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Abstract

The rare decayKL ! �0��� is dominated by direct CP violation and can be computed
with extraordinarily high precision. In principle, also a CP-conserving contribution to
this process can arise within the Standard Model. We clarify the structure of the CP-
conserving mechanism, analysing both its short-distance and long-distance components.
It is pointed out that the calculation of the CP-conserving amplitude, although sensitive in
part to non-perturbative physics, is quite well under control. The resulting CP-conserving
contribution to the rate forKL ! �0��� turns out to be very strongly suppressed because
of several factors, which we discuss in detail.

PACS: 12.15.-y, 13.20.Eb

Submitted to Phys. Lett. B



1 Introduction

The rare decay modeKL ! �0��� provides one of the most promising opportunities

in flavour physics. It proceeds through a loop-induced flavour-changing neutral current

(FCNC) transition and therefore probes Standard Model (SM) dynamics at the quantum

level. In particular,KL ! �0��� offers a unique possibility to test the mechanism of CP

violation [1]. The decisive virtue ofKL ! �0��� is the exceptional degree to which the

theoretical analysis of this decay is under control, with theoretical uncertainties at the level

of a few per cent at most. The basic reason for this favourable situation is the absence of

contributions from virtual photons, resulting in a power-like (� m2
i =M

2
W , i = u; c; t) GIM

cancellation pattern of the FCNC amplitude. Reliably calculable contributions from high-

mass intermediate states (mt � mc � �QCD) are therefore systematically enhanced over

long-distance effects. This short-distance dominance is further reinforced inKL ! �0���,

compared to the related modeK+ ! �+���, by the large CP-violating phase associated

with the top loops.

Although the detection ofKL ! �0��� is very challenging, because of a very small

branching fraction (� 3 � 10�11 within the SM) and a difficult signature, considerable

interest exists around the world in studying this decay experimentally and important steps

toward this goal have already been undertaken. An experiment with the sensitivity to

measureB(KL ! �0���) at the SM level has been proposed at Brookhaven (BNL-E926)

[2]. The KAMI collaboration at Fermilab has published an Expression of Interest for such

a measurement in the Main Injector era [3] and plans to search for this decay with similar

sensitivities also exist at KEK in Japan [4]. Finally, the potential of KLOE at DA�NE

(the Frascati�-Factory) to search forKL ! �0���, with a smaller but still interesting

sensitivity and on a short time scale, has recently been emphasized in [5].

Let us briefly summarize the status of the theory ofKL ! �0���. The relevant low-

energy effective Hamiltonian that describes the short-distance FCNC interaction inducing

KL ! �0��� can be written as

Heff =
GFp
2

�

2� sin2�W

�tX0(xt) (�sd)V�A(��l�l)V�A + h:c: ; (1)

where�i = V �
isVid, xi = m2

i =M
2
W and

X0(x) =
x

8

"
x+ 2

x� 1
+

3x� 6

(x� 1)2
lnx

#
: (2)

The charm-quark contribution, sizeable in the charged modeK+ ! �+���, is completely

negligible forKL ! �0��� and was omitted from (1). The Hamiltonian (1), with the

one-loop functionX0(x) first calculated in [6], provides a good starting point for the
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calculation ofKL ! �0��� in the Standard Model. Several important refinements have

subsequently been added to the theoretical analysis of this decay. The dominant uncer-

tainty of the lowest-order prediction can be eliminated by including NLO QCD effects

[7]. The hadronic matrix elementsh�j(�sd)V jKi are known from the leading semileptonic

decayK+ ! �0e+� using isospin symmetry. Corrections due to small isospin-breaking

effects have been computed in [8]. Finally, the impact of higher-order electroweak effects

(� G2
Fm

4
t in the amplitude) has been studied in [9].

Overall the theoretical uncertainties in theKL ! �0��� branching fraction are thus

under control to better than�3%, assuming that potential long-distance effects can be

neglected. Such effects, which are not included in the description provided by (1), have

been estimated in [10] and were indeed found to be safely negligible.

The dominant short-distance mechanism forKL ! �0��� based on (1) violates CP

symmetry as a consequence of the CP-transformation properties ofKL � K0
CP�odd, �

0

and the hadronic(V � A) transition current�t(�sd)V�A + ��t (
�ds)V�A. These imply (in

standard CKM phase conventions)

A(KL ! �0���) � Im�th�0j(�sd)V�AjK0i ; (3)

which would be zero in the limit of CP conservation. By contrast, the long-distance effects

studied in [10] survive in this limit. In this respect, CP violation inKL ! �0��� differs

from the case ofKL ! ��, where the transition itself is forbidden by CP invariance.

The purpose of this letter is to present a systematic discussion of the CP-conserving

contribution toKL ! �0��� in the Standard Model. This question is of interest not only

for estimating theoretical uncertainties from long-distance dynamics, but also as a matter

of principle, in view of the role ofKL ! �0��� as a CP-violation “standard”. In some

New Physics scenarios the CP-conserving contributions toKL ! �0��� can be important

[11,12]. Thus also from this perspective it is interesting to quantify the CP-conserving

effect that, in principle, exists in the Standard Model itself.

The present analysis confirms the estimate of [10] that the CP-conserving contri-

bution toKL ! �0��� in the Standard Model is very small. We differ, however, from

[10] in our general approach and include in our discussion in particular the short-distance

contribution to the CP-conserving amplitude, which has not been considered before.

In Sections 2 and 3 we analyse, respectively, the short-distance and the long-dis-

tance mechanism of the CP-conservingKL ! �0��� amplitude. We conclude in Section

4.
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2 The short-distance part of the CP-conserving amplitude

In the limit of exact CP symmetry, the leading term in the operator product expansion

(OPE) fors ! d��� transitions (1) gives a vanishing contribution to theKL ! �0���

amplitude. More explicitly, in this limit the matrix element of the hadronic�S = 1

transition current is given by

h�0(p)j(�sd)V�A + ( �ds)V�AjKL(k)i ; (4)

where the CKM parameters, chosen to be real, have been factored out. Using the CP-

transformation properties (~k� � k�)

CP jKL(k)i = �jKL(~k)i ; CP j�0(p)i = �j�0(~p)i ; (5)

CP (�sd)
�
V�A(CP )

�1 = �( �ds)V�A;� ; (6)

the matrix element (4) is seen to be zero.

A non-vanishing CP-conserving contribution, although forbidden by (1), can how-

ever arise at higher orders in the OPE. The leading effect of this type comes from the

W -box diagram with intermediate charm (up) quarks depicted in Fig. 1. Matching this

amplitude onto an effective Hamiltonian leads to the following, CP-conserving interaction

term of dimension 8

HCPC = �GFp
2

�

2� sin2�W

�c ln
mc

�

1

M2
W

T����(
 �
@� � @�)�(1� 5)� ; (7)

T�� = �s
 �
D��(1� 5)d� �d�(1� 5)D�s : (8)

In this case we haveCP (T��) (CP )
�1 = +T ��, using the same CP conventions as above,

andh�0jT��jKLi is in general non-zero. Note that the relative minus sign in (8) results

from the neutrino current in (7) being antisymmetric (� (q1 � q2)
�) in the neutrino and

antineutrino momenta (q1 andq2 respectively), and from the hermiticity ofHCPC .

In order to obtain the charm contribution toHCPC , shown in (7), we have expanded

the diagram of Fig. 1 in powers of external momenta divided by the charm-quark massmc

(after contracting theW -boson lines). Only the leading term, of second order in momenta

and independent ofmc up to a logarithm, has been retained. A similar expression would

hold for the up-quark contribution if alsomu � �QCD. Then a finite coefficient would

result from the GIM cancellation and the logarithms would combine toln(mc=mu). In

realitymu is small and the up-quark contribution has to be treated non-perturbatively. We

will come back to this point below. In the meantime we have included in (7) only the

charm part and kept the explicit dependence on a renormalization scale�, which is to be

3



s W νl

d W νl

c(u) l

Figure 1: Box diagram that generates the leading short-distance CP-conserving contribu-
tion toKL ! �0���.

cancelled by the up-quark sector. For an order-of-magnitude estimate,� �> �QCD. We

neglect lepton masses throughout this paper.

Besides the expression shown in (7), which is antisymmetric in the neutrino mo-

menta, the graph of Fig. 1 also yields terms symmetric inq1 andq2. These contributions

cannot induceKL ! �0��� in the limit of CP conservation. A similar comment holds

for theZ-penguin diagram, which is entirely symmetric inq1 andq2. In principle also

intermediate top quarks could yield an interaction analogous to (7), but this contribution

is strongly suppressed by small CKM couplings.

Parametrically, the amplitude arising from (7) is suppressed with respect to the lead-

ing CP-violatingKL ! �0��� amplitude by a factor

�SDCPC =
m2

K

M2
W

�c ln(mc=�QCD)

Im�tX0(xt)
� O(10%) : (9)

Note that the very strong suppression due to the smallness ofm2
K=M

2
W is at least par-

tially compensated by a large enhancement factor�c=Im�t, reflecting the CP-conserving

nature of the mechanism under consideration. Since the CP-conserving amplitude is anti-

symmetric in the neutrino momenta, there is no interference with the leading CP-violating

contribution in the integrated rate. Therefore the CP-conserving part is simply to be added

in rate (rather than amplitude) to the CP-violating one. From the naive order-of-magnitude

estimate given above, it would thus seem that an effect in the per cent range could still be

possible. We will see in the following that its actual size is in fact considerably smaller.

To evaluate the amplitude generated by the dimension-8 operator in (7), one has to

consider hadronic matrix elements of the formh�0j�s �D��(1�5)djK0i, involving quark

currents with QCD covariant derivatives. We will next determine these matrix elements

to leading order in chiral perturbation theory [13]. In this framework the lowest-order

realization of the QCD Lagrangian in the chiral limit, as a function of light pseudoscalar
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fields and external sources, is given by

L(2)S =
f 2

8
tr
n
5�U 5� U

y + �U y + U�y
o
; (10)

whereU , transforming asU ! gRUg
y
L underSU(3)R 
 SU(3)L chiral rotations, can be

written asU = exp(2i�=f) with

� =

2
664

�0p
2
+ �p

6
�+ K+

�� � �0p
2
+ �p

6
K0

K� �K0 � 2�p
6

3
775 : (11)

Heref = 132MeV is the pion decay constant;�, transforming asU , is the external scalar

source; and5� = @�U�ir�U+iUl� is theSU(3)R
SU(3)L covariant derivative, which

depends on the vector sourcesr� andl� (see e.g. [14] for conventions and a review on the

subject). As usual, to incorporate mass terms we shall replace

�! 2BM ; M = diag(mu; md; ms) ; (12)

whereB is a real constant that can be expressed in terms of quark and meson masses (e.g.

to lowest orderm2
K0 = B(ms +md)).

The derivatives ofL(2)S with respect to the external sources allow us to compute the

lowest-order matrix elements of the corresponding quark currents. For instance, this leads

to

�qi�(1� 5)qj = i
f 2

2
(@�U

yU)ji +O(p3) ; (13)

�qi(1� 5)qj = �f
2

2
BU

y
ji +O(p2) ; (14)

where the above equalities have to be understood as identities of the corresponding matrix

elements. For the derivative operators we are interested in here, the lowest non-vanishing

order isO(p2) and this statement alone would lead to them2
K factor in the naive estimate

(9). To be more specific, chiral symmetry implies the following general representation at

O(p2)

�qi
 �
D��(1� 5)qj = i[g��(c0�

yU + �c0U
y�) + c1@�U

y@�U + c2@�U
y@�U

+c3@�@�U
yU � ic4"����@

�U y@�U ]ji : (15)

Note that the further possible termU y@�@�U satisfies the identity

U y@�@�U � �@�@�U yU � @�U
y@�U � @�U

y@�U (16)
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and is not independent of those already present in (15).

CP invariance of the strong interactions implies that all coefficientsc0, �c0, c1, : : :,

c4 are real (we employ the CP conventionCP �ij = ��ji). Adding to (15) its Hermitian

conjugate yields an expression for@�(�qi�(1 � 5)qj) in terms of theci. This can be

compared with the derivative of theV � A current from (13). Taking into account (16),

we obtain

c0 = �c0 ; c2 � c1 =
f 2

4
and c3 =

f 2

4
: (17)

Additional constraints follow from the quark equations of motion

�qi 6 �D(1� 5)qj = i�qimi(1� 5)qj = �if
2

4
(U y�)ji ; (18)

or equivalently from the equations of motion of theU field

(@2U yU � U y@2U)ji = (�yU � U y�)ji ; (i 6= j) : (19)

Comparing (18) with (15) for� = � and using

@2U yU � 1

2
(@2U yU + U y@2U) +

1

2
(@2U yU � U y@2U) (20)

= �@U y@U +
1

2
(�yU � U y�) ; (21)

one finds

c0 = �1
8
c3 and c1 + c2 =

f 2

4
: (22)

Together with (17) we then have

�qi
 �
D��(1� 5)qj = i

f 2

4
[@�U

y@�U + @�@�U
yU � 1

8
g��(�

yU + U y�)]ji

+c4"����(@
�U y@�U)ji : (23)

Recalling that in our conventionCP jKi = �j �Ki and jKLi = (jKi + j �Ki)=p2, we

finally get

h�0(p)jT��jKL(k)i = � i
2

�
(k � p)�(k + p)� +

1

4
m2

Kg��

�
; (24)

where the undetermined coefficientc4 has dropped out.

Interestingly enough, the matrix element (24) gives zero when multiplied with the

leptonic current from (7). We then conclude thath�0���jHCPC jKLi vanishes to leading

order in chiral perturbation theory and the CP-conservingKL ! �0��� transition from

HCPC therefore receives an additionalO(m2
K=(8�

2f 2)) suppression.
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To obtain a quantitative estimate we may write

h�0(p)jT��jKL(k)i = i
a�

2
(k + p)�(k + p)� ; a� = O

 
m2

K

8�2f 2

!
� 20% : (25)

Introducing the kinematical variables

y1;2 =
2k � q1;2
m2

K

; y =
y1 � y2

2
; (26)

u =
(q1 + q2)

2

m2
K

and z =
m2

�

m2
K

(27)

(with q1 (q2) the (anti)neutrino momentum), this implies

���A(KL ! �0���)SDCPC

��� = ���y a� �SDCPC A(KL ! �0���)CPV
��� : (28)

Including the phase-space integrations we obtain for the decay rates

�(KL ! �0���)SDCPC = �(KL ! �0���)CPV ja�j2
����SDCPC ���2Rkin ; (29)

where (�(a; b; c) = a2 + b2 + c2 � 2ab� 2ac� 2bc)

Rkin =

R
d��0��� [�(1; u; z)� 4y2]y2R
d��0��� [�(1; u; z)� 4y2]

=
1

30

g(z)

f(z)
' 0:03 (30)

and

g(z) = 1� 9z + 45z2 � 45z4 + 9z5 � z6 + 60z3 ln z ; (31)

f(z) = 1� 8z + 8z3 � z4 � 12z2 ln z : (32)

We thus find that the CP-conserving rate�(KL ! �0���)SDCPC is further suppressed by

phase space, in addition to the parametric effect from�SDCPC and the chiral suppression

described bya�. Numerically the three suppression factors on the r.h.s. of (29) give

� 4 � 10�2 � 10�2 � 3 � 10�2 = 10�5. We therefore conclude that�(KL ! �0���)SDCPC is

safely negligible, by a comfortably large margin.

3 The long-distance part of the CP-conserving amplitude

Chiral perturbation theory provides a reliable framework also to estimate the long-dis-

tance CP-conserving contribution toKL ! �0��� generated by the up-quark exchange

in Fig. 1. The lowest-order contributions correspond to the charged� andK exchange

in Fig. 2, added to an appropriate local counterterm. Since the lowest-order coupling of
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νl

KL π0

νl
l

π(K)

Figure 2: Long-distance diagram that contributes to the CP-conservingKL ! �0���

amplitude.

the pseudoscalar mesons with the leptonic currents can be derived fromL(2)S , the loop

amplitude is completely determined. The result is logarithmically divergent and is given

by

A(KL ! �0���)LDCPC =
GFp
2

�

2� sin2�W

�u
1

M2
W

H���
�(1� 5)� ; (33)

where

H� = H�
� +HK

� ; (34)

H�
� =

1

2
k� m

2
Ky

"
ln

�2

m2
K

+ 2+

+
(1� y1) ln(1� y1)� (1� y2) ln(1� y2)

y1 � y2
+ i�

#
; (35)

HK
� =

1

4
k� m

2
Ky

"
ln

�2

m2
K

+ 2 +
1

y1 � y2

 
y21 ln y1

1� y1
� y22 ln y2

1� y2

!#
: (36)

Here we have used dimensional regularization and subtracted the divergence according

to theMS prescription. The imaginary part is due to the absorptive contribution of the

pion. We are neglecting the pion mass in the loop integration. The� dependence in (35)

and (36) has to be cancelled by the counterterm, whose finite contribution is however not

know. As a matter of fact, adding the counterterm to the loop result would just produce

the effect of fixing� in (35) and (36) to some typical hadronic scale.

In principle, looking at the quark-level result, one could think that the� dependence

of (35) and (36) should be partially related to the scale dependence of the charm contribu-

tion in (7). However, the vanishing ofh�0���jHCPCjKLi to the lowest order implies that

there is no direct matching between the two contributions at this level: the ultraviolet cut-

off of the leading long-distance contribution is more likely to be a hadronic scale below

the charm mass.
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An indirect confirmation of the above statement is obtained by estimating higher-

order contributions in the framework of vector-meson dominance. In this limit the point-

like form factors of the vector currents in Fig. 2 are replaced by vector-meson propagators

(1!M2
V =(M

2
V � q2)) and as a result the loop amplitude becomes finite. Note that other

potentially divergent contributions generated by vector or axial-vector exchange vanish

to leading order, as can be checked explicitly using the lowest-order chiral Lagrangian of

[15]. Thus the main effect of vector resonances is just to provide a natural cut-off for the

loop amplitude of Fig. 2. Expanding the full result thus obtained in1=MV and neglecting

terms suppressed by powers ofm2
K=M

2
V , one recovers an amplitude of the form (35) and

(36), with

ln
�2

m2
K

! ln
M2

V

m2
K

� 3

2
: (37)

It is convenient to further expand the result in the kinematical variablesy andu, which

yields

H� =
1

2
k� m

2
Ky

"
3

2
ln
M2

V

m2
K

+
1

4
� 1

2
ln 2 + i� +O

�
u; y2

�#
: (38)

Comparing (38) with (35) and (36), it is seen that the common vector-meson massMV '
800 MeV (we can safely neglect the smallSU(3)-breaking effects in the vector-meson

sector) provides the ultraviolet cut-off for the lowest-order calculation. The expansion in

powers of the kinematical variables is well justified not only by the size of the higher-

order terms but, especially, because the phase-space integration strongly suppresses their

contribution to the total rate.

Using the approximate expression (38) the integration over the�0��� Dalitz plot

can be done analytically. Normalizing the CP-conserving amplitude to the leading CP-

violating term, generated by (1), we can write

���A(KL ! �0���)LDCPC

��� = ���y �LDCPC A(KL ! �0���)CPV
��� ; (39)

where, analogously to (9), we have defined

�LDCPC =
m2

K

4M2
W

�u

Im�tX0(xt)

�����32 ln
M2

V

m2
K

+
1

4
� 1

2
ln 2 + i�

����� � 0:04 : (40)

Taking into account the phase-space integration, the CP-conserving rate can be written as

�(KL ! �0���)LDCPC = �(KL ! �0���)CPV
����LDCPC���2Rkin : (41)

The total suppression factor on the r.h.s. of (41) is thus estimated to be� 2 � 10�3 � 3 �
10�2 = 6 � 10�5.
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4 Conclusions

Even if CP were exactly conserved, the decayKL ! �0��� could in principle proceed

within the Standard Model. We have presented a detailed analysis of both the short-

distance and the long-distance contributions to the CP-conserving rate. We have shown

that these contributions are suppressed by more than four orders of magnitude in com-

parison to the leading, direct CP-violating branching ratio of about3 � 10�11. Several

reasons are responsible for this very strong suppression: first, the CP-conserving ampli-

tude, which is parametricallyO(10%) of the direct CP-violating one, does not interfere

with the latter, but is added simply in rate. In addition, there is a substantial suppression

factor (� 0:03) from phase space. Finally, the short-distance part of the CP-conserving

amplitude is also chirally suppressed.

The hierarchy of the direct CP-violating, indirect CP-violating [16] and CP-conser-

ving contributions toB(KL ! �0���) in the Standard Model is thus1 : 10�2 : �< 10�4.

Note, however, that in the absence of direct CP violation, as in a superweak model [17],

theKL ! �0��� branching fraction due to indirect CP violation alone would only be

� 2 � 10�15, comparable toB(KL ! �0���)CPC . The above hierarchy of contributions

can be contrasted with the case ofKL ! �0e+e�, where all three mechanisms are of

roughly comparable magnitude [18].

We have also found that the calculation of the CP-conservingKL ! �0��� rate is

quite well under control, although the precise value depends on long-distance dynamics

that is hard to quantify in detail. The extremely strong suppression of such contributions

highlights the theoretically clean nature ofKL ! �0��� in a striking manner.
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