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Abstract
We present a theoretical reappraisal of the branching ratios and CP asymmetries for the
decaysB — X, (*¢~, with ¢ = d, s, taking into account current theoretical uncertain-
ties in the description of the inclusive decay amplitudes from the long-distance contri-
butions, an improved treatment of the renormalization scale dependence, and other para-
metric dependencies. Concentrating on the partial branching tati® — X (+(~),
integrated over the invariant dilepton mass regloGeV? < s < 6 Ge\?, we cal-
culate theoretical precision on the charge-conjugate averaged partial branching ratios
(AB,) = (AB(B — X (T07)+AB(B — X, (*¢7))/2, CP asymmetries in partial decay
rates(acp), = (AB(B — X T0)—AB(B — X, (¢))/(2(AB,)), and the ratio of the
branching ratiod\R = (AB,)/(AB;). For the central values of the CKM parameters, we
find (AB,) = (2.22%3%) x 1075, (AB,) = (9.61712) x 1075, (acp)s = —(0.197010) %,
(acp)a = (4.407380)%, and AR = (4.32 & 0.03)%. The dependence df\B,) and
AR on the CKM parameters is worked out and the resulting constraints on the unitarity
triangle from an eventual measurementdR are illustrated.
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1 Introduction

With the advent of new and upgraded experimental facilities in the next year(s), flavour
physics involvingB decays will come under minute experimental and theoretical scrutiny.
The overriding interest in these experiments is in measuring CP-violating asymmetries in
partial B-decay rates, which will allow to quantitatively test the Kobayashi-Maskawa [1]
paradigm of CP violation. In addition, the large numbeBohadrons anticipated to be
produced at these facilities (estimated to@ 0%) - O(10'?)) will allow to measure a
number of flavour-changing-neutral-current (FCNC) processes involving the transitions
b — sX andb — dX, with X =, ¢, ¢t/ ,vp, andB° - BO mixings. In the context of
the Standard Model (SM), FCNC decays and mixings measure the Cabibbo-Kobayashi-
Maskawa (CKM) [1] matrix elements, in particulll,, V;; andV},. These quantities can,
in principle, also be measured directly in top quark dec¢aysq; W ', with ¢; = d, s,b. A
comparison of these matrix elements in the FCNC processes and direct measurements in
t decays would provide one of the best strategies to search for new phyéicddoays.
So far, onlyV;, has been directly measured at Fermilab, yieldirg = 0.99 + 0.15 [2].
Present knowledge df;; owes itself to the measurementsafl/,;, the mass dif-
ference in theB® - BO complex. With the current world averageM,; = 0.471 4+ 0.016
(ps) !, the error onV,, is dominated by theoretical uncertainty on the hadronic matrix
eIementhd@, for which present Lattice-QCD estimates jﬁg\/Bng = 215+ 35
MeV [3], yielding 0.0065 < |V;4V};| < 0.010. We also mention that a single event for the
charged kaon decay modét — w*vi reported by the Brookhaven E787 experiment,
yielding B(K+ — 7tvp) = (4.2757) x 10719, allows one to infen.006 < |V;;Vji| <
0.06 [4]. The branching ratio for the decdy — X,v has led to a determination of the
matrix element/, [5], yielding |V;,V};| = 0.0035 £ 0.004, with the error dominated by
the experimental error on the branching rafid3 — X, + v) [6,7]. These numbers can
be taken as the measurementsi¢f| and|V;s| by assuming the valug,;, ~ 1 from the
CKM unitarity, which holds to a very high accuracy [8].
In this paper, we pursue the idea of measuring the FCNC semileptonic decays
B — X /¢~ and B — X,(*(~, below the.J/¢- and above the,w-resonance re-
gions in the dilepton invariant mass, to determjig| and|V,4|, respectively, and the
ratio |V;4/V;s| from the ratio of the branching ratios. In this context, these decays and
the related ones3 — X,vv andB — X,vv, were discussed some time ago [9]. The
decaysB — (X, X,)vv are practically free of long-distance complications [10] and the
renormalization-scale dependence of the decay rates has also been brought under control
[11]. Hence, these decays are theoretically remarkably clean but, unfortunately, they are
difficult to measure in((4.5) decays and out of question in hadronic collisions. Using the



missing energy technique and LEP | data, the ALEPH collaboration has searched for the
decaysB — X,vi setting an upper bouni(B — X,vi) < 7.7 x 107* (at 90% C.L.)

[12], which is a factor 20 away from the SM expectations [11]. While the discovery of
these decays looks formidable elsewhere, a high lumindgSiffactory - being discussed

in conjunction with are*e™ linear collider [13]- looks like having the best chance of
measuring them. This possibility deserves a dedicated study.

The possibility of determiningV;,/V;s| from the ratio of the invariant mass de-
cay distributionsi® = (g — X, +¢7]/9E[B — X,¢*¢] away from the resonances
was revisited by Kim, Morozumi and Sanda [14]. These authors included the effects of
the leading order power corrections (ifim?) in the short-distance part of the dilepton
invariant mass distribution and the long-distance contributions fromatiesonances,
calculated in Ref. [15]. (For earlier-vintage derivations without the power corrections,
see [16,17].) We reanalyze the decdys— X,/T¢~ andB — Xy "¢~ and the ratio
of the branching ratiodAR = [ds%E[B — X,(*(7]/ [ds9S[B — X, (*(~], integrated
over a kinematic rangg,., < s < ¢2,,,, designed to minimize the resonant contribution.
Our theoretical treatment differs from that of Ref. [14] in a number of ways, summarized
below.

e The dilepton invariant mass distributionsih— (X, X;)¢™¢~ can be calculated
in the context of the heavy quark effective theory (HQET) as a power expansion
in regions far from the resonances, thresholds and end-points [15,10]. Away from
the J/+, ¢/, ...-resonances, the/m?-expansion provides, in principle, a viable de-
scription of the non-perturbative contributions arising from ¢bdoop [10]. The
contribution of the light quarkg-loops, which is not CKM-suppressed in the decay
B — X4 ¢t¢~, can likewise be calculated by doing an expansion of the decay am-
plitudes inA ., /¢” in regions of the dilepton squared mass satisfyihg> A p.
Thus, the HQET framework provides an evaluation of the invariant dilepton mass
spectrum in these processes with the present precision limited to the leading power
corrections inl /mj, 1/m? andA%,.p/q*. We present HQET-based calculations of
the decay rates, CP asymmetries and the rafia

e Away from the resonances and the end-points, the power correctidrigqihcal-
culated in HQET and in explicit wave function models, such as the Fermi motion
(FM) model [18], yield very similar invariant dilepton mass [15] and hadron energy
distributions [19] in the decayB — X,¢*¢~. However, it is known that there are
marked differences in estimates of the non-perturbative@ntribution, obtained by
using thel/m?2-corrections in the HQET approach and alternative methods based
on the Breit-Wigner-shaped resonant amplitudes [20,21]. Data may eventually pro-



vide a discrimination against some of these approaches, but currently at least four
different variations on this theme exist in the literature [10,15,22,23]. This LD-
uncertainty therefore compromises theoretical precision on decay rates and has to
be taken into account. We calculate the theoretical uncertainties on the branch-
ing ratios for the decay® — (X4, X;)¢T¢—, CP asymmetries and the ratioR,
showing numerically their impact on the determinationigf|, |V;4| and the CKM-
Wolfenstein parametegsandr [24] from an eventual measurement of these decays.

e We reanalyze the renormalization scale dependence in the branching ratios for the
decaysB — X /¢~ andB — X ("¢, using the method employed by Kagan and
Neubert in the radiative decdy — X, + v [25]. This approach avoids accidental
cancellations among the individual scale-dependent contributions but gives a larger
scale {1)-dependence of the branching ratios than the method of evaluating the same
in the total branching ratio [14]. The former is probably a more realistic estimate
of the neglected higher order corrections.

We find that the partial branching ratio in the SM is uncertain by typicall$%
(£15%) for the decayB — X /t¢~ (B — X4 ¢™¢7), but the ratioAR is remarkably
stable with typical error less than several percent. HencR, is well-suited to de-
termine the ratigdV;,/V;s|]. However, the scale-dependence of the CP asymmetries in
B — (X, Xy)¢* ¢ is found to be huge, reflecting the (present) leading logarithmic the-
oretical accuracy of the CP-odd parts of the amplitudes. Without the power corrections
and fixing the scale tp = m,,, the CP asymmetries in question have been studied earlier
in Ref. [26]. We point out that these estimates are uncertain by atnidst’ due to the
sensitive scale-dependence and their stabilization requires next-to-leading order correc-
tions. In the case of the CP-even parts, we recall that the inclusion of the explicij
corrections in the matrix elements has reduced the scale dependence of the decay rates
considerably [27,28].

This paper is organized as follows: In section 2, we briefly review the derivation
of the matrix elements and dilepton invariant mass distributions for the ddgays
(X5, X4)¢+¢~ including long-distance contributions in the four approaches: (i) AMM
[17,15], (i) KS [22], (iii) LSW [23] and (iv) HQET [10]. The patrtially integrated branch-
ing ratios and CP asymmetries are presented in section 3 where we also specify our input
parameters. We show the scale dependence of the branchingAd#ids — X,/(")
and AB(B — Xy¢*¢~) in the AMM approach and the contributions arising from the
individual Wilson coefficients. We also present a comparative numerical study of the
quantities(AB;), (ABy), (acp)s and(acp)q in the four mentioned approaches. Uncer-
tainties arising from the other parametenrs,( m; and AS’)CD) are worked out numer-
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ically. With this we calculate the overall theoretical errors in these quantities and the
ratio AR and their impact on the determination of the CKM parameters. Finally, sec-
tion 4 contains a brief comparison of the theoretical precisiof@f Vi;| in the decays

B — (X, X4)¢" ¢~ with that of other methods proposed in the literature to determine the
same ratio.

2 B — (Xy4, X,)("¢~ Decays in the Effective Hamiltonian Approach

We work in the effective Hamiltonian approach, which is based on integrating out the
heavy degrees of freedofn, W=, Z°%), in the SM. The resulting effective Hamiltonian
for the decayB3 — (X4, Xs)010, Hepp(b — qlT¢), can be expressed as follows:

_1Gr
\/_
4Gy

+ TV* Vi [01(0 — 01) + Gy (0, — 02)} NS

whereV;; are the CKM matrix elements. THg; are the Wilson coefficients, which de-
pend, in general, on the renormalization sgglexcept forC,,, and can be seen in leading
logarithmic approximation in [27]. The operators are defined as follows:

10
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where L and R denote chiral projectiond,(R) = 1/2(1 F ~s). Here, unitarity of the
CKM matrix has been used in writing the flavour structure of a generic FENE ¢



transition amplitudg @ in the form

D= 3 AT = NN T - T+ NNT, - T 3)

i=u,c,t

where)\z(- = V;;Vis @andq = d, s. For theb — s transitions, the second term in Eq. (3) can
be safely neglected agy) < )\t *). However, for the) — d transitions, the CKM factors

() and )\Ed) are of the same order and hence all terms in Eg. (3) must be kept. The
operator basis given in Eq. (1) has been written in accordance with Eq. (3) and includes
the Four-Fermi operators containinga pair,

01" = (FraVubra) (@rsy urs) |
0" = (qravubrs)(Wrsv ura) - (4)
The matrix element for the decays— ¢/*¢~ (¢ = d, s) can be written as
Gra _
Mgt 6) = T2, (08— ) @, L) (77 10)

+ <ngff + Cm) (Gv. Lb) (Zey“ RE)
- 207eﬁ (Qiauy Z_Z(qu + myR) b> (EW e)] , (5)

Hereq” = p’, + p” denotes the Four-momentum of the invariant dilepton system, where
ps are the corresponding momenta of thie s = ¢ is the invariant dilepton mass
squared. The effective coefficients@f are given by

CEM(5) = Con(s) + v(3) . (6)

The functions)($) andY?(s) represent th&(«a;) correction [29] and the (perturbative)
one loop matrix element of the Four-Fermi operators [27,28], respectively. We have in
the (naive dimensional regularization) NDR-scheme, which we use throughout our work,

Yq(g) = g(mc, §) (301 +02 +303+C4+3C5+06)

1 1
- 59(1,3‘) (403+4C4+3C5+06)—5 (0 §) (C3+3C4)

2 V=V,
+ Z(3Cs+Cy+3Cs+Cy) — —212(3C, + Cy)(g(0, 8) — g(rie, 8)) ,(7)
9 Vvtq Vvtb

where we have introduced the dimensionless variabteg? /m? andr, = m./m;. The
functionsn(s) andg(z, §) can be seen elsewhere [27,20]. Note that the renormalization
scheme-dependence of the functiof( ) cancels with the corresponding on&lif. The
effective coefficient of thés~ vertex is given b)CS‘ﬁ =C7; — C5/3 — (s [30].



The dilepton invariant mass spectrum including power corrections in the HQET
approach inB — X ("¢~ decays can be written as:

dB _ dB’ N dBY™m; N dBY7’ @)

ds ds ds ds

where the first term corresponds to the parton model [27,28], the second term accounts for
the O(1/m3) power corrections [15], and the last term accounts for the non-perturbative
interaction of a virtuakz- andcé-quark loop with soft gluons. The explicit expression

for dB'/9 /ds for mq = 0 can be deduced from the literature [10]

dBY T 32 .
A5 = —B()Cg)\gﬁ(l — S) (9)
eff. (1 + 65 — §?) effo)s , - N [F(s,m.) A9 F(s,m,) F(s,m,.)
x Re { [07 — +Cqy 7 (5)(2 4 5) 2 — )\Eq) ( m? — m? )
. s [ AD  F(s,my)  F(s,m) M9 F(s,m,)
HIBCL+Ca)(0(0.5) ~ i ] (243) | Ll T e I}

The branching ratio foB — X ,¢*(~is expressed in terms of the measured semileptonic
branching ratia3,; for the decay®3 — X ./v,. This fixes the normalization

30 |V V| 1

B EBS )
O N6 VP f(me)k(e)

(10)

where f(1m.), k(m.) can be seen, for example, in [15]. The functibls, m) = F(r)
with r = s/(4m?) is given in [10]. In the regiom > 1, F(s,m,)/m2 ~ 1/s. The
conditionr >> 1 is well satisfied, for example, faf > 1.0 Ge\? (for whichr > 25).
In this region, the operator product expansion (OPE) is not im2’ but in A%, /q”.
Hence, there is a sufficiently large regiongthwhere the OPE holds ih/m?, 1/m? and
A%CD/qQ. Note also that for the terms proportional to the power corrections, we use
20+ (5) which equal®f(3) with 5(s) = 1.

In B — X, ("¢ decayscc-resonances are present Ba— X, + (J/¢, ¢/, ...) —
X, T¢~. Their implementation and the corresponding uncertainties iBthe X (¢~
case have been discussed recently by us [20]. There are at least four differatteAns”
advocated in the literature in this context, summarized below.

e The HQET-based approach [10], where the non-perturbatio®ntribution away
from the(J/v, ¢/, ...)-resonances is implemented by ttyen? terms in the expres-
sion fordB'/?" /ds.



e One could add the resonant-contribution, parametrized using a Breit-Wigner
shape with the normalizations fixed by data, to the complete perturbative contri-
bution resulting from thec-loop. This scheme has been used in a number of papers
[17,15,14,20].

The effective coefficients including the-resonances are defined as
CEM(5) = Con(3) + V() + V2es"(5) | (11)

whereY ?(s) has been given earlier angl.;?($) in this scheme is defined as:

Viel(3) = g (—YaVs oo _ ViV
o\ ViV ViV
D(V; = £50) My,

X Z 2 . )
a 2
Vimp(5)pes) Mvim = Smu® —iMy Ty,

(303+C4+305+06)>

(12)

with C© = 3C, + C, + 3C5 + C, + 3Cs + Cs. In what follows we shall neglect the
VaaVab . . . . . . .

part ~ V;;thb in Eqg. (12) in our numerical analysis, since the particular combination of

the Wilson coefficients appearing in this term is strongly suppressed compafét} to

Further, since data only determines the produGt” = 0.875 [8], we keep this fixed.

For ease of writing, we call this approach the AMM approach [17].

The remaining two approaches are the following:

e The LSW-approach [23]: Here, for the non-resonantontribution, only the con-
stant term iy (., §) is kept. Calling itg (1., $), it is given by
(e, §) = —31In(my/p) — 3 Inh. + £. The resonantz part is essentially as given
in Eq. (12).

e The KS-approach [22], in which the functiaﬂ’ﬁﬁ@) is parametrized using a dis-
persion approach. For details and further discussions of this approach, we refer to
[22,20].

In B — X4(*¢~ decays, in addition to thez bound states, also thei bound states

have to be included in the decay amplitudes. We have calculated the dilepton invariant
mass distribution, using the Breit-Wigner shape for the resonances, as discussed earlier,
and taking the widths and partial leptonic widths from the Particle Data Group [8]. How-
ever, numerically the:u-resonant part is less important, as the leptonic branching ratios
B(V? — ete™) andB(V® — ptu~) for the dominant resonancé® = p°, w are small

[8]. Moreover, their effect is reduced by imposing a cut on the dilepton invariant mass,
sayq® > 1GeV?, which we have explicitly checked. Higher states like.' have larger



widths and are thus expected to play minor roles due to their smaller branching ratios in
dilepton pairs.

In the three approaches discussed above (AMM,LSW,KS) we include/thg-
corrections, calculated in the phenomenological Fermi motion model (FM) [18], which
implements such effects in terms of themeson wave function effects. The implemen-
tation of the FM model ilB — X, /*¢~decays in the dilepton invariant mass distribution
can be seen in [15], which we also adopt here for the calculations of the distributions in
B — X,(*¢~. We note that the branching ratios in the HQET-bakéd; approach and
the FM-model are very close to each other for identical values of the input parameters.

3 Branching Ratios and CP Asymmetries inB — X (*(~

3.1 Numerical input and definitions of the partial branching ratios and CP asym-
metries

We now specify how we determine theoretical uncertainties in the branching ratios, the
ratio AR, and CP asymmetries in the decays— (X, X4)¢"¢~. The dispersion in

Table 1: Default values of the input parameters and4thes errors on the sensitive
parameters used in our numerical calculations.

oy 80.41 GeV

my 91.1867 GeV
sin? Oy | 0.2255

m, 0.2 GeV

My 0.01 GeV

me 4.8+ 0.2 GeV
my 173.8 4+ 5.0 GeV
H mbtzz/g

ASEp | 02201397 Gev
ol 129

as(myz) | 0.119 +0.0058
By, (10.4 4 0.4) %

the values of the obsevables due to the errors in the input parametgrsm,, as(my)
(equivalentIyAS’)CD), and By;, given in Table 1, is calculated by varying one parame-
ter at a time. To estimate the uncertainty from thguark mass in the FM model, we
explore the parameter space of this model with three sets of paramétersn,) =
(520, 280), (450, 0), (245,0) in (MeV,MeV), which correspond to an effectivequark



mass ofmE = 4.6,4.8,5.0 GeV, respectively. We seti. = mEff(m,) — 3.4 Gev
in both the FM-model and HQET analysis. Comparison with the HQET prediction [15] is
worked out for\; = —0.20 Ge\? and .\, = 0.12 Ge\?, as the dependence of the branch-
ing ratios on these parameters is small. The individual errors are then added in quadrature
to get the final cumulative error.
We proceed by defining the partly integrated branching raties §, d):
Ghax  ,dB(B — X 0107)

AB, = / " dg T ,

Tnin

(13)

together withAB,, for the CP-conjugate decay$ — X, /¢, and the branching ratio
averaged over the charge-conjugated states:

A AB
(A, =20t 20 (14
The CP asymmetry in the partial rates #9r— X ("¢~ is defined as:
_ AB, - AB,
(acr)e = X5 7B, - (15)

We further decompose the partial branching ratids, in terms of the CKM factors

AB, = ((N?P2D + ND1PDW + Re(AD* N\ DW 1 [im(AD*AD) DY/ |V, 2, (16)

u

from which the CP conjugated branching ratid3, can be obtained by substituting
)\ffz — )\ffz* Hence, the charge-conjugate averaged branching ¢atf)) is obtained
from AB, by dropping them(\”* \@)) term. The CP asymmetry is given by the expres-
sion:

(acp)g = Im(N AP) DI /([Va [ (AB,)) - (17)

u

The functionsD](-q), j = t,u,r,idepend on the input parameters, which we have specified
in Table 1, and on the interval i, specified by;2,,,, andg?,,,. We shall work always
above the 4, w)- and below the//1-resonances in the so-called lg#+egion withg?,.,
andgq? . taken as

P =10GeV <@ <6.0GeV? =¢2,, . (18)

We use the Wolfenstein representation of the CKM matrix [24] with= 0.819
and )\ = 0.2196 fixed, as the errors on these quantities are small [8]. The other two
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Figure 1: Renormalization scale)-dependence of the individual terms and the partly in-
tegrated branching ratias B, for the decayB — X (¢~ (a) andA B, for B — X (-

(b), calculated in the AMM-approach. The solid, dotted, dashed, long-short dashed
curves correspond to the contributions proportional to the effective Wilson coefficients
|C7eﬁ|2, |Chol?, |Ogeﬁ|2 and Re(C?ﬁCgeﬁ), respectively. The resulting uncertainty in

the branching ratio, obtained by adding the weighted errors in quadrature, is indicated by
the shaded area.

parametersgp, n) are implicitly the subject of the present work. Defining= p(1 — %)
andi =n(1 — %2), we have up to terms of ordef [31]:

2

A
W == N == T a9
MO = AN (p—in), MY = AN - p+in) (20)

andV,, = AX2. It follows that| Y| = A2(1 + A2(1 — 27))((1 — p)? + %) + O(N%).
Global fits of the CKM parameters have been performed in a number of papers [32-34],
with very similar (though not identical) results. For illustration, we shall use the results
of the CKM fits from Ref. [32], yielding:

Via
Vis

p=0.155%0155, = 0.383%005 . (21)

3.2 Parametric dependence of the branching ratios and CP asymmetries

We study the scaleuf-dependence of the branching ratios along the lines followed in
[25] in the B — X,y case. Thus, instead of varying the scaldetweenm,/2 and
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2m, in the full expression for the respective branching ratios (the naive method), the
scale-dependence of the individual terms involving different Wilson coefficient combina-
tions is calculated independently and the resulting errors are added in quadrature. Itis a
conservative approach and avoids the possibility of accidental cancellations of the scale-
dependence in the various terms, which takes place in the SM in both theX,~ case

[25] and inB — X (T ¢~, as shown here. For the branching ratiddin— X, ¢(*¢~decays

the relevant coefficients areC;,|2, |CE2, Re(CETC€M) and |CET|2. Of these,Ciy

does not renormalize, however, there is a residual dependencérom the normaliza-

tion for which inclusive semileptonic branching ratio is used, bringing in an exia)-
dependence.

The scale-dependence of the individual contributions from the specified Wilson co-
efficients to the branching ratias3, and A3, and the branching ratios themselves, are
shown in Fig. 1(a) and 1(b), respectively. We find for the scale dependent®,0én
uncertainty(+9.0, —7.3)%, measured from the reference vajue= m,. This is to be
compared with the corresponding uncertaintieg.1, —1.3)% calculated in the naive ap-
proach. The estimated-dependent uncertainty i3, is found to be(+7.7, —7.6)%,
compared t@% in the naive approach.

Table 2: Values of the charge-conjugate averaged partial branching (At and

(ABy) and the CP asymmetriés-p); and (acp)q, in the four LD-approaches AMM

[17], KS[22], LSW [23] and HQET [10], discussed in the text. In the top part of the table
(above the horizontal line), the parameters are fixed to their central values given in Table 1
and Eq. (21). In the lower part of the table, the parametric dependence of the observables

onmy, My andAS’)CD, calculated using the AMM-approach, is listed.

| | (AB,)[10~°] | (acp)s[%] | (ABa)[10~°] | (acp)al%] |

AMM 2.22 -0.19 9.61 4.40
KS 2.05 -0.18 8.83 4.09

LSW 2.31 -0.19 9.98 4.51
HQET 2.06 -0.17 8.93 4.02

my = 4.6GeV 2.15 -0.19 9.29 4.48
my = 5.0GeV 2.32 -0.18 10.03 4.29
m, = 178.2GeV 2.36 -0.18 10.18 4.18
m; = 168.2GeV 2.10 -0.20 9.06 4.63
ASYp = 0.298GeV 2.20 -0.16 9.52 3.74
AS)p = 0.157GeV 2.24 -0.22 9.70 5.03

The dependence of the charge-conjugate averaged branching teigsand(AB,),
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and the CP asymmetridacp)s and (acp)q On the four schemes concerning the
contribution is shown in the upper part of Table 2. For all these entries, we have fixed
the parameters to their central values given in Table 1 and Eq. (21). The dependence of
these observables on,, m, andAS’)CD, obtained in the AMM-scheme by varying only

one parameter at a time, is shown in the lower part of Table 2. For the central values of
andn, the partial branching ratios are found to vary in the four approaches in the range:
2.05 x 107% < (AB,) < 2.31 x 1075 and8.83 x 10~% < (AB,) < 9.98 x 10~%. For

the same values gf andn but taking into account in addition the rest of the parametric
uncertainties in Table 23,;, and the scale-dependence from Fig. 1(a) and 1(b), we find:

(AB,) = (2.227302) x 107°,
(ABy) = (9.617132) x 1078 (22)

Thus, apart from the CKM-parametric dependence, we estimasé; uncertainty on
(AB,) and somewhat larget;15%, on (AB;). These errors are significantly larger than
what one comes across in the literature. The present experimental bo& is->

X 0t07) < 4.2 x 1075 (at 90% C.L.) [35]. We are not aware of a corresponding bound
onB(B — Xglt(™).

The branching rati¢AB,), calculated in HQET, is shown in Fig. 2 as a function of
the CKM parametep for three fixed values ofj, which correspond to the central value
and the95% C.L. bounds given in Eq. (21). The other input parameters have been fixed
to their central values given in Table 1. In the allowed CKM parameter space, this partial
branching ratio varies by a factor 3. As the theoretical error from the rest of the parameters
is estimated to be-15%, the measurement @i\ 3,) should allow to determing and»,.

The ratioAR = (AB;)/(AB;) has lot less theoretical error, as shown below.

The CP asymmetryucp), defined in eq. (15) in the — s case in the SM is small.
Hence its measurement can be used to search for new sources of CP violation in the
b — s¢T ¢~ transition. Numerically, the CP asymmetries are more uncertain reflecting in
particular the scale-dependence of the functiﬂlﬁ@. A qualitatively similar behaviour
has also been noted for the CP asymmetries in the radiative décays X, + v and
B — X4+ v in [37]. However, the scale-dependence of the CP asymmetries is more
marked in the decayB — (X, X4)¢"¢~ due to cancellations in two different products
of the Wilson coefficients entering iB\”. (Specifically, betwee i1 m(Cgeqﬁ|u) and
Im(quﬁ|uC§qﬁ*|t), with C§qﬁ|m denoting the part irﬁfqﬁ which is proportional to the
CKM factor \(?).) This can be seen in Fig. 3, where we show theéependence of the
two mentioned contributions iﬁ),(d), and the functiod)gd) itself calculated in the naive
and independent approaches. The funcmﬁﬂ is very similar and hence not shown. The
u-dependence oD,(d) in the naive approach, shown by the long-short dashed curve, is
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very marked and it gets further accentuated in the independent approach, shown by the
two dashed curves. For the central values of the CKM parameters and estimating the
pu-dependence in the independent approach, we find:

(acp)s = —(0.19%015)%

(acp)a = (4.407556)%. (23)
The corresponding numbers in the naive scale-dependent method are:
(acp)s = —(0.19%312)%, and(acp)y = (4.407277)%. In either case, Fig. 3 underscores

the importance of calculating the next-to-leading order effecta ).

15 = -

(AB,)108

O\\\\‘\\\\‘\\\\‘\\\\‘\\\\
-0.1 0 0.1 0.2 0.3 0.4

p

Figure 2: The charge-conjugate averaged partial branching {aty) in the HQET-
approach for the decal — X /*¢~ as a function of the CKM parametgerfor three
values ofp; solid curve ) = 0.383), dotted curven = 0.5), dashed curve)(= 0.27).

3.3 Extraction of Vfd

For a precise determination ﬁ% (equivalently the CKM parameters), we calculate the
ratio:

(ABy)
(AB;)

In terms of the CKM parameters and the functid]?{é) andD](-d) with j = t, u, r, defined
earlier:

AR = (24)

L= p)* +P)Di” + (7 + )DL + (p(1 — p) — ") DL
(11— 20D

AR = el : (25)
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2 4 6 8 10

Figure 3: Renormalization scalg)-dependence of the individual contributions and the
function Dz(d), calculated in the AMM-approach. The solid and dotted curves correspond
to the contributions proportional to the effective Wilson coefficie«ii‘lféTf I m(Cgeﬁ|u) and

m(Cgeﬁ|uCgeﬁ*|t), respectively. The naivg dependence is shown by the long-short
dashed curve. The resultinguncertainty in the independent approach is bounded by the
dashed lines.

where we have neglected terms proportiona}lgé)/)\,ﬁs). A simpler form forAR follows,
if one notes that the funct|orl§t anth are equal for all practical purposes (see Table
3). Hence, settln(jp ,E ), one has

, (1= p)*+7%) (7 +7°) D@  (p(1—p)—7?) DW
AR=A (1 —22(1 —2p) ! L-p2+72) DO (1—p)2+7?) D

The overall CKM factor is just the ratig/4|?/|V;s|>. Note that the first (and dominant)
term is independent of the dynamical details. The rﬁlﬁ@/Dﬁs) is found to be numer-
ically small (but model dependent, varying betweed3 >< 1072 for the KS-approach
and2.16 x 102 for the LSW approach). The ratio“ /Dt is, in general, larger and it
depends more sensitively on the estimate of the long-distaroentribution, varying be-
tween+-0.14 (for the LSW-approach) and0.12 (in HQET). However, the multiplicative
CKM factor accompanying this term in Eq. (26) being small comes to rescue. For exam-
ple, forp = 0.151 andy = 0.374, this factor is only—0.012. Hence, for these values, we
find AR = (4.32 + 0.03)%. For other values of the CKM parameters, the uncertainty is
larger and we quantify it later. The rativR as a function op is shown in Fig. 4 for the
HQET-method. The three curves correspong te 0.5 (dotted curve)y = 0.383 (solid

(26)
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curve), andy = 0.27 (dashed curve).

Table 3: Values of the functionlé?](-d),j = u,t,r,iandD”, D!*) defined in eq. (25) and

(17) in the four schemes discussed in the text for the central values of the input parameters.
The entries below the horizontal line correspond to using the AMM scheme, and varying
the input parameters, one each at a time, fixing the rest to their central values.

| D"10-% | DW10-8 | D106 | DW10-8 | DP10-7 | D107

AMM 2.31 3.75 2.30 20.96 | -2.34 2.34
KS 2.12 2.18 2.11 1.42 -2.00 -2.05

LSW 2.40 5.16 2.39 3259 | -2.50 -2.43
HQET 2.14 2.88 2.13 2489 | -1.99 -1.94

my — 4.6GeV 2.24 4.48 2.22 26.83 | -2.31 2.26
my = 5.0GeV 2.41 3.47 2.40 18.86 | -2.39 2.31
m, = 178.2GeV 2.45 3.75 2.44 21.89 | -2.36 2.35
m, = 168.2GeV 2.18 3.75 2.17 2161 | -2.33 2.33
ASEp = 0.298GeV | 2.29 3.39 2.28 20.71 -1.97 -1.95
ASL, =0.157GeV |  2.33 4.15 2.32 21.35 -2.70 2.73

We now evaluate the theoretical precision in the determinati%ﬁffrom an even-
tual measurement dkR. The other uncertainties being insignificant, there are basically
two sources of errors: (i) a small residual scale-dependence, and (ii) the LD-scheme-
dependent uncertainty, which depends on the parametendr. In Fig. 5 we show the
constraints orp andn from an assumed value @R with the LD-effects calculated in
the AMM-approach. For each value &fR, the practically overlapping curves represent
the effect of varying: in the rangen, /2 < . < 2m,. Numerically, the net: uncertainty
on the ratioAR is found to bet+0.6%. The effect of the errors afi;, as(mz) and the
b-quark mass are smaller and not shown.

The potentially largest uncertainty ihR, due to the LD-effects, is shown in Fig. 6,
where we have plotted the constraintspoandrn from assumed values &fR. The four
curves shown correspond to the LD-schemes: AMM, KS, HQET and LSW. As remarked
earlier, the LD-related uncertainty is vanishingly small for the central valugsaoflr,

i.e. at or close to the apex of the drawn triangle. However, for other points ifpthg-
plane, the uncertainty is perceptible but still small, except for regions dfithg-plane
which are already ruled out from the existing CKM fits.
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Figure 4: The ratid\R defined in Eq. (24), calculated in the HQET-approach, as a func-
tion of p for three values of); solid curve ¢ = 0.383), dotted curve{ = 0.5), dashed
curve(n = 0.27).

4 Theoretical Precision on|V;,/V;s| from B Decays

The ratioAR should be measurable at the Tevatron, the later phase of the B-factories, and
certainly at the LHC. The merit cAR lies in the theoretical precision di;,;/V;s| (or
on the unitarity triangle) which we have estimated here and found to be quite competitive
with other proposals in the market, some of which are reviewed below.

The B°-B% mixing ratioAM,;/AM, can be expressed as follows:

AMS _ MBS (f%SBBS)

_ o
AMy  Msp, (f} Bg,)

Via

(27)

The achievable accuracy dn,/V;; depends, apart from the experimental measurement
error, on the knowledge of the ratio of the hadronic matrix elements

£ = de@/fBSJB—&, for which the current Lattice estimate§s= 1.14 + 0.06 +

0.03 £ 0.10 [3]. The errors reflect, respectively, the actual calculational error of this
ratio in the quenched approximation, estimated effects of unquenching, and from chiral
loops. Thus, the present theoretical error on this quantity {3(@0%) and it remains a
theoretical challenge to improve this significantly. However, the measuremexit/Qf

for which the present experimental lower bound is 124" gat 95% C.L.)[33], may turn

out to provide the first measurementigf/V;;, as the central value @€ M/ in the SM is
around14 ps! [32—34], which is not too far from the present limit.
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Figure 5: Contours in thép, 77) plane following from assumed values of the rati®;

outer curve AR = 0.06), central curve AR = 0.04), inner curve AR = 0.02). The
overlapping curves for each value AfR represent the uncertainty due to the renormal-
ization scale. Also shown is the unitarity triangle corresponding to the central values of
the CKM parameters from the analysis of Ref. [32].

Theoretical precision oAR is comparable to the one on the corresponding ratio of
the branching ratios involving the CKM-suppressed deBay> X, + v and the CKM-
allowed decayB — X, + v [36,37]. Defining the ratio of the branching ratios as (implied
are charge-conjugate averages)

(B(B = Xa+17))
- (B(B = X, +7))’

(28)

R(dv)/sv)

the ratioR(d~)/sv) gives a constraint on the CKM matrix elements which is very similar
to the one given byAR (compare Eq. (26) in Ref. [37] and Eq. (26) here). Theoretical
error onR(dv/sv) is estimated to be at most a few percent in [37], comparable to the
one onAR. In hadronic collisions, the ratidR is more likely to be measured than
R(dv/s7).

We also mention here the exclusive radiative dedays:> (p,w)y andB — K*v,
whose ratios of the branching ratios can also be used to detetmjn@;,| [38]. The
expected theoretical accuracy on the r&@{@* — p* ++)/B(B* — K**++) is, how-
ever, not anticipated to be better tha(20%) [39]. The corresponding LD-corrections in
the ratios of neutraB-decaysB(B° — (p°,w) +v)/B(B° — K** + +) are expected to
be smaller [39,40] due to their being both colour and (electric)-charge suppressed, hence
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Figure 6: Contours in thép, 77) plane following from assumed values of the rati®;

outer curve AR = 0.06), central curve AR = 0.04), inner curve AR = 0.02). The

solid, dotted, dashed, long-short dashed lines correspond to the AMM, KS, HQET and
LSW approaches, respectively, for the central values of the parameters given in Table
1. Also shown is the unitarity triangle corresponding to the central values of the CKM
parameters from the analysis of ref. [32].

reducing the theoretical uncertainty, but probably not better thei¥. Finally, we also
note the constraints div;;/V;,|, which can be obtained from the measurements of the ra-
tios of some exclusive two-body non-leptonic decays, sudi(& — K*K°)/B(B° —
#K"), advocated in Ref. [41]. This method may provide interesting results on the CKM
ratio, but once data are available on the FCNC radiative and semileptonic decays dis-
cussed above, they are expected to provide more reliable information on the CKM matrix
elementsV;; andV,. In particular, the raticA’R may provide one of the most precise
determinations ofV;;/Vis|.

We hope that the results presented here will help focus attention on experimental
measurements of the branching ratios and CP asymmetries in the FCNC decays
(Xg4, X5)¢T¢~. We also underline the need to calculate the next-to-leading order correc-
tions in the CP asymmetries to tame the scale dependence.
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