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Abstract
We present a theoretical reappraisal of the branching ratios and CP asymmetries for the
decaysB ! Xq`

+`�, with q = d; s, taking into account current theoretical uncertain-
ties in the description of the inclusive decay amplitudes from the long-distance contri-
butions, an improved treatment of the renormalization scale dependence, and other para-
metric dependencies. Concentrating on the partial branching ratios�B(B ! Xq`

+`�),
integrated over the invariant dilepton mass region1 GeV2 � s � 6 GeV2, we cal-
culate theoretical precision on the charge-conjugate averaged partial branching ratios
h�Bqi = (�B(B ! Xq`

+`�)+�B( �B ! �Xq`
+`�))=2, CP asymmetries in partial decay

rates(aCP )q = (�B(B ! Xq`
+`�)��B( �B ! �Xq`

+`�))=(2h�Bqi), and the ratio of the
branching ratios�R = h�Bdi=h�Bsi. For the central values of the CKM parameters, we
find h�Bsi = (2:22+0:29�0:30)�10�6, h�Bdi = (9:61+1:32�1:47)�10�8, (aCP )s = �(0:19+0:17�0:19)%,
(aCP )d = (4:40+3:87�4:46)%, and�R = (4:32 � 0:03)%. The dependence ofh�Bdi and
�R on the CKM parameters is worked out and the resulting constraints on the unitarity
triangle from an eventual measurement of�R are illustrated.
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1 Introduction

With the advent of new and upgraded experimental facilities in the next year(s), flavour

physics involvingB decays will come under minute experimental and theoretical scrutiny.

The overriding interest in these experiments is in measuring CP-violating asymmetries in

partialB-decay rates, which will allow to quantitatively test the Kobayashi-Maskawa [1]

paradigm of CP violation. In addition, the large number ofB hadrons anticipated to be

produced at these facilities (estimated to beO(108) - O(1012)) will allow to measure a

number of flavour-changing-neutral-current (FCNC) processes involving the transitions

b ! sX andb ! dX, with X = 
; g; `+`�; ���, andB0 - B0 mixings. In the context of

the Standard Model (SM), FCNC decays and mixings measure the Cabibbo-Kobayashi-

Maskawa (CKM) [1] matrix elements, in particularVtd, Vts andVtb. These quantities can,

in principle, also be measured directly in top quark decayst! qiW
+, with qi = d; s; b. A

comparison of these matrix elements in the FCNC processes and direct measurements in

t decays would provide one of the best strategies to search for new physics inB decays.

So far, onlyVtb has been directly measured at Fermilab, yieldingjVtbj = 0:99� 0:15 [2].

Present knowledge ofVtd owes itself to the measurements of�Md, the mass dif-

ference in theB0 - B0 complex. With the current world average�Md = 0:471 � 0:016

(ps)�1, the error onVtd is dominated by theoretical uncertainty on the hadronic matrix

elementfBd

q
BBd

, for which present Lattice-QCD estimates arefBd

q
BBd

= 215 � 35

MeV [3], yielding0:0065 � jVtdV �
tbj � 0:010. We also mention that a single event for the

charged kaon decay modeK+ ! �+��� reported by the Brookhaven E787 experiment,

yieldingB(K+ ! �+���) = (4:2+9:7�3:5) � 10�10, allows one to infer0:006 � jVtdV �
tbj �

0:06 [4]. The branching ratio for the decayB ! Xs
 has led to a determination of the

matrix elementVts [5], yielding jVtsV �
tbj = 0:0035 � 0:004, with the error dominated by

the experimental error on the branching ratioB(B ! Xs + 
) [6,7]. These numbers can

be taken as the measurements ofjVtdj andjVtsj by assuming the valueVtb ' 1 from the

CKM unitarity, which holds to a very high accuracy [8].

In this paper, we pursue the idea of measuring the FCNC semileptonic decays

B ! Xs`
+`� andB ! Xd`

+`�, below theJ= - and above the�; !-resonance re-

gions in the dilepton invariant mass, to determinejVtsj and jVtdj, respectively, and the

ratio jVtd=Vtsj from the ratio of the branching ratios. In this context, these decays and

the related ones,B ! Xs��� andB ! Xd���, were discussed some time ago [9]. The

decaysB ! (Xs; Xd)��� are practically free of long-distance complications [10] and the

renormalization-scale dependence of the decay rates has also been brought under control

[11]. Hence, these decays are theoretically remarkably clean but, unfortunately, they are

difficult to measure in�(4S) decays and out of question in hadronic collisions. Using the
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missing energy technique and LEP I data, the ALEPH collaboration has searched for the

decaysB ! Xs��� setting an upper boundB(B ! Xs���) < 7:7 � 10�4 (at 90% C.L.)

[12], which is a factor 20 away from the SM expectations [11]. While the discovery of

these decays looks formidable elsewhere, a high luminosityZ0-factory - being discussed

in conjunction with ane+e� linear collider [13]- looks like having the best chance of

measuring them. This possibility deserves a dedicated study.

The possibility of determiningjVtd=Vtsj from the ratio of the invariant mass de-

cay distributionsdR
ds
� dB

ds
[B ! Xd`

+`�]=dB
ds
[B ! Xs`

+`�] away from the resonances

was revisited by Kim, Morozumi and Sanda [14]. These authors included the effects of

the leading order power corrections (in1=m2

b) in the short-distance part of the dilepton

invariant mass distribution and the long-distance contributions from thec�c-resonances,

calculated in Ref. [15]. (For earlier-vintage derivations without the power corrections,

see [16,17].) We reanalyze the decaysB ! Xs`
+`� andB ! Xd`

+`� and the ratio

of the branching ratios�R �
R
dsdB

ds
[B ! Xd`

+`�]=
R
dsdB

ds
[B ! Xs`

+`�], integrated

over a kinematic rangeq2min � s � q2max, designed to minimize the resonant contribution.

Our theoretical treatment differs from that of Ref. [14] in a number of ways, summarized

below.

� The dilepton invariant mass distributions inB ! (Xs; Xd)`
+`� can be calculated

in the context of the heavy quark effective theory (HQET) as a power expansion

in regions far from the resonances, thresholds and end-points [15,10]. Away from

theJ= ;  0; :::-resonances, the1=m2

c-expansion provides, in principle, a viable de-

scription of the non-perturbative contributions arising from thec�c-loop [10]. The

contribution of the light quarkq�q-loops, which is not CKM-suppressed in the decay

B ! Xd`
+`�, can likewise be calculated by doing an expansion of the decay am-

plitudes in�2

QCD=q
2 in regions of the dilepton squared mass satisfyingq2 � �2

QCD.

Thus, the HQET framework provides an evaluation of the invariant dilepton mass

spectrum in these processes with the present precision limited to the leading power

corrections in1=m2

b , 1=m
2

c and�2

QCD=q
2. We present HQET-based calculations of

the decay rates, CP asymmetries and the ratio�R.

� Away from the resonances and the end-points, the power corrections in1=m2

b cal-

culated in HQET and in explicit wave function models, such as the Fermi motion

(FM) model [18], yield very similar invariant dilepton mass [15] and hadron energy

distributions [19] in the decaysB ! Xq`
+`�. However, it is known that there are

marked differences in estimates of the non-perturbativec�c-contribution, obtained by

using the1=m2

c-corrections in the HQET approach and alternative methods based

on the Breit-Wigner-shaped resonant amplitudes [20,21]. Data may eventually pro-
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vide a discrimination against some of these approaches, but currently at least four

different variations on this theme exist in the literature [10,15,22,23]. This LD-

uncertainty therefore compromises theoretical precision on decay rates and has to

be taken into account. We calculate the theoretical uncertainties on the branch-

ing ratios for the decaysB ! (Xd; Xs)`
+`�, CP asymmetries and the ratio�R,

showing numerically their impact on the determination ofjVtsj, jVtdj and the CKM-

Wolfenstein parameters� and� [24] from an eventual measurement of these decays.

� We reanalyze the renormalization scale dependence in the branching ratios for the

decaysB ! Xs`
+`� andB ! Xd`

+`�, using the method employed by Kagan and

Neubert in the radiative decayB ! Xs + 
 [25]. This approach avoids accidental

cancellations among the individual scale-dependent contributions but gives a larger

scale (�)-dependence of the branching ratios than the method of evaluating the same

in the total branching ratio [14]. The former is probably a more realistic estimate

of the neglected higher order corrections.

We find that the partial branching ratio in the SM is uncertain by typically�13%
(�15%) for the decayB ! Xs`

+`� (B ! Xd`
+`�), but the ratio�R is remarkably

stable with typical error less than several percent. Hence,�R is well-suited to de-

termine the ratiojVtd=Vtsj. However, the scale-dependence of the CP asymmetries in

B ! (Xs; Xd)`
+`� is found to be huge, reflecting the (present) leading logarithmic the-

oretical accuracy of the CP-odd parts of the amplitudes. Without the power corrections

and fixing the scale to� = mb, the CP asymmetries in question have been studied earlier

in Ref. [26]. We point out that these estimates are uncertain by almost�100% due to the

sensitive scale-dependence and their stabilization requires next-to-leading order correc-

tions. In the case of the CP-even parts, we recall that the inclusion of the explicitO(�s)

corrections in the matrix elements has reduced the scale dependence of the decay rates

considerably [27,28].

This paper is organized as follows: In section 2, we briefly review the derivation

of the matrix elements and dilepton invariant mass distributions for the decaysB !
(Xs; Xd)`

+`� including long-distance contributions in the four approaches: (i) AMM

[17,15], (ii) KS [22], (iii) LSW [23] and (iv) HQET [10]. The partially integrated branch-

ing ratios and CP asymmetries are presented in section 3 where we also specify our input

parameters. We show the scale dependence of the branching ratios�B( �B ! �Xs`
+`�)

and�B( �B ! �Xd`
+`�) in the AMM approach and the contributions arising from the

individual Wilson coefficients. We also present a comparative numerical study of the

quantitiesh�Bsi, h�Bdi, (aCP )s and(aCP )d in the four mentioned approaches. Uncer-

tainties arising from the other parameters (mb, mt and�(5)

QCD) are worked out numer-
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ically. With this we calculate the overall theoretical errors in these quantities and the

ratio �R and their impact on the determination of the CKM parameters. Finally, sec-

tion 4 contains a brief comparison of the theoretical precision ofjVtd=Vtsj in the decays

B ! (Xs; Xd)`
+`� with that of other methods proposed in the literature to determine the

same ratio.

2 B ! (Xd; Xs)`
+`� Decays in the Effective Hamiltonian Approach

We work in the effective Hamiltonian approach, which is based on integrating out the

heavy degrees of freedom(t;W�; Z0), in the SM. The resulting effective Hamiltonian

for the decaysB ! (Xd; Xs)`
+`�,Heff(b! q`+`�), can be expressed as follows:

Heff(b! q`+`�) = �
4GFp

2
V �
tqVtb

10X
i=1

CiOi

+
4GFp

2
V �
uqVub

h
C1(O1

(u) �O1) + C2(O2
(u) � O2)

i
; (1)

whereVij are the CKM matrix elements. TheCi are the Wilson coefficients, which de-

pend, in general, on the renormalization scale�, except forC10, and can be seen in leading

logarithmic approximation in [27]. The operators are defined as follows:

O1 = (�qL�
�bL�)(�cL�

�cL�) ;

O2 = (�qL�
�bL�)(�cL�

�cL�) ;

O3 = (�qL�
�bL�)
X

q0=u;d;s;c;b

(�q0L�

�q0L�) ;

O4 = (�qL�
�bL�)
X

q0=u;d;s;c;b

(�q0L�

�q0L�) ;

O5 = (�qL�
�bL�)
X

q0=u;d;s;c;b

(�q0R�

�q0R�) ;

O6 = (�qL�
�bL�)
X

q0=u;d;s;c;b

(�q0R�

�q0R�) ;

O7 =
e

16�2
�q����(mbR +mqL)b�F

�� ;

O8 =
g

16�2
�q�T

a
�����(mbR +mqL)b�G

a�� ;

O9 =
e2

16�2
�q�


�Lb� �̀
�` ;

O10 =
e2

16�2
�q�


�Lb� �̀
�
5` ; (2)

whereL andR denote chiral projections,L(R) = 1=2(1 � 
5). Here, unitarity of the

CKM matrix has been used in writing the flavour structure of a generic FCNCb ! q
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transition amplitudeT (q) in the form

T (q) =
X

i=u;c;t

�
(q)
i Ti = �

(q)
t (Tt � Tc) + �(q)u (Tu � Tc) ; (3)

where�(q)i = V �
iqVib andq = d; s. For theb! s transitions, the second term in Eq. (3) can

be safely neglected as�(s)u � �
(s)
t . However, for theb ! d transitions, the CKM factors

�(d)u and�(d)t are of the same order and hence all terms in Eq. (3) must be kept. The

operator basis given in Eq. (1) has been written in accordance with Eq. (3) and includes

the Four-Fermi operators containing au�u pair,

O1
(u) = (�qL�
�bL�)(�uL�


�uL�) ;

O2
(u) = (�qL�
�bL�)(�uL�


�uL�) : (4)

The matrix element for the decaysb! q`+`� (q = d; s) can be written as

M(b! q`+`�) =
GF�p
2�

V �
tqVtb

��
Ceff
9q � C10

�
(�q 
� L b)

�
�̀
� L `

�

+
�
Ceff
9q + C10

�
(�q 
� L b)

�
�̀
�R`

�

� 2Ceff
7

 
�q i ���

q�

q2
(mqL +mbR) b

!�
�̀
� `

�#
: (5)

Hereq� � p�
+
+ p�� denotes the Four-momentum of the invariant dilepton system, where

p� are the corresponding momenta of the`�; s � q2 is the invariant dilepton mass

squared. The effective coefficients ofO9 are given by

Ceff
9q (ŝ) = C9�(ŝ) + Y q(ŝ) : (6)

The functions�(ŝ) andY q(ŝ) represent theO(�s) correction [29] and the (perturbative)

one loop matrix element of the Four-Fermi operators [27,28], respectively. We have in

the (naive dimensional regularization) NDR-scheme, which we use throughout our work,

Y q(ŝ) = g(m̂c; ŝ) (3C1 + C2 + 3C3 + C4 + 3C5 + C6)

�
1

2
g(1; ŝ) (4C3 + 4C4 + 3C5 + C6)�

1

2
g(0; ŝ) (C3 + 3C4)

+
2

9
(3C3 + C4 + 3C5 + C6)�

V �
uqVub

V �
tqVtb

(3C1 + C2)(g(0; ŝ)� g(m̂c; ŝ)) ;(7)

where we have introduced the dimensionless variableŝ � q2=m2

b andm̂c � mc=mb. The

functions�(ŝ) andg(z; ŝ) can be seen elsewhere [27,20]. Note that the renormalization

scheme-dependence of the functionY q(ŝ) cancels with the corresponding one inC9. The

effective coefficient of thebs
 vertex is given byCeff
7

= C7 � C5=3� C6 [30].
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The dilepton invariant mass spectrum including power corrections in the HQET

approach inB ! Xq`
+`�decays can be written as:

dB
dŝ

=
dB0

dŝ
+
dB1=m2

b

dŝ
+
dB1=q2

dŝ
; (8)

where the first term corresponds to the parton model [27,28], the second term accounts for

theO(1=m2

b) power corrections [15], and the last term accounts for the non-perturbative

interaction of a virtualu�u- andc�c-quark loop with soft gluons. The explicit expression

for dB1=q2=dŝ for mq = 0 can be deduced from the literature [10]

dB1=q2

dŝ
= �B0C2�2

32

27
(1� ŝ)2 (9)

�Re
("
Ceff�
7

(1 + 6ŝ� ŝ2)

ŝ
+ C

eff(0)�
9q (ŝ)(2 + ŝ)

# "
F (s;mc)

m2
c

�
�(q)u

�
(q)
t

(
F (s;mu)

m2
u

�
F (s;mc)

m2
c

)

#

+[(3C1 + C2)(g(0; ŝ)� g(m̂c; ŝ))]
� (2 + ŝ)

"
j
�(q)u

�
(q)
t

j2(
F (s;mu)

m2
u

�
F (s;mc)

m2
c

)�
�(q)u

�
(q)
t

F (s;mc)

m2
c

#)
:

The branching ratio forB ! Xq`
+`�is expressed in terms of the measured semileptonic

branching ratioBsl for the decaysB ! Xc`�`. This fixes the normalization

B0 � Bsl
3�2

16�2
jV �
tqVtbj

2

jVcbj2
1

f(m̂c)�(m̂c)
; (10)

wheref(m̂c); �(m̂c) can be seen, for example, in [15]. The functionF (s;m) � F (r)

with r = s=(4m2) is given in [10]. In the regionr � 1, F (s;mu)=m
2

u / 1=s. The

conditionr � 1 is well satisfied, for example, forq2 � 1:0 GeV2 (for which r > 25).

In this region, the operator product expansion (OPE) is not in ’1=m2

u’ but in �2

QCD=q
2.

Hence, there is a sufficiently large region inq2 where the OPE holds in1=m2

b , 1=m
2

c and

�2

QCD=q
2. Note also that for the terms proportional to the power corrections, we use

C
eff(0)�
9q (ŝ) which equalsCeff�

9q (ŝ) with �(ŝ) = 1.

In B ! Xq`
+`�decaysc�c-resonances are present viaB ! Xq + (J= ;  0; :::) !

Xq`
+`�. Their implementation and the corresponding uncertainties in theB ! Xs`

+`�

case have been discussed recently by us [20]. There are at least four different Ans¨atze

advocated in the literature in this context, summarized below.

� The HQET-based approach [10], where the non-perturbativec�c-contribution away

from the(J= ;  0; :::)-resonances is implemented by the1=m2

c terms in the expres-

sion fordB1=q2=dŝ.
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� One could add the resonantc�c-contribution, parametrized using a Breit-Wigner

shape with the normalizations fixed by data, to the complete perturbative contri-

bution resulting from thec�c-loop. This scheme has been used in a number of papers

[17,15,14,20].

The effective coefficients including thec�c-resonances are defined as

Ceff
9q (ŝ) � C9�(ŝ) + Y q(ŝ) + Yres

q(ŝ) ; (11)

whereY q(ŝ) has been given earlier andYres
q(ŝ) in this scheme is defined as:

Yres
q(ŝ) =

3�

�2
�

 
�
V �
cqVcb

V �
tqVtb

C(0) �
V �
uqVub

V �
tqVtb

(3C3 + C4 + 3C5 + C6)

!

�
X

Vi= (1s);:::; (6s)

�(Vi ! `+`�)MVi

MVi
2 � ŝmb

2 � iMVi�Vi
; (12)

with C(0) � 3C1 + C2 + 3C3 + C4 + 3C5 + C6. In what follows we shall neglect the

part� V �

uqVub

V �

tqVtb
in Eq. (12) in our numerical analysis, since the particular combination of

the Wilson coefficients appearing in this term is strongly suppressed compared toC(0).

Further, since data only determines the product�C(0) = 0:875 [8], we keep this fixed.

For ease of writing, we call this approach the AMM approach [17].

The remaining two approaches are the following:

� The LSW-approach [23]: Here, for the non-resonantc�c-contribution, only the con-

stant term ing(m̂c; ŝ) is kept. Calling it~g(m̂c; ŝ), it is given by

~g(m̂c; ŝ) = �8

9
ln(mb=�)� 8

9
ln m̂c+

8

27
. The resonantc�c part is essentially as given

in Eq. (12).

� The KS-approach [22], in which the functionCeff
9q (ŝ) is parametrized using a dis-

persion approach. For details and further discussions of this approach, we refer to

[22,20].

In B ! Xd`
+`� decays, in addition to thec�c bound states, also theu�u bound states

have to be included in the decay amplitudes. We have calculated the dilepton invariant

mass distribution, using the Breit-Wigner shape for the resonances, as discussed earlier,

and taking the widths and partial leptonic widths from the Particle Data Group [8]. How-

ever, numerically theu�u-resonant part is less important, as the leptonic branching ratios

B(V 0 ! e+e�) andB(V 0 ! �+��) for the dominant resonancesV 0 = �0; ! are small

[8]. Moreover, their effect is reduced by imposing a cut on the dilepton invariant mass,

sayq2 > 1GeV2, which we have explicitly checked. Higher states like�0; !0 have larger
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widths and are thus expected to play minor roles due to their smaller branching ratios in

dilepton pairs.

In the three approaches discussed above (AMM,LSW,KS) we include the1=m2

b -

corrections, calculated in the phenomenological Fermi motion model (FM) [18], which

implements such effects in terms of theB-meson wave function effects. The implemen-

tation of the FM model inB ! Xs`
+`�decays in the dilepton invariant mass distribution

can be seen in [15], which we also adopt here for the calculations of the distributions in

B ! Xd`
+`�. We note that the branching ratios in the HQET-based1=m2

b approach and

the FM-model are very close to each other for identical values of the input parameters.

3 Branching Ratios and CP Asymmetries inB ! Xq`
+`�

3.1 Numerical input and definitions of the partial branching ratios and CP asym-
metries

We now specify how we determine theoretical uncertainties in the branching ratios, the

ratio �R, and CP asymmetries in the decaysB ! (Xs; Xd)`
+`�. The dispersion in

Table 1: Default values of the input parameters and the�1 � errors on the sensitive
parameters used in our numerical calculations.

mW 80:41 GeV
mZ 91:1867 GeV
sin2 �W 0:2255
ms 0:2 GeV
md 0:01 GeV
mb 4:8� 0:2 GeV
mt 173:8� 5:0 GeV
� mb

+mb

�mb=2

�
(5)

QCD 0:220+0:078�0:063 GeV
��1 129
�s(mZ) 0:119� 0:0058
Bsl (10:4� 0:4) %

the values of the obsevables due to the errors in the input parametersmb; �;mt, �s(mZ)

(equivalently�(5)

QCD), andBsl, given in Table 1, is calculated by varying one parame-

ter at a time. To estimate the uncertainty from theb-quark mass in the FM model, we

explore the parameter space of this model with three sets of parameters:(pF ; mq) =

(520; 280); (450; 0); (245; 0) in (MeV,MeV), which correspond to an effectiveb-quark
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mass ofmeff
b = 4:6; 4:8; 5:0 GeV, respectively. We setmc = meff

b (mb) � 3:4 GeV

in both the FM-model and HQET analysis. Comparison with the HQET prediction [15] is

worked out for�1 = �0:20 GeV2 and�2 = 0:12 GeV2, as the dependence of the branch-

ing ratios on these parameters is small. The individual errors are then added in quadrature

to get the final cumulative error.

We proceed by defining the partly integrated branching ratios (q = s; d):

�Bq �
Z q2

max

q2
min

dq2
dB(B ! Xq`

+`�)

dq2
; (13)

together with� �Bq, for the CP-conjugate decays�B ! �Xq`
+`�, and the branching ratio

averaged over the charge-conjugated states:

h�Bqi �
�Bq +� �Bq

2
; (14)

The CP asymmetry in the partial rates forB ! Xq`
+`� is defined as:

(aCP )q �
�Bq �� �Bq
�Bq +� �Bq

: (15)

We further decompose the partial branching ratios�Bq in terms of the CKM factors

�Bq = (j�(q)t j2D
(q)
t + j�(q)u j2D(q)

u +Re(�
(q)�
t �(q)u )D(q)

r + Im(�
(q)�
t �(q)u )D

(q)
i )=jVcbj2 ; (16)

from which the CP conjugated branching ratio� �Bq can be obtained by substituting

�
(q)
u;t ! �

(q)�
u;t . Hence, the charge-conjugate averaged branching ratioh�Bqi is obtained

from�Bq by dropping theIm(�
(q)�
t �(q)u ) term. The CP asymmetry is given by the expres-

sion:

(aCP )q = Im(�
(q)�
t �(q)u )D

(q)
i =(jVcbj2h�Bqi) : (17)

The functionsD(q)
j , j = t; u; r; i depend on the input parameters, which we have specified

in Table 1, and on the interval inq2, specified byq2min andq2max. We shall work always

above the (�, !)- and below theJ= -resonances in the so-called low-q2 region withq2min
andq2max taken as

q2
min

= 1:0 GeV2 � q2 � 6:0 GeV2 = q2
max

: (18)

We use the Wolfenstein representation of the CKM matrix [24] withA = 0:819

and� = 0:2196 fixed, as the errors on these quantities are small [8]. The other two

10



(a) (b)

Figure 1: Renormalization scale(�)-dependence of the individual terms and the partly in-
tegrated branching ratios�Bs for the decay�B ! �Xs`

+`� (a) and�Bd for �B ! �Xd`
+`�

(b), calculated in the AMM-approach. The solid, dotted, dashed, long-short dashed
curves correspond to the contributions proportional to the effective Wilson coefficients
jCeff

7
j2; jC10j2; jCeff

9
j2 andRe(Ceff

7
Ceff
9

), respectively. The resulting� uncertainty in
the branching ratio, obtained by adding the weighted errors in quadrature, is indicated by
the shaded area.

parameters(�; �) are implicitly the subject of the present work. Defining�� = �(1 � �2

2
)

and�� = �(1� �2

2
), we have up to terms of order�6 [31]:

�(s)u = A�4(�� i�) ; �
(s)
t = �A�2

"
1�

�2

2
+ �2(�� i�)

#
; (19)

�(d)u = A�3(��� i��) ; �
(d)
t = A�3(1� ��+ i��) ; (20)

andVcb = A�2. It follows that
���Vtd
Vts

���2 = �2(1 + �2(1 � 2��))((1 � ��)2 + ��2) + O(�6).

Global fits of the CKM parameters have been performed in a number of papers [32–34],

with very similar (though not identical) results. For illustration, we shall use the results

of the CKM fits from Ref. [32], yielding:

� = 0:155+0:115�0:105 ; � = 0:383+0:063�0:060 : (21)

3.2 Parametric dependence of the branching ratios and CP asymmetries

We study the scale (�)-dependence of the branching ratios along the lines followed in

[25] in theB ! Xs
 case. Thus, instead of varying the scale� betweenmb=2 and

11



2mb in the full expression for the respective branching ratios (the naive method), the

scale-dependence of the individual terms involving different Wilson coefficient combina-

tions is calculated independently and the resulting errors are added in quadrature. It is a

conservative approach and avoids the possibility of accidental cancellations of the scale-

dependence in the various terms, which takes place in the SM in both theB ! Xs
 case

[25] and inB ! Xq`
+`�, as shown here. For the branching ratio inB ! Xq`

+`�decays

the relevant coefficients are:jC10j2; jCeff
9
j2; Re(Ceff

7
Ceff
9

) and jCeff
7
j2. Of these,C10

does not renormalize, however, there is a residual dependence on� from the normaliza-

tion for which inclusive semileptonic branching ratio is used, bringing in an extra�s(�)-

dependence.

The scale-dependence of the individual contributions from the specified Wilson co-

efficients to the branching ratios� �Bs and� �Bd and the branching ratios themselves, are

shown in Fig. 1(a) and 1(b), respectively. We find for the scale dependence of� �Bs an

uncertainty(+9:0;�7:3)%, measured from the reference value� = mb. This is to be

compared with the corresponding uncertainties(+4:1;�1:3)% calculated in the naive ap-

proach. The estimated�-dependent uncertainty in� �Bd is found to be(+7:7;�7:6)%,

compared to2% in the naive approach.

Table 2: Values of the charge-conjugate averaged partial branching ratiosh�Bsi and
h�Bdi and the CP asymmetries(aCP )s and (aCP )d, in the four LD-approaches AMM
[17], KS [22], LSW [23] and HQET [10], discussed in the text. In the top part of the table
(above the horizontal line), the parameters are fixed to their central values given in Table 1
and Eq. (21). In the lower part of the table, the parametric dependence of the observables
onmb,mt and�(5)

QCD, calculated using the AMM-approach, is listed.

h�Bsi[10�6] (aCP )s[%] h�Bdi[10�8] (aCP )d[%]

AMM 2.22 -0.19 9.61 4.40
KS 2.05 -0.18 8.83 4.09

LSW 2.31 -0.19 9.98 4.51
HQET 2.06 -0.17 8.93 4.02

mb = 4:6GeV 2.15 -0.19 9.29 4.48
mb = 5:0GeV 2.32 -0.18 10.03 4.29
mt = 178:2GeV 2.36 -0.18 10.18 4.18
mt = 168:2GeV 2.10 -0.20 9.06 4.63

�
(5)

QCD = 0:298GeV 2.20 -0.16 9.52 3.74
�
(5)

QCD = 0:157GeV 2.24 -0.22 9.70 5.03

The dependence of the charge-conjugate averaged branching ratiosh�Bsi andh�Bdi,

12



and the CP asymmetries(aCP )s and (aCP )d on the four schemes concerning thec�c-

contribution is shown in the upper part of Table 2. For all these entries, we have fixed

the parameters to their central values given in Table 1 and Eq. (21). The dependence of

these observables onmb, mt and�(5)

QCD, obtained in the AMM-scheme by varying only

one parameter at a time, is shown in the lower part of Table 2. For the central values of�

and�, the partial branching ratios are found to vary in the four approaches in the range:

2:05 � 10�6 � h�Bsi � 2:31 � 10�6 and8:83 � 10�8 � h�Bdi � 9:98 � 10�8. For

the same values of� and� but taking into account in addition the rest of the parametric

uncertainties in Table 2,Bsl, and the scale-dependence from Fig. 1(a) and 1(b), we find:

h�Bsi = (2:22+0:29�0:30)� 10�6 ;

h�Bdi = (9:61+1:32�1:47)� 10�8 : (22)

Thus, apart from the CKM-parametric dependence, we estimate�13% uncertainty on

h�Bsi and somewhat larger,�15%, on h�Bdi. These errors are significantly larger than

what one comes across in the literature. The present experimental bound isB(B !
Xs`

+`�) < 4:2 � 10�5 (at 90% C.L.) [35]. We are not aware of a corresponding bound

onB(B ! Xd`
+`�).

The branching ratioh�Bdi, calculated in HQET, is shown in Fig. 2 as a function of

the CKM parameter� for three fixed values of�, which correspond to the central value

and the95% C.L. bounds given in Eq. (21). The other input parameters have been fixed

to their central values given in Table 1. In the allowed CKM parameter space, this partial

branching ratio varies by a factor 3. As the theoretical error from the rest of the parameters

is estimated to be�15%, the measurement ofh�Bdi should allow to determine� and�.

The ratio�R = h�Bdi=h�Bsi has lot less theoretical error, as shown below.

The CP asymmetry,(aCP )s defined in eq. (15) in theb! s case in the SM is small.

Hence its measurement can be used to search for new sources of CP violation in the

b ! s`+`� transition. Numerically, the CP asymmetries are more uncertain reflecting in

particular the scale-dependence of the functionsD
(q)
i . A qualitatively similar behaviour

has also been noted for the CP asymmetries in the radiative decaysB ! Xs + 
 and

B ! Xd + 
 in [37]. However, the scale-dependence of the CP asymmetries is more

marked in the decaysB ! (Xs; Xd)`
+`� due to cancellations in two different products

of the Wilson coefficients entering inD(q)
i . (Specifically, betweenCeff

7
Im(Ceff

9q ju) and

Im(Ceff
9q juCeff�

9q jt), with Ceff
9q jx denoting the part inCeff

9q which is proportional to the

CKM factor �(q)x .) This can be seen in Fig. 3, where we show the�-dependence of the

two mentioned contributions inD(d)
i , and the functionD(d)

i itself calculated in the naive

and independent approaches. The functionD
(s)
i is very similar and hence not shown. The

�-dependence ofD(d)
i in the naive approach, shown by the long-short dashed curve, is

13



very marked and it gets further accentuated in the independent approach, shown by the

two dashed curves. For the central values of the CKM parameters and estimating the

�-dependence in the independent approach, we find:

(aCP )s = �(0:19+0:17�0:19)% ;

(aCP )d = (4:40+3:87�4:46)%: (23)

The corresponding numbers in the naive scale-dependent method are:

(aCP )s = �(0:19+0:12�0:13)%, and(aCP )d = (4:40+2:77�3:23)%. In either case, Fig. 3 underscores

the importance of calculating the next-to-leading order effects in(aCP )q.

Figure 2: The charge-conjugate averaged partial branching ratioh�Bdi in the HQET-
approach for the decayB ! Xd`

+`� as a function of the CKM parameter� for three
values of�; solid curve (� = 0:383), dotted curve(� = 0:5), dashed curve (� = 0:27).

3.3 Extraction of
���Vtd
Vts

���
For a precise determination ofjVtdj

jVtsj
(equivalently the CKM parameters), we calculate the

ratio:

�R �
h�Bdi
h�Bsi

: (24)

In terms of the CKM parameters and the functionsD
(s)
t andD(d)

j with j = t; u; r, defined

earlier:

�R = �2
(1� ��)2 + ��2)D

(d)
t + (��2 + ��2)D(d)

u + (��(1� ��)� ��2)D(d)
r

(1� �2(1� 2�))D(s)
t

; (25)
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Figure 3: Renormalization scale(�)-dependence of the individual contributions and the
functionD(d)

i , calculated in the AMM-approach. The solid and dotted curves correspond
to the contributions proportional to the effective Wilson coefficientsCeff

7
Im(Ceff

9
ju) and

Im(Ceff
9
juCeff�

9
jt), respectively. The naive� dependence is shown by the long-short

dashed curve. The resulting� uncertainty in the independent approach is bounded by the
dashed lines.

where we have neglected terms proportional to�(s)u =�
(s)
t . A simpler form for�R follows,

if one notes that the functionsD(d)
t andD(s)

t are equal for all practical purposes (see Table

3). Hence, settingD(d)
t = D

(s)
t , one has

�R = �2
(1� ��)2 + ��2)

(1� �2(1� 2�)

"
1 +

(��2 + ��2)

(1� ��)2 + ��2)

D(d)
u

D
(s)
t

+
(��(1� ��)� ��2)

(1� ��)2 + ��2)

D(d)
r

D
(s)
t

#
: (26)

The overall CKM factor is just the ratiojVtdj2=jVtsj2. Note that the first (and dominant)

term is independent of the dynamical details. The ratioD(d)
u =D

(s)
t is found to be numer-

ically small (but model dependent, varying between1:03 � 10�2 for the KS-approach

and2:16� 10�2 for the LSW approach). The ratioD(d)
r =D

(s)
t is, in general, larger and it

depends more sensitively on the estimate of the long-distancec�c-contribution, varying be-

tween+0:14 (for the LSW-approach) and�0:12 (in HQET). However, the multiplicative

CKM factor accompanying this term in Eq. (26) being small comes to rescue. For exam-

ple, for �� = 0:151 and�� = 0:374, this factor is only�0:012. Hence, for these values, we

find �R = (4:32� 0:03)%. For other values of the CKM parameters, the uncertainty is

larger and we quantify it later. The ratio�R as a function of� is shown in Fig. 4 for the

HQET-method. The three curves correspond to� = 0:5 (dotted curve),� = 0:383 (solid
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curve), and� = 0:27 (dashed curve).

Table 3: Values of the functionsD(d)
j , j = u; t; r; i andD(s)

t ; D
(s)
i defined in eq. (25) and

(17) in the four schemes discussed in the text for the central values of the input parameters.
The entries below the horizontal line correspond to using the AMM scheme, and varying
the input parameters, one each at a time, fixing the rest to their central values.

D
(d)
t 10�6 D(d)

u 10�8 D
(s)
t 10�6 D(d)

r 10�8 D
(d)
i 10�7 D

(s)
i 10�7

AMM 2.31 3.75 2.30 20.96 -2.34 -2.34
KS 2.12 2.18 2.11 1.42 -2.00 -2.05

LSW 2.40 5.16 2.39 32.59 -2.50 -2.43
HQET 2.14 2.88 2.13 -24.89 -1.99 -1.94

mb = 4:6GeV 2.24 4.48 2.22 26.83 -2.31 -2.26
mb = 5:0GeV 2.41 3.47 2.40 18.86 -2.39 -2.31
mt = 178:2GeV 2.45 3.75 2.44 21.89 -2.36 -2.35
mt = 168:2GeV 2.18 3.75 2.17 21.61 -2.33 -2.33

�
(5)

QCD = 0:298GeV 2.29 3.39 2.28 20.71 -1.97 -1.95
�
(5)

QCD = 0:157GeV 2.33 4.15 2.32 21.35 -2.70 -2.73

We now evaluate the theoretical precision in the determination of
���Vtd
Vts

��� from an even-

tual measurement of�R. The other uncertainties being insignificant, there are basically

two sources of errors: (i) a small residual scale-dependence, and (ii) the LD-scheme-

dependent uncertainty, which depends on the parameters� and�. In Fig. 5 we show the

constraints on� and� from an assumed value of�R with the LD-effects calculated in

the AMM-approach. For each value of�R, the practically overlapping curves represent

the effect of varying� in the rangemb=2 � � � 2mb. Numerically, the net� uncertainty

on the ratio�R is found to be�0:6%. The effect of the errors ofmt; �s(mZ) and the

b-quark mass are smaller and not shown.

The potentially largest uncertainty in�R, due to the LD-effects, is shown in Fig. 6,

where we have plotted the constraints on� and� from assumed values of�R. The four

curves shown correspond to the LD-schemes: AMM, KS, HQET and LSW. As remarked

earlier, the LD-related uncertainty is vanishingly small for the central values of� and�,

i.e. at or close to the apex of the drawn triangle. However, for other points in the(�; �)-

plane, the uncertainty is perceptible but still small, except for regions of the(�; �)-plane

which are already ruled out from the existing CKM fits.
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Figure 4: The ratio�R defined in Eq. (24), calculated in the HQET-approach, as a func-
tion of � for three values of�; solid curve (� = 0:383), dotted curve (� = 0:5), dashed
curve(� = 0:27).

4 Theoretical Precision onjVtd=Vtsj from B Decays

The ratio�R should be measurable at the Tevatron, the later phase of the B-factories, and

certainly at the LHC. The merit of�R lies in the theoretical precision onjVtd=Vtsj (or

on the unitarity triangle) which we have estimated here and found to be quite competitive

with other proposals in the market, some of which are reviewed below.

TheB0-B0 mixing ratio�Ms=�Md can be expressed as follows:

�Ms

�Md

=
MBs

MBd

(f 2Bs
B̂Bs

)

(f 2Bd
B̂Bd

)
j
Vts

Vtd
j2 : (27)

The achievable accuracy onVtd=Vts depends, apart from the experimental measurement

error, on the knowledge of the ratio of the hadronic matrix elements

� � fBd

q
BBd

=fBs

p
BBs

, for which the current Lattice estimate is� = 1:14 � 0:06 �
0:03 � 0:10 [3]. The errors reflect, respectively, the actual calculational error of this

ratio in the quenched approximation, estimated effects of unquenching, and from chiral

loops. Thus, the present theoretical error on this quantity is ofO(10%) and it remains a

theoretical challenge to improve this significantly. However, the measurement of�Ms,

for which the present experimental lower bound is 12.4 ps�1 (at 95% C.L.)[33], may turn

out to provide the first measurement ofVtd=Vts, as the central value of�Ms in the SM is

around14 ps�1 [32–34], which is not too far from the present limit.
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Figure 5: Contours in the(��; ��) plane following from assumed values of the ratio�R;
outer curve (�R = 0:06), central curve (�R = 0:04), inner curve (�R = 0:02). The
overlapping curves for each value of�R represent the uncertainty due to the renormal-
ization scale. Also shown is the unitarity triangle corresponding to the central values of
the CKM parameters from the analysis of Ref. [32].

Theoretical precision on�R is comparable to the one on the corresponding ratio of

the branching ratios involving the CKM-suppressed decayB ! Xd + 
 and the CKM-

allowed decayB ! Xs+
 [36,37]. Defining the ratio of the branching ratios as (implied

are charge-conjugate averages)

R(d
)=s
) �
hB(B ! Xd + 
)i
hB(B ! Xs + 
)i

; (28)

the ratioR(d
)=s
) gives a constraint on the CKM matrix elements which is very similar

to the one given by�R (compare Eq. (26) in Ref. [37] and Eq. (26) here). Theoretical

error onR(d
=s
) is estimated to be at most a few percent in [37], comparable to the

one on�R. In hadronic collisions, the ratio�R is more likely to be measured than

R(d
=s
).

We also mention here the exclusive radiative decaysB ! (�; !)
 andB ! K�
,

whose ratios of the branching ratios can also be used to determinejVtd=Vtsj [38]. The

expected theoretical accuracy on the ratioB(B� ! ��+
)=B(B� ! K��+
) is, how-

ever, not anticipated to be better thanO(20%) [39]. The corresponding LD-corrections in

the ratios of neutralB-decays,B(B0 ! (�0; !) + 
)=B(B0 ! K�0 + 
) are expected to

be smaller [39,40] due to their being both colour and (electric)-charge suppressed, hence
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Figure 6: Contours in the(��; ��) plane following from assumed values of the ratio�R;
outer curve (�R = 0:06), central curve (�R = 0:04), inner curve (�R = 0:02). The
solid, dotted, dashed, long-short dashed lines correspond to the AMM, KS, HQET and
LSW approaches, respectively, for the central values of the parameters given in Table
1. Also shown is the unitarity triangle corresponding to the central values of the CKM
parameters from the analysis of ref. [32].

reducing the theoretical uncertainty, but probably not better than�10%. Finally, we also

note the constraints onjVtd=Vtsj, which can be obtained from the measurements of the ra-

tios of some exclusive two-body non-leptonic decays, such asB(B0 ! K�K0)=B(B0 !
�K0), advocated in Ref. [41]. This method may provide interesting results on the CKM

ratio, but once data are available on the FCNC radiative and semileptonic decays dis-

cussed above, they are expected to provide more reliable information on the CKM matrix

elementsVtd andVts. In particular, the ratio�R may provide one of the most precise

determinations ofjVtd=Vtsj.
We hope that the results presented here will help focus attention on experimental

measurements of the branching ratios and CP asymmetries in the FCNC decaysB !
(Xd; Xs)`

+`�. We also underline the need to calculate the next-to-leading order correc-

tions in the CP asymmetries to tame the scale dependence.
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