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Abstract

We reconsider the issue of the existence of a complex structure in the Gupta-Bleuler quantization scheme. We prove an
existence theorem for the complex structure associated with the d = 10 Casalbuoni-Brink-Schwarz superparticle, based on
an explicitly constructed Lagrangian that allows a holomorphic-antiholomorphic splitting of the fermionic constraints
consistent with the vanishing of all first class constraints on the physical states. © 1998 Published by Elsevier Science B.V.
All nghts reserved.

As it is well known, the puzzle of the covariant quantization of the superparticle, superstring models can be
viewed as the problem of mixed first and second class fermionic constraints in the Hamiltonian formalism
[1-3]. One of the interesting approaches to treat the second class constraints is the Gupta-Bleuler-type
quantization scheme [4-7] which, for the case at hand, reduces to the construction of a specific complex
structure J on a phase space of the models *. The latter provides a holomorphic-antiholomorphic splitting of the
mixed constraints which proved to yield a successful covariant quantization of the 4D superparticle [5].

A recipe how to construct such a J in arbitrary space-time dimensions has been proposed in the recent work
[10]. The strategy adopted then was to decompose the tensor J into irreducible representations (irreps) of the
Lorentz group and then reduce the equations for determining J to those for the irreps. The explicit solution 1n

d = 10 has been found [10]

1
Joo=—(A,B,—A,B,), | (1a)
Q
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a= +|A?B? — ( AB)?, (1b)
(Ap) =0, (Bp)=0, (1c)

requiring the extension of the original phase space (x",p,),(8%,p,.) through the new vector variables A" B"
Generally, such an extension can easily be realized by introducing two pairs of canonically conjugate variables
(A%, p, )(B", pg ) subject to the first class constraints

pAn =O’ an =O’ (2)

and treating the Eqgs. (1c) as gauge fixing conditions for some of the constraints (2). However, as the first class
constraints remaining in Eq. (2) do not commute with the complex structure, in passing to a quantum description
the vanishing of these constraints on physical states would be incompatible with the vanishing of the
holomorphic constraints on those states.

In this brief note we suggest a way to cure this inconsistency. The idea i1s to completely fix the gauge
freedom in the sector (A, p,), (B,p;) by introducing further auxiliary variables. If the first class constraints
from the sector of the new variables turn out to commute with A and B, the complete description 1s
self-consistent.

The action to be examined reads

i :
S = [dro— (5" =0T — w, A" = 0, B" = w, A7) = py(A> = 1) = py( B> = 1) = v, (AA,)
- _

8
— sz(BAf) — ¢£j(AiAj + Aij) — E His (3)

(=1

where

0, i=j
AU={1’ £ i,j=1,...,8.

Here the summation over repeated indices 1s understood. As compared to the Casalbuoni-Brink—-Schwarz model
[11] one finds a set of auxiliary variables (A", B", A" ,,u;,v,;,v,;, P, ;,0,,0,,p,,p,), with @, being symmetric.

Consider the model (3) in the Hamiltonian formalism. Introducing momenta (p,,p",p,..P. "
Pg "3 PanisPuisPy,is Py, isPbij» Pw,s P, Pp. sz) canonically conjugate to the configuration space variables one has
a set of primary constraints

p.=0, p,+ibl'"p =0, (4a)
pa=0, pg=0, p,, =0, (4b)
p..=0, p =0, p, =0, (4c)
P, =0, p, =0, p, =0, (4d)
P, =0, Pg;;=0, (4e)

and the relation to ehhminate x"

X, =ep +i0f 0+ w, A +w,B +u A, .. (5)
The canonical Hamiltonian is

H=(py+i0I'"p,)Ag+p, A, +pyAy +ppAg + Do Ani ¥ DAL+ P A T DAt PoiiAei;

2
p
+ PuAu, t Puy A, P A+ Py, Ay, e o,( pA) + w,( pB) + p,(A* — 1) + p,(B* 1)
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+ v, (AA) + vy (BA)) + (pij(AiAj T A:’j) T #’1(( pA)) + 1) T #2(( pA,) + 1)
bt ig((pAg) 1), (6)

where the A's denote Lagrange multipliers corresponding to the primary constraints.
The consistency conditions for the primary constraints imply the secondary ones

5

p’=0, pA,+1=0, A A +A4,=0, (7a)
pA=0, A*—1=0, AA =0, (7b)
pB=0, B*—1=0, BA,=0, (7c)
w,p"+2p A"+ v A", =0, (7d)
w,p"+2p,B"+ v, A", =0, | (7e)
v A"+ vy, B+ u; p" + 20, A" =0, (71)
and determine half of the A,
I'"p,Ag=0. (8)
Consider now Eq. (7d). Multiplying it by A" and taking into account Eq. (7b) one gets
py = 0. (%)

Subsequent multiplication of the remaining equation w, p" + v,; A", =0 by p", A", reduces it to a system of
linear homogeneous equations which has the trivial solution

w, =0, v, =0, (10)
since the matrx
p° PA,
ij A,-Aj ’

is nondegenerate on the constraint surface (7a)—(7f). In the same spirit Eqgs. (7e), (7f) simplify to
w,=0, p,=0, v,;,=0, pn;=0, &;.=0. (11)

The preservation in time of the secondary constraints (7a)-(7¢c), (9)—(11) determine some of the Lagrange
multipliers |

pA =0, AA, =0, AA, +AN, =0 (12a)
pA, =0, BA,=0, A.A,+BA, =0 (12b)
pAy=0, AAy+ A\, =0, (12¢)
A, =0, A, =0, A, ,=0, (12d)
A, =0, A, =0, A, =0, ' (12¢)
Ai=0, Ay =0, (12f)

and no tertiary constraints appear.

® We define the Poisson brackets of the variables (A, p )LD, pg) in the form { A" i’p/lmj} =0" S,-J-, {‘I)U,pms} = %( 01 0;s T 0; 3;'k)'
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Taking into account Egs. (4), (9)-(11) one concludes that the variables (p,,p, J(py.p, ) Cepp,).
(V1500 I (Vyis Dy, MWDo Poi ) @), p, W@y, p,, ) are unphysical and can be omitted after introducing the
associated Dirac bracket. Thus, the only nontrivial constraints to be analyzed are those from Egs. (7a)-(7¢),
together with the corresponding momenta (4b).

Let us now return to (7). The constraints (7b) together with the corresponding momentum p,, = 0 ure second
class. In a full agreement with this, Eq. (12a) involving the associated Lagrange multiplier A, can be solved
explicitly. Actually, since the vectors p”", A", A" . satisfying (7) are linearly independent for any fixed value
compatible with (7), the matrix

Po oo Po
Ay, ... Ay, (13)
Agi - Ay,

is invertible on the constraint surface. The latter fact implies that the system of linear inhomogeneous Eqgs. (12a)
has a unique solution for any fixed value of p", A", A" ,. Analogously, the constraints (7¢) and p,, =0 are
second class and Eq. (12b) uniquely determines Ag.

Thus, it remains to discuss the constraints (7a) and the corresponding momentum p,,, = 0. In order to
extract the first class constraints contained in p, .= 0, it suffices to construct operators projecting onto
subspaces orthogonal to (A", B") and ( p”, A,,) respectively. The explicit form of the projectors is

( AB) ( AB) l l
H(r: B)nzanm-*_ 2Am3n+ zBmAnm N Mz'AmAn PPN B"B,. (M)
' 1 - (AB) I — (AB) 1 - ( AB) | — ( AB)

H(’:,B)HAH = 0, H(':,B)an = (), H(rz,mn p"=p”, II(#:,B)HA;’ = A7, (15)
™. =™ (ij)VﬁpmAni (ij)Vj%:nPn

(P T (pA)V(pA)  (pA)V(pA)

) A Vk:’:n Ac V.ejAw m.,.n
(pA)V(pA) (pA)V(pA)

N7 . p" =0, 17 Ar=0, T2, A"=A". II7 , B"=B" (17)

where V is the inverse matrix to 4, VA, =8, and = means weak equality. Note also that (pAW(pA)
=~ 2 % 0. In the presence of the projectors the first class constraints can be written in the form

~m m n

Pr = (p.;l)nII(A.B)kP:,-;zo- (18)

At the next stage, one needs to construct the Dirac bracket associated with all the second class constraints of the
problem, which will look like

(M.N}p = {MN} + (M.pA} . {po N} + (M AP =1} £ p N} + (MLAAY ..y, N)
+{M3PB} "*{an’N} + {Mﬁgz*’" l}*"{anﬂN} +{MvBAs}---{PRmN}

—( — I)f{M”(N}(MH N) + terms not involving p,,ps, (19)

where ... denotes some specific functions and { M, N} is the usual Poisson bracket. As it is seen, under this
bracket A",B™ commute both with each other and with the first class constraints py = 0 from the sector of
additional variables. This implies that the subsequent split of the fermionic constraints p, + (0 "p, = () into
holomorphic and antiholomorphic sets will be consistent with the vanishing of the first class constraints py = ()
on physical states. This was the problem to solve.
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Thus, in this letter we have reconsidered the complex structure in the Gupta-Bleuler quantization scheme,
introducing a gauge fixing procedure based on the addition of a set of auxiliary variables, which makes the
vanishing of the first class constraints on physical states compatible with the holomorphic-antiholomorphic
splitting of the fermionic constraints. We have built explicitly the corresponding Lagrangian formulation.

Since this Lagrangian looks like a monster, we have little hope to be really able to quantize a model on the
basis of this scheme. However, our understanding is that the Lagrangian above can be viewed as the existence
theorem for the complex structure associated with the 10D Casalbuoni-Brink-Schwarz model.

Although the approach proposed here proved to be too complicated, we expect that the technique will be
efficient when applied to theories possessing a constraint like ( Ap) = 0, with A a dynamical variable. One of
the possible applications seems to be the particle in anti-de Sitter space and this work is in progress now.

Acknowledgements

One of the authors (A.G.) thanks A.A. Deriglazov and P.M. Lavrov for useful discussions. His work was
supported by INTAS-RFBR grant 95-829 and by FAPESP.

References

{1] L. Brink, M. Henneaux, C. Teitelboim, Nucl. Phys. B 293 (1987) 505.
[2] A. Dresse, J. Fisch, M. Henneaux, C. Schomblond, Phys. Lett. B 210 (1988) 141.
[3] A. Deriglazov, A. Galajinsky, S. Lyakhovich, Nucl. Phys. B 473 (1996) 245.
[4] Z. Hasiewicz, J. Kowalski-Glikman, J. Lukierski, J.W. van Holten, J. Math. Phys. 32 (1991) 2358.
[5] S. Aoyama, J. Kowalski-Glikman, J. Lukierski, J.W. van Holten, Phys. Lett. B 201 (1988) 487; B 216 (1989) 133.
[6] W. Kalau, Int. J. Mod. Phys. A 8 (1993) 391.
[7] J. Kowalski-Glikman, Ann. Phys. 232 (1994) 1.
8] S. Bellucci, Mod. Phys. Lett. A 5 (1990) 2253.
9] S. Bellucci, R.N. Qerter, Nucl. Phys. B 363 (1991) 573.
[10] S. Bellucci, A. Galajinsky, hep-th /9712247, to appear in Phys. Lett. B.
'1] R. Casalbuoni, Phys. Lett. B 62 (1976) 49; L. Brink, J.H. Schwarz, Phys. Lett. B 100 (1981) 310.






