 0:370 0:102 0:044 0:023 0:012
z4 �0:403 �0:140 �0:072 �0:042 �0:025
z5 0:035 0:014 0:010 0:007 0:005
z6 �0:463 �0:141 �0:067 �0:037 �0:021
z7=� �0:063 �0:009 �0:002 �0:001 �0:001
z8=� 0:342 0:105 0:048 0:026 0:014
z9=� 0:111 0:051 0:028 0:016 0:009
z10=� �0:179 �0:078 �0:042 �0:024 �0:014

Table 18:�S = 1 NLO Wilson coefficients (HV) for�QCD = �
(4)
MS

= 405MeV.
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