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1 Introduction

Flavor–changing neutral–current (FCNC) processes provide a powerful tool for indirect

searches of New Physics. This is particularly true in the framework of low energy su-

persymmetry [1], which represents one of the most interesting extensions of the Standard

Model (SM). The large number of new particles carrying flavor quantum numbers, present

in this context, would naturally lead to sizable effects in FCNC transitions [2,3].

At the one–loop level, supersymmetric contributions to FCNC amplitudes can be

classified into three groups, according to the virtual particles inside the loop: i) Higgs/W–

quarks, ii) gluino–squarks and iii) chargino/neutralino–squarks. The first group contains

the SM contributions as a particular subgroup, whereas ii) and iii) represent genuine

supersymmetric effects. Among them, gluino–squark transitions have been widely dis-

cussed in the literature [3–6] and are expected to produce the dominant non–SM effect in

�F = 2 processes. This is confirmed by the analysis ofK0 � �K0 mixing with the inclu-

sion of gluino–squark contributions, which provides severe constraints on supersymmetric

models [3–6]. The effect of chargino/neutralino–squark diagrams is usually neglected in

the analysis of such processes.

A different situation occurs in�F = 1 transitions mediated byZ–penguin dia-

grams, which are particularly relevant to rare kaon decays, likeK ! ����. As recently

discussed in [7,8], the dominant supersymmetric contribution to these processes is given

by chargino–up–squarks diagrams. This is because theZ�qiqj effective vertex is neces-

sarily proportional toSU(2)L–breaking couplings that, in supersymmetric models, are

provided byqL� qR, ~qL� ~qR and wino–higgsino mixing. Since the~qL� ~qR mixing in the

down sector is suppressed by the small down–type Yukawa couplings, the effect of gluino

and neutralino diagrams is necessarily small. On the other hand, the large Yukawa cou-

pling of the top leads to potentially large effects in diagrams involving up–type quarks or

squarks. Indeed the(d; s)L � tR mixing, already present in the SM, is responsible for the

m2
t enhancement of the Higgs/W–quark contribution to theZ�sd effective vertex. Anal-

ogously, it is natural to expect a large effect due to the( ~d; ~s)L � ~tR mixing in diagrams

involving charginos and up–type squarks.

This effect has been already noted by Buras, Romanino and Silvestrini in the calcu-

lation of the the supersymmetric contributions toK ! ���� [8]. However, this calculation

has been performed in thesinglemass–insertion approximation, where only terms with

at most one off–diagonal element of the squark mass matrix are considered. We believe

that this approximation is not sufficient to fully account for possible large effects in the

present case. Indeed, in order to provide the necessarySU(2)L breaking, at least two

mass–mixing terms are necessary, either from the squark sector (~uL � ~uR) or from the
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chargino sector (wino–higgsino). Since both these couplings vanish asO(mW=MS) in

the limit of a heavy supersymmetry–breaking scale (MS), we consider more appropriate

to expand in both of them up to the second order. One could argue that wino–higgsino

mixing is not suppressed by the off–diagonal flavor structure. However, the hierarchy

of the Yukawa couplings implies that terms with a single wino–higgsino mixing always

appear together with suppressed CKM factors. As a result, it is reasonable to expect that

terms with a double LR mass insertion and without any CKM suppression are at least

of the same order as those generated by a single LR mass insertion together with wino–

higgsino mixing.

In the present paper we present a complete discussion of the supersymmetric contri-

butions to theZ�sd amplitude, beyond the single mass–insertion approximation. We find

that the contribution generated by a double LR mass insertion in the up–squark sector,

which was neglected in previous analyses, yields a potentially large effect. Employing the

notations of [8], we can naively say that in this case the�tm
2
t=m

2
W factor of the SM am-

plitude gets replaced by(M2
U)sLtR(M

2
U)tRdL=M

4
S. Interestingly, this kind of mechanism

is only weakly constrained byK0 � �K0 mixing and can provide a sizable enhancement

(up to two order of magnitudes) to rare decay widths.

The paper is organized as follows. In section 2 we discuss the supersymmetric

contributions to theZ�sd amplitude, with particular attention to the hierarchy of the various

terms. The role of box diagrams in�F = 1 transitions is also briefly analyzed. In section

3 we discuss theoretical and phenomenological bounds on the up–type LR couplings. In

section 4 we analyze the possible enhancements of rare kaon decays rates driven by these

supersymmetric effects. The results are summarized in the conclusions.

2 TheZ�sd effective vertex

The amplitude we are interested in here is the one–loop FC effective coupling of theZ

boson to down–type quarks, in the limit of vanishing external masses and momenta. As

already emphasized in [7,8], theSU(2)L�U(1)Y ! U(1)e:m: gauge structure implies that

this coupling proceeds through symmetry–breaking terms and involves only left–handed

quarks. Thus it can be generally described by introducing the effective Lagrangian

LZFC =
GFp
2

e

2�2
M2

Z

cos�W

sin�W

Wds Z��s
�(1� 5)d + h.c. (1)

whereWds is a complex dimensionless coupling.

In our conventions, the SM contribution of top–quark penguin diagrams, evaluated

in the ’t Hooft–Feynman gauge, leads to

W SM

ds = �tC(xtW ) ; (2)
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where�t = V �

tsVtd, Vij are the CKM matrix elements [9] andxtW = m2
t =m

2
W . The loop

functionC(x), originally computed in [10], can be found in the appendix. We recall that

C(x)! x=8 for largex.

In the minimal supersymmetric extension of the SM, which requires two Higgs

doublets, the contribution of penguin diagrams with the exchange of charged Higgs and

top–quarks is aligned with the SM one (i.e. is proportional to�t). Denoting as usual by

tan� the ratio of the two Higgs vacuum expectation values [1], we find

WH
ds = �t

m2
H

m2
W tan2 �

H(xtH) ; (3)

where nowxtH = m2
t=m

2
H�

. Similarly to the SM case, alsoH(x)! x=8 for largex (the

full expression ofH(x) is given in the appendix). The sum of (2) and (3) complete the

first class of contributions outlined in the introduction, namely the Higgs/W–quark dia-

grams. To analyze the genuine supersymmetric effects, and particularly those generated

by chargino–squark exchange, we need to discuss the structure of the supersymmetric

mass matrices.

In the basis of the electroweak eigenstates, wino and higgsino, the chargino mass

matrix is given by

M� =

 
M2

p
2mW sin�p

2mW cos � �

!
; (4)

where the index 1 of both rows and columns refers to the wino state. Following the stan-

dard notations [1], here� denote the Higgs quadratic coupling andM2 the soft supersym-

metry–breaking wino mass. To define the mass eigenstates we introduce the unitary ma-

tricesÛ andV̂ which diagonalizeM�

Û�M�V̂
y = diag(M�1 ;M�2) : (5)

As can be noticed, the off–diagonal entries ofM� areO(mW ), whereasM2 isO(MS). In

the limit wheremW=M2 is a small parameter we can perform a perturbative diagonaliza-

tion ofM� around its diagonal elements, or an expansion ofÛ andV̂ around the identity

matrix.

In the squark sector we have6 � 6 matrices which mix the three families of left–

handed and right–handed squarks. A convenient basis for our calculation is the basis

where thediL� ~ujL� �n coupling is flavor diagonal and thediL� ~ujR� �n one is ruled by

the CKM matrix [8]. In this case, the up–squark mass matrix is given by the Hermitian

matrix

M2
U =

 
(M2

U)dLdL (M2
U)dLuR

(M2
U )uRdL (M2

U )uRuR

!
(6)
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where the subscriptdL (which runs over three values) indicates the combination of left–

handed up–type squarks which appear in the diagonal couplingsdL � ~u
(d)
L � �n. On the

other hand, the indexuR denotes the combination of right–handed up–type squarks which

appear in thediL � ~ujR � �n vertices ruled by the CKM matrix–elementVij. SinceM2
U is

Hermitian we need to introduce only one unitary matrix,Ĥ, to diagonalize it

ĤM2
UĤ

y = diag(M~u1 ;M~u2 ; : : : ;M~u6) : (7)

Also for M2
U the off–diagonal elements are expected to be small and the perturbative

diagonalization is well justified [3].

We are now ready to evaluate the contribution of the chargino–squark penguin di-

agrams in Fig. 1. The full result before any mass expansion is quite simple and is given

by1

W �

ds =
1

8
Ad

jl
�As

ikFjilk ; (8)

where

Ad

jl = ĤldL V̂
y

1j � gtVtdĤltR V̂
y

2j ; (9)

�As

ik = Ĥy

sLk
V̂i1 � gtV

�

tsĤ
y

tRk
V̂i2 ; (10)

Fjilk = V̂j1V̂
y

1i �lk k(xik; xjk)� 2Ûi1Û
y

1j �lk
p
xikxjkj(xik; xjk)

��ij ĤkqLĤ
y

qLl
k(xik; xlk) : (11)

For simplicity the effect of all the Yukawa couplings butgt = mt=(
p
2mW sin�) has been

neglected. Analogous to the previous cases, the variablesxij denote ratios of squared

masses (e.g.xik = M2
�i
=M2

~uk
) and the functionsk(x; y) andj(x; y) can be found in the

appendix.

The product ofAd
jl and �As

ik in (8) generate four independent terms, proportional to

g2t�t, gtVtd, gtV
�

ts and1, respectively, which correspond to the so–called RR, LR, RL and

LL contributions in the notation of [7,8]. We proceed analyzing these terms separately.

1. The RR contribution is generated by a Yukawa–type interaction in both quark–

squark–chargino vertices of Fig. 1. This term is the only one which survives in the

limit of diagonalM2
U , i.e. to the lowest order in the perturbative expansion ofĤ

around unity. In this limitW �

dsjRR is given by

W �

dsj0RR =
1

8
g2t�tV̂

y

2j

h
V̂j1V̂

y

1ik(xitR ; xjtR)

�2Ûi1Û y

1j

p
xitRxjtRj(xitR ; xjtR)

i
V̂i2 : (12)

1 The sum over the repeated indicesi andj (running from 1 to 2),l andk (running from 1 to 6), andqL
(running over the three valuesdL, sL andbL ) is understood.
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Figure 1: Chargino–up–squark penguin diagrams contributing to theZ�sd effective vertex
(diagrams involving self–energy corrections to the external legs are not explicitly shown).

As anticipated in the introduction, theSU(2)L breaking of theZ�sd vertex re-

quires at least two mass–mixing terms, either from the squark sector or from the

chargino sector. In (12) the absence of the former mechanism implies a double

wino–higgsino mixing, as can be easily checked by the mismatch ofV̂ andÛ in-

dices. ThusW �

dsj0RR is parametrically suppressed byO(m2
W=M

2
2 ) and aligned in

phase with respect toW SM
ds . To get a feeling of the numerical factors, note that

k(1; 1) = 3=2 and j(1; 1) = 1=2. We then conclude that this contribution can-

not provide a sizable effect, particularly in the limit of a heavy supersymmetry–

breaking scale.

Considering higher orders in the perturbative expansion ofĤ, one can easily check

that there is no contribution toW �

dsjRR at the first order. At the second order it

is possible to generate a non–vanishing contribution and also to avoid the wino–

higgsino mixing. However, the unavoidable factor�t makesW �

dsjRR always not

particularly interesting with respect toW SM
ds .

2. The LR and RL terms are originated by a Yukawa–type interaction in one of the

two quark–squark–chargino vertices of Fig. 1 and a gauge–type interaction in the

other. As can be easily understood, this implies thatW �

dsjLR andW �

dsjRL are at least

of first order in both wino–higgsino and~qL � ~qR mixing. Performing explicitly the

expansion ofĤ up to the first order, as discussed in the appendix, we find

W �

dsj1LR = �1

8
gtVtd

(M2
U)sLtR
M2

~uL

V̂ y

2j

h
V̂j1V̂

y

1ik(xiuL ; xjuL; xtRuL)

��ijk(xiuL ; xtRuL; 1)� 2Ûi1Û
y

1j

p
xiuLxjuLj(xiuL; xjuL; xtRuL)

i
V̂i1 ; (13)

whereM~uL indicates the average mass of the approximate left–handed up squarks.

TheW �

dsj1RL term can be obtained from (13) with the substitutionVtd(M
2
U)sLtR !
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V �

ts(M
2
U)tRdL and with the exchange1$ 2 in the indices of thêV matrices outside

the square brackets.

The presence of a single CKM matrix element in (13) leads to potentially large

effects: the missing factorV �

ts is replaced by(�ULR)
�

ts, where

(�ULR)ab = (M2
U)aRbL=M

2
~uL
; (14)

and the ratio(�ULR)ts=Vts can be larger than one [5]. However, this enhancement

is partially compensated by theO(mW=M2) suppression induced by the wino–

higgsino mixing and the total effect is not very large. Indeed the phenomeno-

logical bounds on(�ULR)ts, dictated mainly byb ! s, become weaker for large

supersymmetric masses, when the wino–higgsino suppression gets stronger. As a

result,W �

dsj1LR can be at most as large asW SM
ds [8]. Similar comments apply also to

W �

dsj1RL (see the next section for a more detailed discussion about limits on(�ULR)ts

and(�ULR)td).

It is interesting to note how the LR and RL terms, which arise only at first order in

the expansion of̂H, are potentially larger and not aligned in phase with respect to

the lowest order contribution, provided byW �

dsj0RR. This is clearly a consequence

of the disappearance of one of the two CKM factors. For this reason, it is natural

to expect that terms arising at the second order in the mass–insertion expansion and

without any CKM suppression could be even bigger.

3. The LL term is originated by a double gauge–type interaction in the quark–squark–

chargino vertices of Fig. 1. Similarly to the RR case, this implies a second–order

mixing either in the chargino sector or in the~qL � ~qR sector. However, contrary to

the RR case, there is no contribution to the leading–order in the expansion ofĤ.

The first term in this expansion arises to the first order and is given by

W
�

dsj1LL = �1

8

(M2
U)sLdL
M2

~uL

V̂
y

1j

h
V̂j2V̂

y

2ik(xiuL ; xjuL; 1)

�2Ûi2Û y

2j

p
xiuLxjuLj(xiuL; xjuL; 1)

i
V̂i1 : (15)

As can be noted, this term involves a double wino–higgsino mixing, which pro-

vides the necessarySU(2)L breaking, and a first–order mixing among left–handed

squarks. Thus, even if apparently enhanced by the absence of any CKM factor,

W �

dsj1LL is strongly suppressed in the limit of heavy supersymmetry–breaking scale.

Moreover, theSU(2)L invariance of the soft–breaking terms relates(M2
U )sLdL to

(M2
D)sLdL [5], which is strongly constrained byK0 � �K0 mixing. As a result,

W �

dsj1LL turns out to be always smaller thanW SM
ds [8].
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A different scenario occurs if we consider the contribution toW �

dsjLL which survives

in the absence of wino–higgsino mixing. In this case one has to go at least to

the second order in the expansion ofĤ, and only terms with a double LR mixing

survives. The lowest–order result in this limit is simply given by

W �

dsj2LL =
1

8

(M2
U)sLqR(M

2
U )qRdL

m4
�1

l(xuL1; xuL1; xqR1)

=
1

8
(�ULR)

�

qs (�
U

LR)qd x
2
uL1

l(xuL1; xuL1; xqR1) ; (16)

where the functionl(x; y; z), normalized tol(1; 1; 1) = �1=12, is reported in the

appendix. Contrary to the cases ofW �

dsj0RR, W �

dsj1LR andW �

dsj1LL discussed previ-

ously, there is no explicit suppression inW �

dsj2LL in the limit of heavy superpartners.

Actually the factor(�ULR)
�

qs(�
U
LR)qd is expected to vanish in this limit. However, as

we shall discuss in the next section, forq = t there is room enough to provide siz-

able effects (in close analogy with the�t factor in the SM case) even forMS � 1

TeV. In this caseW �

dsj2LL could be substantially larger thanW SM
ds providing sizable

enhancements to rare kaon decay rates.

Using the effective Lagrangian (1) we can easily calculate the effects of theZ�sd penguins

discussed above in various processes. In the case ofK ! ���� decays, discussed in the

literature, we find that the contribution generated by (1) to theX function, defined by

Heff =
GFp
2

�

2� sin2 �W

�tX �s�(1� 5)d ��l
�(1� 5)�l + h.c.; (17)

is given by

XZ�sd = Wds=�t : (18)

Comparing our results in (3), (12), (13) and (15) with those reported in the appendix of

[8] we find a perfect agreement but for an overall factor�1=2 due to a misprint.2

In principle, in the case ofK ! ���� decays also supersymmetric box diagrams

could provide sizable effects, as it happens for instance in the SM case [11]. However, the

contribution of chargino–up–squark box diagrams toX turns out to be always suppressed

by a factorm2
W=M

2
~q , besides possible wino–higgsino mixing.3 In a generic expansion

in powers of off–diagonal mass terms, denoted by�, the box contribution toX starts at

O(�3), whereas the penguin one atO(�2). Thus, in general we agree with the statement

2 This misprint does not affect the numerical results of [8]. We thank L. Silvestrini for clarifying this
point.

3 The contribution of the charged–Higgs box diagrams is clearly negligible because of the small lepton
Yukawa couplings.
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of Nir and Worah [7] that penguin contributions provide the dominant effect. Only in the

case of the terms proportional to(M2
U)sLdL, when the penguin contribution is suppressed

and starts atO(�3), the corresponding box term turns out to be competing [8]. However,

as long as we are interested in possible large effects this is not a relevant case.

Similar arguments apply also to other processes where the effectiveZ�sd vertex can

contribute, likeK ! `+`� andK ! �`+`� decays. Hence, in a minimal supersym-

metric extension of the SM with generic flavor sector, and particularly in the limit of a

heavy supersymmetry–breaking scale, we consider it a good approximation to encode the

dominant non–SM effects to these processes via the Lagrangian (1). A similar approach

was considered by Nir and Silverman in a different context [12]: the couplingWds in (1)

is related to theUds of Nir and Silverman by

Uds =
�

� sin2�W

Wds : (19)

3 Bounds on the(�ULR)ij couplings.

In the previous section we have argued that the (LR)2 term that appears at second order

in the mass–insertion expansion, may give the largest enhancement to theZ�sd effective

vertex with respect to the SM contribution. In the present section we will analyze in detail

the bounds we can put on this term, considering both phenomenological information, and

purely theoretical constraints.

3.1 Vacuum–stability bounds.

Before analyzing the bounds coming from phenomenology, we discuss an interesting re-

sult obtained by Casas and Dimopoulos [13], who have shown that bounds on the off–

diagonal LR entries of the squark mass matrices can be derived also from the requirement

that the standard vacuum of the theory be stable. In particular they require that there are

no charge and color breaking minima (CCB bounds), nor directions in which the poten-

tial is unbounded from below (UFB bounds). Obviously, these bounds have to be satisfied

by any model (and interestingly enough, are generallynot satisfied) and therefore can be

considered as model–independent bounds. The only way to avoid or at least to soften

these constraints is to assume that we live in a sufficiently long–lived metastable vacuum.

However, to be more conservative, we will not take into account this possibility. The con-

sequence of the stability bounds for the matrix elements of our interest can be stated in a

very simple manner:

���(�ULR)ij��� � muk

q
2M2

~u +M2
~l

M2
~u

(k = max(i; j)) ; (20)
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whereM2
~u andM2

~l
denotes the average masses of up–squarks and sleptons, whereasmuk

indicates the mass of theuk quark. Themuk
factor provides a very stringent suppression

unless one of the two generation indices (i and j) is equal to 3. For this reason it is

a good approximation to replace the sum
P

q(�
U
LR)

�

qs (�ULR)qd in (16) with the product

(�ULR)
�

ts (�
U
LR)td. In this case the bound (20) can be roughly expressed in the following

form ���(�ULR)�ts(�ULR)td��� � 3m2
t

M2
S

; (21)

where withMS we have indicated a typical supersymmetric scale. Actually the bound

(20) corresponds to the UFB constraint, but as long as we consider almost degenerate

supersymmetric particles CCB and UFB bounds are essentially equivalent [13].

At this point it is useful to make a first estimate of the possible enhancement induced

by the (LR)2 mass insertion in theZ�sd vertex. Comparing (2) and (16), in the limit

xtW � 1 and assuming almost degenerate supersymmetric particles, leads to
�����W

�

dsj2LL
W SM

ds

����� '
�����(�

U
LR)

�

ts (�
U
LR)td

12 xtW �t

����� <� 20�
�
500GeV
MS

�2
; (22)

where the last inequality has been obtained imposing the bound (21). As can be noticed,

though stringent the model–independent constraint leaves enough room for a large en-

hancement, even forMS as large as 1 TeV.

3.2 Box�S = 2.

A term with two LR mass insertions appears in the box diagram (containing charginos and

squarks) contributing toK0 � �K0 mixing. In this case, however, this term appears only

at a subleading level. The complete expression for the contribution of the box diagram to

the effective Hamiltonian for�S = 2 is

Heff
�S=2 =

GFp
2

�

� sin2�w

Ad
ik
�As
jkA

d
jl
�As
il

m2
W

M2
~qk

k(xik; xjk; xlk)(�sL
�dL)(�sL�dL) : (23)

We may now expand the mass matrices around their diagonal part to the desired order.

Considering only terms without chargino mixing, we get

Ad

ik
�As

jkA
d

jl
�As

il k(xik; xjk; xlk) =

� 1

20

�
((�ULL)sd)

2 � 2

3
(�ULL)sd((�

U

LR)
�

ts(�
U
LR)td) +

1

7
((�ULR)

�

ts(�
U

LR)td)
2 + : : :

�

�g
2
t �t

10

�
(�ULR)

�

ts(�
U

LR)td + : : :
�
+O(�2t ) : (24)
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To obtain this result we have not only applied the formulae for the perturbative

diagonalization of the mass matrices (that we give in appendix), but have also taken the

limit where all superpartners have approximately the same mass (xki = 1 for all k’s and

i’s). If we now use the experimental information on�mK = 3:5 � 10�12, and require

that the contribution of the term with two LR insertions in (24)4 does not exceed the

experimental value, we get
r

Re
h
((�ULR)

�
ts(�

U
LR)td)

2
i
� 0:16�

�
MS

500GeV

�
: (25)

We remark that this limit is derived using the quadratic term in (24), as the linear one is

multiplied by�t which suppresses its contribution strongly. Similarly, we have not con-

sidered the bounds that could be obtained on the single(�ULR)ts and (�ULR)td couplings,

which always appear suppressed both by CKM factors and chargino mixing. Of course

this limit is rather generous, as one would expect the first two terms in (24) to be respon-

sible for the main part of the effect. On the other hand, until we will be able to get some

independent information on the first two terms in the expansion (and on their signs too)

this is the best we can get from this quantity.

If we look now at the imaginary part of the same matrix element, and consider the

experimental information on Re(�), we can get a bound on the imaginary part of the (LR)2

term squared: r
Im
h
((�ULR)

�
ts(�

U
LR)td)

2
i
� 0:015�

�
MS

500GeV

�
: (26)

3.3 Limits from B andD physics.

Buras, Romanino and Silvestrini [8] have analyzed the bounds on various mass insertions

coming fromB–meson phenomenology. From the chargino contribution toBd � �Bd

mixing they get ���(�ULR)dt��� � 0:1�
�

MS

500GeV

�
: (27)

A bound on the other matrix element of our interest was earlier obtained by Misiak, Poko-

rski and Rosiek analyzing the chargino contribution tob! s [5]:

���(�ULR)st��� � 3�
�

MS

500GeV

�2
: (28)

In principle a limit on Re[((�ULR)
�

ts(�
U
LR)td)

2], similar to the one in (25), could be

obtained by the analysis of the gluino–up–squark box diagram contributing toD0 � �D0

mixing. Note, however, that this bound is very different to those discussed above since

4 Evaluating this with the approximationhK0j(�sL
�dL)(�sL�dL)jK

0i = 1=3mK f2K .
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it can be made arbitrarily small in the limit of a heavy gluino mass. Assuming gluino

and chargino approximately degenerate, the constraint obtained byD0 � �D0 mixing is

essentially equivalent to theK0 � �K0 one. Indeed the(gstrong=g)4 enhancement of the

gluino box diagram with respect to the chargino one is almost completely compensated

by the less stringent experimental constraint on�mD with respect to�mK .5

3.4 Bounds on theZ�sd vertex.

As anticipated in the previous section, theZ�sd effective vertex contributes to various rare

kaon transitions. Some of them have been observed, whereas stringent experimental limits

exist on the others, we can therefore use these data to derive bounds on the (LR)2 term

which we are now analyzing. Obviously, these bounds are best expressed in terms of the

couplingWds introduced in (1). A similar analysis has been already made by Grossman

and Nir [14], using exactly the same language of an effectiveZ�sd coupling but for the

coupling (they used theUds of [12]). Following and partially updating (correcting) their

results, we find

1. from the processKL ! �+�� [15]:

jRe(Wds)j � 2:2� 10�3 ; (29)

2. from6 B(K+ ! �+���) < 2� 10�9 [16]:

jWdsj � 3:6� 10�3 ; (30)

3. from the measurement of�:

jRe(Wds)Im(Wds)j � 1:1� 10�5 : (31)

In principle similar bounds could be obtained by�0=� andB(KL ! �0e+e�). However,

in both cases the large theoretical uncertainties and the poor experimental information

lead to weaker constraints. To translate the results (29-31) into bounds for the (LR)2 term

of our interest we use the relation

W �

dsj2LL =
1

96
(�ULR)

�

ts(�
U

LR)td ;

derived from (16) in the limit of degenerate supersymmetric particles. We then obtain���Re
�
(�ULR)

�

ts(�
U

LR)td
���� � 0:21 ;���(�ULR)�ts(�ULR)td��� � 0:35 ;���Re((�ULR)

�

ts(�
U
LR)td)Im((�ULR)

�

ts(�
U
LR)td)

��� � 0:1 : (32)

5 We are grateful to M. Worah for a clarifying discussion about this point.
6 Note that the corresponding bound in [14] was larger due to missing factor six in their Eq. (13).
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3.5 Summary of the bounds.

The two limits derived from the analysis of the�S = 2 box diagram can be written as

follows
����hRe

�
(�ULR)

�

ts(�
U

LR)td
�i2 � hIm �

(�ULR)
�

ts(�
U

LR)td
�i2���� � 2:6� 10�2 �

�
MS

500GeV

�2
(33)

���Re((�ULR)
�

ts(�
U

LR)td)Im((�ULR)
�

ts(�
U

LR)td)
��� � 1:1� 10�4 �

�
MS

500GeV

�2
(34)

those obtained fromB physics lead to

���(�ULR)�ts(�ULR)td��� � 0:3�
�

MS

500GeV

�3
; (35)

whereas the model–independent one is given by

���(�ULR)�ts(�ULR)td
��� � 0:3�

�
500GeV
MS

�2
: (36)

Finally, the ‘scale–independent’ limits derived from the phenomenological analysis of the

Z�sd vertex are

���Re
�
(�ULR)

�

ts(�
U
LR)td

���� � 0:21 ;���(�ULR)�ts(�ULR)td��� � 0:35 ; (37)

where we have skipped the bound on the product of real and imaginary part, which is

clearly negligible with respect to the one in (34).

A summary of the various bounds is displayed in Fig. 2, for the sample valueMS =

500 GeV. From the figure it is clear that the bound in (34) is by far the most stringent

one. This implies that, if we assume that real and imaginary parts of(�ULR)
�

ts(�
U
LR)td are

of the same order, these areO(10�2). On the contrary, if one of the two is zero the other

can beO(10�1). The maximum value allowed for the real part setting the imaginary part

to zero, or viceversa, is 0.16 as dictated by the bound (33). Playing around with theMS

dependence of these bounds one can find that the maximum value allowed for either the

imaginary or real part (when the other is set to zero) can grow up to 0.2 forMS = 600

GeV, again a bound dictated by (33). Above this value ofMS the model–independent

limit on the modulus becomes more stringent. Notice in fact that the model–independent

limit on
���(�ULR)�ts(�ULR)td��� and the one coming fromB–physics have opposite dependence

on the average mass of the superpartners. So that forMS < 500 GeV it is theB–physics

one which dominates, whereas above 500 GeV the model–independent one takes over.
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Figure 2: Summary of the bounds on the (LR)2 coupling~�t, as defined in Eq. (38).

In conclusion, forMS
>
� 600 GeV we can just consider the two bounds in (34) and

(36), as all the others will be automatically satisfied. If we define

~�t = j~�tjei~�t = (�ULR)
�

ts(�
U

LR)td ; (38)

the bound we have to satisfy forMS
>
� 600 GeV is

j~�tj < min

2
40:2� �600GeV

MS

�2
;
2� 10�2q
j sin 2~�tj

�
MS

600GeV

�35 ; (39)

whereas the phase~�t is unbounded.

At this point one could argue whether a reasonable low–energy supersymmetric

model could saturate this bound. It is beyond the scope of this paper to analyze any

model in detail. However, we recall that in generic superstring scenarios the so–called

A terms, responsible for the LR entries of the mass matrices, are expected to beO(MS)

[17]. This would imply(M2
LR)ij � O(mW �MS). Thus in general it is not unnatural to

consider models where the bound (39) is saturated (see e.g. the discussion at the end of

Ref. [13]).
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4 Phenomenological consequences of a largeZ�sd effective coupling

The most clear signature of an enhancement in theZ�sd effective vertex could be found

in K ! ���� decays. Within the SM these transitions can be described by means of the

Hamiltonian (17), with theX function given by [11]

XSM = Xt (xtW ) +
�4�c

�t
Pc ; (40)

whereXt(xtW ) ' 1:5 is generated by the dominant top–quark contribution (summing

penguin and box diagrams) andPc = 0:40 � 0:06 is due to the charm loops (as usual

� denotes the Cabibbo angle and�c = V �

csVcd, thusj�4�c=�tj � O(1)). The branching

ratios ofK+ andKL modes can be expressed in terms of theX function as

BR(K+ ! �+���) = �+

������tX�5
�����
2

; (41)

BR(KL ! �0���) = �L

 
Im

�tX

�5

!2

; (42)

where�+ = 4:11�10�11 and�L = 1:80�10�10 [18]. For a numerical estimate we recall

that� = 0:22, j�tj ' 3� 10�4 and Im�t ' j�tj=3 [19].

In extensions of the SM where the main new–physics effects can be encoded via the

effective couplingWds, we should add toXSM theXZ�sd function defined in (18). Thus

if we add to the SM contribution the dominant supersymmetric effect, provided by the

(LR)2 terms, we find

Xtot =
1

8

~�t

�t
x2uL1 l(xuL1; xuL1; xqR1) +Xt (xtW ) +

�4�c

�t
Pc

' 1

96

~�t

�t
+Xt (xtW ) +

�4�c

�t
Pc ; (43)

where~�t has been defined in (38) and the second line of (43) is obtained in the limit

of almost degenerate superpartners. Given the constraints onj~�tj reported in (39) it is

clear that large enhancements with respect to the SM case are possible. In the rate of the

charged mode one can gain up to an order of magnitude ifMS is around600 GeV, where

the effect is maximum. In theKL case a crucial role is played by the new phase~�t: if
~�t � 90� a huge enhancement (up to two order of magnitudes) is possible for a wide range

of MS. In Table 1 we summarize the upper bounds on the two modes forMS � 0:6 TeV

andMS � 1 TeV.

Related modes which could allow to detect an enhancement in theZ�sd effective

amplitude are theK ! �`+`� decays. In the charged channel the long–distance process
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decay mode maximum SUSY branching ratio SM branching ratio
MS � 0:6 TeV MS � 1 TeV

K+ ! �+��� 1� 10�9 4� 10�10 (9:1� 3:8)� 10�11 [19]

KL ! �0��� 4� 10�9 6� 10�10 (2:8� 1:7)� 10�11 [19]

KL ! �0e+e� 6� 10�10 1� 10�10 <
� few � 10�11 [19,20]

Table 1: Approximate upper bounds for the branching ratios ofK ! ���� andKL !
�0e+e� decays within the low–energy supersymmetric scenario discussed in the text,
compared to the SM expectations.

K+ ! �+� ! �+`+`� is by far dominant, hiding the contribution of theZ�sd tran-

sition. However, the single–photon exchange amplitude is forbidden byCP invariance

in theKL ! �0`+`� mode, which is therefore more sensitive to short–distance dynam-

ics (see e.g. Ref. [20] for a recent discussion about these decays). Assuming that both

KL ! �0e+e� andKL ! �0��� transitions are dominated by theCP–violating part

of theZ�sd effective amplitude, we can easily relate their widths. Indeed, neglecting the

electron mass and the effects of the small vector coupling of the electrons to theZ, leads

to �(KL ! �0e+e�) = �(KL ! �0���)=6. Using this approximate relation we have

derived the upper bound forB(KL ! �0e+e�) reported in the last line of Table 1. As

it is well known, in addition to the directCP–violating transition, theKL ! �0e+e�

decay can proceed through indirectCP–violation (KL ! KS ! �0e+e�) or via the

CP–conserving two–photon exchange (KL ! �0 ! �0e+e�). However, both these

mechanisms are expected to produce corrections toB(KL ! �0e+e�) at the level of

few�10�11 at most [19,20]. This ensures that a detection ofB(KL ! �0e+e�) above

10�10 can be considered as a clear signature of new–physics.

As can be expected, the upper limits for the supersymmetric branching ratios shown

in Table 1 are much larger with respect to those reported in [21], where the supersym-

metric contributions toK ! ���� have been evaluated essentially without allowing

( ~d; ~s)L � ~tR mixing. We stress, however, that our upper bounds are significantly larger

also than those recently obtained in [8], where the( ~d; ~s)L� ~tR mixing has been evaluated
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only to first order within the mass–insertion approximation.

To conclude this section we emphasize that, though large, our results should not be

considered as too optimistic. Indeed we could obtain even bigger effects playing with the

various supersymmetric mass ratios (that we have set to 1 just to simplify our results).

In particular, larger effects are obtained with a wino mass lighter than the average squark

mass. Moreover, we have neglected possible constructive interferences between the lead-

ing (LR)2 terms and the subleading, but still not negligible, LR terms. Finally, we have

neglected possible destructive interferences between chargino– and gluino–mediated am-

plitudes when evaluating the bounds on the LR couplings induced byK0 � �K0 mixing:

this effect could easily lead to overcome the stringent constraint in Eq. (34).

5 Conclusions

In this paper we have analyzed supersymmetric contributions to rareK decays mediated

by an effectiveZ�sd vertex. We have adopted the strategy of the so–called mass–insertion

approximation, which consists in assuming that the squark mass matrices are almost diag-

onal, and that their diagonalization can be performed perturbatively. While recent similar

analyses have stopped this approximation to the first order, we have argued that in the

present case it is necessary to go up to the second order in this expansion to account for

all possible important effects.

This result does not contradict the validity of the mass–insertion approximation.

Rather, we have stressed the fact that there is an interplay between the squark mass matri-

ces and other mass matrices present in the theory. The reason why the second–order terms

in this expansion can be more important than the first–order ones, is because they do not

contain anymore off–diagonal CKM matrix elements which are known to be suppressed.

In other words, we could say that all mass matrices (both those of the quarks and of the

squarks) in the supersymmetric theory are almost diagonal, and that for all these matrices

we count off–diagonal elements as of order�. According to this counting rule, both the

SM and the SUSY contributions to this process are of order�2, and here we have for the

first time presented a complete result of SUSY effects at order�2.

Moreover, for reasons related to the necessary presence ofSU(2)L–breaking effects

in the effectiveZ�sd vertex, the supersymmetric contributions generated at the first order

in the mass–insertion always appear suppressed by off–diagonal elements of thechargino

mass matrix. These vanish asO(mW=MS) in the limit of a large supersymmetric scale,

MS, thus providing an additional damping factor which can be avoided only at the second

order in the expansion of the squark mass matrices. To be more precise, this suppression

as well as the CKM one can be avoided considering a double LR mixing in the up–squark
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sector.

We have performed a numerical analysis of the present bounds on the off–diagonal

LR elements of the up–squark mass matrix relevant to the effectiveZ�sd vertex. As a

result, we have found that to our present knowledge the term which had been neglected

so far (i.e. the one generated at second order in the mass–insertion approximation) is

the most dangerous one, and could lead to very large enhancements in rare kaon decay

rates. We have shown that theK+ ! �+��� rate could be enhanced up to one order of

magnitude with respect to the SM prediction, whereas the neutral decay modeKL !
�0��� could be enhanced by up to two orders of magnitude. The same two orders of

magnitude enhancement could be produced also in the decayKL ! �0e+e�. Finally, we

have also briefly discussed why the supersymmetric box contributions to these decays can

be neglected as long as we are interested in potentially large effects.

Our results show that the current experimental efforts in the search for these rare

decays are very much welcome and could give us valuable information on the flavor

structure of the soft–breaking terms of a generic supersymmetric extension of the SM.

Interestingly, we will not have to wait too long before experiments will reach the sensitiv-

ity necessary to observe, or at least to constrain, these supersymmetric effects. Indeed a

preliminary evidence of theK+ ! �+��� decay has been recently obtained [16] and the

BNL–E787 Collaboration is already analyzing new data on this mode. A sensitivity on

B(KL ! �0e+e+) at the level of10�10 is expected in few years by the KTeV experiment

at Fermilab [22]. Finally, concerning the challengingKL ! �0��� channel, while waiting

for the dedicated experiments aiming to reach a sensitivity of10�12 [23], even a non–

dedicated experiment like KLOE [24] has a chance to give new and valuable information

on possible extensions of the SM [25].
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Appendix

Expansion of the mass matrices around the diagonal.

Here we report the formulae needed to make the expansion around the diagonal of the

mass matrices up to second order, i.e. including two mass insertions. Given ann � n

Hermitian matrixM , we can decompose it in the form

M = M0 +M1 ; (A.1)

whereM0 = diag(m0
1; : : : ; m

0
n) andM1 has no elements on the diagonal.M can be

diagonalized by a unitary matrixX, such thatXMXy = diag(m1; : : : ; mn). Then, iff is

an arbitrary function, we have

X
y

ikf(mk)Xkj = �ijf(m
0
i ) +M1

ijf(m
0
i ; m

0
j)

+M1
ikM

1
kjf(m

0
i ; m

0
j ; m

0
k) +O

�
(M1)3

�
; (A.2)

where we have adopted the notation of Buras, Romanino and Silvestrini [8] to define an

n–argument function from ann� 1–argument one:

f(x; y; z1; : : : ; zn�2) =
f(x; z1; : : : ; zn�2)� f(y; z1; : : : ; zn�2)

x� y
: (A.3)

Loop functions.

The loop functions appearing in the top–quark penguin diagrams discussed in section 2

are given by

C(x) =
x

8

 
x� 6

x� 1
+

3x + 2

(x� 1)2
log x

!
; (A.4)

H(x) =
x2

8

 
� logx

(x� 1)2
+

1

x� 1

!
: (A.5)

The multi–variables functionsk(x1; : : : ; xn), j(x1; : : : ; xn) andl(x1; : : : ; xn), occurring

in chargino–squark diagrams, are defined according to the recursive formula given in

(A.3). The explicit expression of the single–variable functions are

j(x) =
x log x

x� 1
; k(x) = x j(x) ; (A.6)

l(x) = k

�
1

x
;
1

x

�
� 2

x
j

�
1

x
;
1

x

�
� k

�
1

x
;
xuL1

x

�
� k

 
1

xuL1
;

x

xuL1

!
: (A.7)
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