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Abstract

The nucleon magnetic form factors in the unphysical region, i.e. for time-likeQ2 but
below theNN threshold, have been obtained by means of dispersion relations in a model
independent way, without any bias towards expected resonances. Space-like and time-like
data have been employed along with a regularization unfolding method to solve the inte-
gral equation. Remarkably, resonance structures with peaks for the�(770) and�0(1600)
and a structure near theNN threshold are automatically generated. The obtained� has
a much larger width, whose significance is explored. No evidence is found for a peak at
the� mass, in spite of some expectation if there is a sizeable polarizedss content in the
vector current of the nucleon.

PACS: 13.40.G; 14.20.D; 11.55.F



Introduction

Nucleon spectral functions and electromagnetic form factors (FF) play a fundamental role

in our understanding of the hadronic dynamics. Hence, for over 30 years, many attempts

have been made through dispersion relations (DR) [1–3,8,9,12] to unravel the spectral

functions and the FF in the time-like region, in particular for unphysicalQ2, below the

NN threshold. In principle, spectral functions and FF in the time-like region may be

computed via DR from the measurements of the space-like FF only [12]. However this is

an ill-posed mathematical question, because the answer depends in an unstable way on the

input data and an impossible accuracy is needed to get a unique, stable solution [12,13].

Up to now the FF evaluations in the time-like region have been done assuming a model,

mostly VDM [4], unitarized VDM [5] and in the framework [6] of the Skyrme model [7].

The lack of data one+e�!NN had prevented much progress in this endeavor.

Recently, measurements of the Proton time-like magnetic FF have been done on a

largeQ2 interval [14,15] and, even more recently, data concerning the Neutron time-like

FF have also become available [16]. These data turn out to be quite different from QCD

expectations [17,18]. In particular, it has been shown that the Neutron time-like magnetic

FF measurements are twice the prediction of a dispersive approach [9], assuming PQCD

asymptotic behaviours and a reasonable model for unphysicalQ2. Different conclusions

have been achieved on the basis of a unitarized VDM[10]. Yet the discrepancy is large

enough to prompt further measurements of the neutron time-like FF [9] and new proposals

towards this purpose are under way [19]. Pending future experiments, let us explore some

implications of the available experimental data, through a consideration of several open

questions:

� A sizeable, polarized,ss content in the nucleon has been suggested long time ago

and has been resumed to interpret sum rules violations in deep inelastic scattering

of polarized leptons on polarized nucleons [20], anss content is also suggested

by the nucleon sigma term and other measurements [21]: the evidence or not of a

sizeable� peak in the nucleon magnetic FF in the unphysical region, obtained in a

model independent way, would be a very direct check of a polarizedss content in

the vector current;

� At highQ2, the neutron time-like magnetic FF is found to be larger than that for the

proton, while one had expected it to be - as in the space-like region -� 1/2 of the

proton magnetic FF [17,18]. This indicates some non trivial dynamical activity in

between;
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� At high Q2, the size of the time-like proton magnetic FF itself is somewhat unex-

pected, since it is twice the value of its space-like FF counterpart at the samejQ2j.

We note that PQCD [22] and analyticity [23] predict both to be asymptotically the

same;

� Below threshold, there are indications for narrow structures in the total�(e+e� !

hadrons) cross section [24], suggested also by the proton and the neutron FF. These

may be related to similar effects in�pd annihilation in odd and even C channels [25])

and suggest a close investigation of the FF just below threshold (in principle, such

is feasible experimentally, through a very high statistics analysis of the reaction

pp! e+e��0 [26]);

� FF phases are needed to interpret anomalies in J/	!hadrons [27].

In the present work, we shall assume that the available data are indeed reliable and

we shall use them as input to evaluate the FF for unphysicalQ2. To make our results

as much model independent as possible,we do not bias our analysis towards expected

resonances. Instead, we let resonance structures and phases arise directly from the so-

lution of the DR. In contrast with the past, presently the nucleon FF are unknown in a

limited interval only. Thus, continuity through the interval limits can be implemented.

Hence the concerns mentioned above about a stable evaluation may be relieved, being

rather an interpolation than an analytical continuation. Unfortunately, present accuracy is

still not sufficient to provide a unique solution. Until even better time-like data become

available, we seek a solution under an additional smoothness hypothesis, implementing a

regularization method described below.

1 Solving DR by means of a regularization method

In order to get a form factorG(Q2) for 0 < Q2 < 4M2
N (Q2 defined to be positive in

the time-like region) DR forlogG(Q2) are considered [1]. The quantitylogG(Q2), just

asG(Q2), is analytic on the first sheet of the complexQ2 plane, with the same cuts on

the real positive axis and with additional poles where the FF has zeros. In the following,

we shall assume the absence of zeros (in FF) on the first sheet. This hypothesis will be

discussed later.

The DR relates the space-likelogG(Q2) to the time-likelog jG(Q2)j. After making

a subtraction atQ2 = 0, we have [1]:

logG(Q2) =
Q2
q
Q2
0 �Q2

�

Z
1

Q2
0

log jG(t)j

t(t�Q2)
q
t�Q2

0

dt (1)
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whereQ2
0 = 4m2

�.

Once log jG(Q2)j has been determined, the FF phase�(Q2) for time-like Q2, is

given by:

�(Q2) = �
Q2
q
Q2 �Q2

0

�
Pr
Z

1

Q2
0

log jG(t)j

t(t�Q2)
q
t�Q2

0

dt (2)

By splitting the integral in eq.(1) into two parts,
R
1

Q2
0
=
RQ2

1

Q2
0

+
R
1

Q2
1
, whereQ2

1 = 4M2
N is

the upper boundary of the unphysical region, one can separate the unphysical region, in

which the FF are unknown, from the experimentally accessible region. In this way, an

integral equation of the first kind, linear in the unknownlog jGj, can be derived from the

DR:

logG(Q2)� I(Q2) =
Q2
q
Q2
0 �Q2

�

Z Q2
1

Q2
0

log jG(t)j

t(t�Q2)
q
t�Q2

0

dt (3)

where

I(Q2) =
Q2
q
Q2
0 �Q2

�

Z
1

Q2
1

log jG(t)j

t(t�Q2)
q
t�Q2

0

dt (4)

This integral is a known quantity that can be calculated directly from the exper-

imental data in the time-like region with some recipe to extrapolate them to very high

Q2.

In order to avoid intabilities in solving eq.(3), a regularization technique exploiting

smoothness has to be applied [13]. These techniques have been mostly applied in the

unfolding of a spectrum affected by a finite resolution, to avoid instability usually met

in solving first kind integral equations. The procedure adopted here is described in the

following.

� I(Q2) has been calculated by fitting the time-like data to a rational, smooth, func-

tion having the expected asymptotic behaviour. The subtraction atQ2 = 0, as usual,

helps in making the results less dependent on the asymptotic extrapolation.

� A special treatment is adopted near theNN threshold: the upper boundary of the

unphysical region has been shifted toQ2
2 = Q2

1+�, with� ' 0:5GeV2, in order to

avoid instabilities that can possibly be originated by the steep threshold behaviour

of the nucleon FF. A new DR is then considered for the region(Q2
1; Q

2
2) as described

in sect.3.

� Continuity of the function through the upper boundary of the unphysical region is

imposed. At the lower boundary,4m2
�, only a very mild continuity is demanded,

respect to the FF calculated by means of eq. (1), to allow any steep variation.
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� A regularization is finally introduced by requiring the total curvature of the FF in

the unphysical region,r =
R Q2

2

Q2
0

�
d2jG(t)j

dt2

�2
dt, to be limited. Instead of the second

derivative oflog jGj, as in the standard procedure[13], the second derivative ofjGj

has been chosen for this purpose. The reason being that fluctuations injGj are

important only whenjGj is large, whilelog jGj fluctuations would be important

also whenjGj is small.

To solve eq.(3), a linearization method has been used: the integrals have been trans-

formed into sums overM = 50 suitable subintervals inQ2, with their widths increasing

with Q2. This is tantamount to a further smoothness hypothesis, effectively integrating

over any structure, whose half width is narrower than a minimum of about50 MeV.

The integral over thejth subinterval has been approximated by

Fj

Z Tj+1

Tj

dt

t(t�Q2)
q
t�Q2

0

(5)

whereFj = log jG[(Tj+1 + Tj)=2]j is the function calculated in the middle of the subin-

terval with boundaries atTj andTj+1.

The integral equation (3) is then solved by minimizing the quantity:

Rtot =
LX
i=1

8<
:

MX
j=1

Fj
Q2
i

q
Q2
0 �Q2

i

�

Z Tj+1

Tj

dt

t(t�Q2
i )
q
t�Q2

0

+ I(Q2
i )� log(G(Q2

i ))

9=
;
2

+

+� 6r(eFj) (6)

where theFj ’s are free parameters andQ2
i , with i = 1; :::; L, correspond to experi-

mental points available in the space-like region.

The dumping parameter� has to be set experimentally. It will not respond to sharp

structures if it is set too large, while unstable solutions will found using too small a value.

The uncertainties in the solution of eqs.(3) and (2), due to the experimental errors,

have been evaluated by simulating new sets of space-like and time-like data according to

the quoted errors and solving the DR for each simulated data set.

2 Test of the regularization method

To test the whole procedure and also to get a suitable range for the� parameter, we

selected the pion FF. In the time-like region, this FF is known up to theJ=	 mass and at

higherQ2 is extrapolated according to first order PQCD prescriptions [22]. Pion space-

like FF has been reobtained in two ways: (i) according to eq.(1), from the time-like data
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a

Figure 1: (a) Space-like pion (a), proton magnetic (b) and neutron magnetic (c) form
factor from DR applied to time-like data. In (a) the results with and without (dashed area)
subtraction are compared.
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and (ii ) according to the unsubtracted DR. The latter is in fair agreement with present

space-like data, as shown in fig.1a. Their difference is most likely due to the uncertainty

in the data above the� and in the asymptotic extrapolation, as indicated by the effect of

including a subtraction. This also provides a check that there are no relevant zeros in the

isovector FF. This check would have been airtight were pion space-like FF data for high

Q2 not obtained through extrapolations of the pion electroproduction data.

In order to fix the� parameter, the space-like dashed area, achieved by means of

eq.(1), and the time-like dashed area, obtained fitting the data aboveQ2
2 = 4:0 GeV 2,

have been used as input in eq.(6) to retrieve the time-like pion FF in the region between

Q2
0 andQ2

2. It turns out that� � M� is a suitable value to recover quite satisfactorily

the� peak, the� width and also the dip at 1.6 GeV, as shown in fig.2. It is worthwhile

stressing that, in solving the DR, steep structures like the� and even the interfence pattern

beyond the� are well retrieved from smooth inputs, once these inputs are built from these

structures.

The phase of the pion FF, from the solution of eq.(2), is shown in fig.3. Its expected

asymptotic value of 180 degrees is already reached above� 2 GeV [27].

3 The proton time-like magnetic FF

Some comments are in order about the hypotheses governing the extraction of the proton

FF from cross section measurements. It has been assumed that at threshold there is only

one FF, becauseGM(4M2
N) = GE(4M

2
N), assuming analyticity for electric and magnetic

FF as well as for the Pauli and Dirac FF or that exactly at threshold there is only an S

wave. Data are consistent with this hypothesis. Furthermore, at highQ2 the contribution

of GE to the total cross section is dumped by a factor4M2=Q2. In conclusion, in the

whole range explored, what is actually measured is very likely to beGM .

G
p
M seems to reach its expected asymptotic behaviour1=Q4 quite precociously, but

it is a factor of 2 higher thanGp
M at the same space-likejQ2j, while asymptotically they

should be equal [23]. Therefore, an asymptotic extrapolation done according to PQCD

may be suspect. Yet it has been checked that all the achieved results are quite insensitive

to the details of this extrapolation.

Very near threshold, the data show a steep variation [15], beyond Coulomb enhance-

ment (which has already been corrected in the data). In the following, this steep rise has

been assumed to affect the FF in a limitedQ2 region, below and above the threshold. This

is the reason for choosingQ2
2 = 4M2

N +� as upper limit in eq.(3).GM and the first two

derivatives are supposed to be continuous functions through this upper limit.

Once a FFG0 has been determined from eq.(6), another DR is considered in the
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Figure 2: Pion form factor. The black shaded area is the solution of eq.(6), the gray shaded
area is the input of the equation.
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Figure 3: Phase of pion (black shaded) and proton magnetic (gray shaded) form factor
according to eq.(2).

9



(a) (b)

Figure 4: Proton (a) and neutron (b) magnetic form factor according to eq.(6)

interval[Q2
1 ��; Q2

1 +�]:

Q2

�

Z Q2
1

Q2
1��

log jG1(t)j

t(t�Q2)
q
t�Q2

0

dt+
Q2

�

Z Q2
1+�

Q2
1

log jG1(t)j

t(t�Q2)
q
t�Q2

0

dt = 0 (7)

whereG1 is determinated from the relation:GM = G0G1 in this interval andGM = G0

outside. Finally, the proton magnetic FF in the unphysical region as obtained by our

procedure is reported in fig.4a.

The most striking feature of fig.4a is the evidence for two resonances, not built in

a priori, atM � 770 MeV andM � 1600 MeV . It is most satisfying to “deduce”

the presence, through the first, of� + ! and, through the second, of�0 + !0 exactly as

expected. On the other hand, the width of the bump at the� mass is� 350 MeV to

be compared to�� � 150 MeV . Previous, old, analyses of the nucleon FF had already

found a similar discrepancy [2].

The anomalous width, mainly related to the real part, turns out to be independent of

the choice of the� parameter within an order of magnitude. It cannot be due to the bin

width, whose contribution is added quadratically and is relatively small in the� case. On
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(a) (b)

Figure 5: Real part of the proton (a) and the neutron (b) magnetic form factor according
to eq.(6) and (2).

the other hand, as mentioned previously, the� width was recovered in the case of the pion

FF.

Concerning the strange, polarized, content of the nucleon there is no evidence of a

bump at the� mass, even if integrated on the bin width. If indeed the strange content of

the nucleon is
R
dQ2(jGss

M j=jGM j)
2
� 0:15� 0:2, it should be quite visible, concentrated

mainly in the� mass bin. However, to make a more quantitative statement the anomalous

� width should be understood.

In fig.3, the phase of the proton magnetic FF is shown, the real part and the spectral

function are shown in fig.5a and fig.6a. Above� 2 GeV the phase is� 390 degrees to be

compared to the expected asymptotic value of 360 degrees [27].

In fig.1b the proton space-like magnetic FF data are compared with the expectation

from the solution of the DR onlogG(Q2). The hypothesis there are no zeros on the

physicalQ2 sheet may be questioned. Yet (once the imaginary part has been achieved) a

remarkable, non trivial, test has been performed: space-like FF data and the calculation

by means of DR involving this imaginary part are in good agreement, at least at lowQ2
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(a) (b)

Figure 6: Imaginary part of the proton (a) and the neutron (b) magnetic form factor ac-
cording to eq.(6) and (2)
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Figure 7: Space-like proton form factor re-obtained from the calculated imaginary part.

(fig.7), as expected by the way if there is no zero. Imposing full agreement does not

produce significant changes. Of course a conspiracy by a suitable set of zeros, restoring

the � width, cannot be excluded. In the early days of VDM [28] a zero in the FF was

related to the naked� mass. Zeros were foreseen in some versions of the Veneziano

model [29], but once widths are introduced in the model zeros should be shifted to the

unphysical sheet, as it is for the poles.

4 The nucleon isovector time-like magnetic FF

To obtainGV
M , the nucleon isovector FF, andGS

M , the isoscalar one, the neutron FF

has to be considered as well. As mentioned before, the neutron time-like FF have been

measured through only one experiment. The neutron magnetic FF has been derived [16]

under the hypothesis that the neutron electric FF in the time-like region is much smaller

just as it is for space-like region. In fact data are consistent with an anisotropic angular

distribution. The DM2 measurement [30] of the� FF leads to results in very good agree-
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ment with FENICE, assuming U-spin invariance [31] and a� electric FF negligible too.

The relationshipGM(4M2
n) = GE(4M

2
n) should imply that, just at threshold, also the

neutron magnetic FF vanishes. This assumption, relevant very near threshold only, has

been considered in the following. In fig.1c the neutron space-like magnetic FF data are

compared with the expectation from the solution of the DR onlogG(Q2). The neutron

magnetic FF in the unphysical region as obtained by our procedure is reported in fig.4b.

The hypothesis that the FENICE data are wrong by a factor of� 2 has been simu-

lated and the results are that the height of the�0 resonance for the neutron is higher than

the height of the�0 resonance for the proton. Therefore, the apparent anomaly in the

FENICE data (neutron FF not smaller than the proton FF) would still be there, but shifted

to another energy range.

GV
M andGS

M are derived from the aforementioned proton and neutron FF and

the imaginary part ofGV
M is shown in fig.8a.jGV

M j at the peak and its imaginary part

are in rough agreement with the expectation, valid up toQ2 � 0:8 GeV 2, from the

extended unitarity relation, using pion FF data and analytic continuation of�N scattering

amplitude [8,9], which is also shown in fig.8a.

The different width of the� found for the nucleon with respect to the pion is shown

in fig.9.

With a view to expose any possible common patterns, in the near vicinity of the

threshold, a suitable linear combination of(GV
M)2 and(GS

M)2 is satisfactorily compared

to the various measurements of the total�(e+e� !hadrons) cross section[24], taking into

account theQ2 bin width.

In fig.8b the imaginary part ofGS
M is shown. There is a peak at the! mass ,

whose half width is compatible with the bin width and, remarkably, the imaginary part of

GS
M becomes different from zero at higherQ2 thanGV

M , as expected.

There are predictions also forGS
M . For instance, chiral perturbation theory suggests

that the imaginary part ofGS
M is small up toQ2 � 0:5 GeV 2 [32]. However, given that

GS
M comes from a difference and also given its sensitivity to the bin width, the isoscalar

sector is more affected by the regularization procedure and thus demands further work. In

particular, promising results have been obtained by approximating the equation (1) in the

unphysical region by means of orthogonal polinomials.

The fact that the total areas of the imaginary parts are equal to zero is in agreement

with the superconvergence expectation.
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(a) (b)

Figure 8: Imaginary part of the nucleon magnetic isovector (a) and isoscalar (b) form
factor. Expectation from unitarity relation is also shown in (a).
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Figure 9: Comparison of the isovector nucleon form factor (gray shaded area) and the
pion form factor (black shaded area) in the� mass region.
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Conclusions

The nucleon time-like magnetic FF in the unphysical region has been obtained in an al-

most model independent way by means of a DR forlog jG(Q2)j , using space-like and

time-like data together with a regularization method.

Resonances have been found consistent with the�(770) and�0(1600)masses. How-

ever, a very large� width is obtained. This result reminds models in which mesons are

different from baryons. No evidence has been found for a sizeable� contribution, con-

trary to the expectation, if there is indeed a large polarized strange content in the nucleon.

This work is in progress, also to understand the sources of the discrepancies between our

conclusions and other dispersion analyses as well as evaluations by means of the unita-

rized VDM.
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