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Abstract

The rare decays; — 7°vv is dominated by direct CP violation and can be computed
with extraordinarily high precision. In principle, also a CP-conserving contribution to
this process can arise within the Standard Model. We clarify the structure of the CP-
conserving mechanism, analysing both its short-distance and long-distance components.
It is pointed out that the calculation of the CP-conserving amplitude, although sensitive in
part to non-perturbative physics, is quite well under control. The resulting CP-conserving
contribution to the rate fok; — 7%v turns out to be very strongly suppressed because

of several factors, which we discuss in detalil.
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1 Introduction

The rare decay mod&’; — 7’vv provides one of the most promising opportunities

in flavour physics. It proceeds through a loop-induced flavour-changing neutral current
(FCNC) transition and therefore probes Standard Model (SM) dynamics at the quantum
level. In particular,K; — 7°vv offers a unique possibility to test the mechanism of CP
violation [1]. The decisive virtue ok’;, — 7%v7 is the exceptional degree to which the
theoretical analysis of this decay is under control, with theoretical uncertainties at the level
of a few per cent at most. The basic reason for this favourable situation is the absence of
contributions from virtual photons, resulting in a power-like#:? /M2, i = u, ¢, t) GIM
cancellation pattern of the FCNC amplitude. Reliably calculable contributions from high-
mass intermediate states,(>> m. > Agcp) are therefore systematically enhanced over
long-distance effects. This short-distance dominance is further reinfordéd in v v,
compared to the related modét — 7 v, by the large CP-violating phase associated
with the top loops.

Although the detection ok’;, — 7%v7 is very challenging, because of a very small
branching fraction 3 - 107! within the SM) and a difficult signature, considerable
interest exists around the world in studying this decay experimentally and important steps
toward this goal have already been undertaken. An experiment with the sensitivity to
measureB(K; — n’vi) at the SM level has been proposed at Brookhaven (BNL-E926)
[2]. The KAMI collaboration at Fermilab has published an Expression of Interest for such
a measurement in the Main Injector era [3] and plans to search for this decay with similar
sensitivities also exist at KEK in Japan [4]. Finally, the potential of KLOE athDic
(the Frascatib-Factory) to search fok; — 7vi, with a smaller but still interesting
sensitivity and on a short time scale, has recently been emphasized in [5].

Let us briefly summarize the status of the theorysof — 7°v. The relevant low-
energy effective Hamiltonian that describes the short-distance FCNC interaction inducing
K; — 7%v can be written as

Gp__a
\/5 2w sin2 @W

where)\; = V*Viq, z; = m?/MZ, and

Heff == )\th(IL’t) (Ed)V_A(ljﬂ/l)V_A + h.c. y (1)

x|z +2 3r—6
X =—
o) 8 x—1+(x—1)2

Inz| . (2)

The charm-quark contribution, sizeable in the charged ni6de— 7 tvw, is completely
negligible for K;, — #%v and was omitted from (1). The Hamiltonian (1), with the
one-loop functionX(z) first calculated in [6], provides a good starting point for the
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calculation ofK; — 7°vi in the Standard Model. Several important refinements have
subsequently been added to the theoretical analysis of this decay. The dominant uncer-
tainty of the lowest-order prediction can be eliminated by including NLO QCD effects
[7]. The hadronic matrix elements|(5d)y | K) are known from the leading semileptonic
decayK ™ — 7’e*v using isospin symmetry. Corrections due to small isospin-breaking
effects have been computed in [8]. Finally, the impact of higher-order electroweak effects
(~ G%m} in the amplitude) has been studied in [9].

Overall the theoretical uncertainties in the, — 7’v branching fraction are thus
under control to better tha#t3%, assuming that potential long-distance effects can be
neglected. Such effects, which are not included in the description provided by (1), have
been estimated in [10] and were indeed found to be safely negligible.

The dominant short-distance mechanism#Aqr — 7°v based on (1) violates CP
symmetry as a consequence of the CP-transformation properti€s of K25 ;4 T°
and the hadroni¢V — A) transition current\,(3d)v_ 4 + Aj(ds)y_a. These imply (in
standard CKM phase conventions)

A(Kp — 7°v0) ~ ImA(7°|(5d)y 4| K°) , (3)

which would be zero in the limit of CP conservation. By contrast, the long-distance effects
studied in [10] survive in this limit. In this respect, CP violationfin, — 7°vv differs
from the case of; — 7m, where the transition itself is forbidden by CP invariance.

The purpose of this letter is to present a systematic discussion of the CP-conserving
contribution toK; — 7%v in the Standard Model. This question is of interest not only
for estimating theoretical uncertainties from long-distance dynamics, but also as a matter
of principle, in view of the role ofK;, — 7%vi as a CP-violation “standard”. In some
New Physics scenarios the CP-conserving contributiod§;te+ 7%~ can be important
[11,12]. Thus also from this perspective it is interesting to quantify the CP-conserving
effect that, in principle, exists in the Standard Model itself.

The present analysis confirms the estimate of [10] that the CP-conserving contri-
bution to K;, — 7°vv in the Standard Model is very small. We differ, however, from
[10] in our general approach and include in our discussion in particular the short-distance
contribution to the CP-conserving amplitude, which has not been considered before.

In Sections 2 and 3 we analyse, respectively, the short-distance and the long-dis-
tance mechanism of the CP-conservikig — 7’v amplitude. We conclude in Section
4.



2 The short-distance part of the CP-conserving amplitude

In the limit of exact CP symmetry, the leading term in the operator product expansion
(OPE) fors — dvi transitions (1) gives a vanishing contribution to thg — 7’vi
amplitude. More explicitly, in this limit the matrix element of the hadrofi¢ = 1
transition current is given by

(" (P)](3d)v-a + (ds)v-al Kr(K)) (4)

where the CKM parameters, chosen to be real, have been factored out. Using the CP-
transformation propertiesﬂ = kM)

CP|Ky(k)) = —|Kr(k)),  CPln°(p)) = —|7°(p)) . (5)

CP(5d)y_4(CP) ' = —(ds)v—a , (6)

the matrix element (4) is seen to be zero.

A non-vanishing CP-conserving contribution, although forbidden by (1), can how-
ever arise at higher orders in the OPE. The leading effect of this type comes from the
W-box diagram with intermediate charm (up) quarks depicted in Fig. 1. Matching this
amplitude onto an effective Hamiltonian leads to the following, CP-conserving interaction
term of dimension 8

Gr « me 1 _
S R W L Nt I, W1 BV VYR ¢
Hepeo /3 2rsin? Oy n T W ( O ( V5 )V (7)
Top = 5D (1 — 75)d — dy,(1 — 75) Das . (8)

In this case we hawe P (T,,,) (CP)~' = +T*, using the same CP conventions as above,
and(r°|T,,|Ky) is in general non-zero. Note that the relative minus sign in (8) results
from the neutrino current in (7) being antisymmetrie (¢; — ¢2)®) in the neutrino and
antineutrino momentay{ andq, respectively), and from the hermiticity &f.pc.

In order to obtain the charm contribution#y-»<, shown in (7), we have expanded
the diagram of Fig. 1 in powers of external momenta divided by the charm-quarkmpass
(after contracting th&/-boson lines). Only the leading term, of second order in momenta
and independent of.. up to a logarithm, has been retained. A similar expression would
hold for the up-quark contribution if alsa@, > Agcp. Then a finite coefficient would
result from the GIM cancellation and the logarithms would combinkite:./m,,). In
reality m,, is small and the up-quark contribution has to be treated non-perturbatively. We
will come back to this point below. In the meantime we have included in (7) only the
charm part and kept the explicit dependence on a renormalization;saatech is to be
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Figure 1: Box diagram that generates the leading short-distance CP-conserving contribu-
tionto K; — mui.

cancelled by the up-quark sector. For an order-of-magnitude estimate\gcp. We
neglect lepton masses throughout this paper.

Besides the expression shown in (7), which is antisymmetric in the neutrino mo-
menta, the graph of Fig. 1 also yields terms symmetrig iandg,. These contributions
cannot induces; — 7’vr in the limit of CP conservation. A similar comment holds
for the Z-penguin diagram, which is entirely symmetricgnandq,. In principle also
intermediate top quarks could yield an interaction analogous to (7), but this contribution
is strongly suppressed by small CKM couplings.

Parametrically, the amplitude arising from (7) is suppressed with respect to the lead-
ing CP-violatingK; — 7’v> amplitude by a factor

CPCTMZ ImA X (z)

2
6SD My )‘C ln(mC/AQCD) ~ 0(10%) . (9)

Note that the very strong suppression due to the smallnesggfi/2, is at least par-

tially compensated by a large enhancement faktgim\;, reflecting the CP-conserving
nature of the mechanism under consideration. Since the CP-conserving amplitude is anti-
symmetric in the neutrino momenta, there is no interference with the leading CP-violating
contribution in the integrated rate. Therefore the CP-conserving part is simply to be added
in rate (rather than amplitude) to the CP-violating one. From the naive order-of-magnitude
estimate given above, it would thus seem that an effect in the per cent range could still be
possible. We will see in the following that its actual size is in fact considerably smaller.

To evaluate the amplitude generated by the dimension-8 operator in (7), one has to
consider hadronic matrix elements of the fo¢1ﬁ9|§§a%(1 —75)d|K®), involving quark
currents with QCD covariant derivatives. We will next determine these matrix elements
to leading order in chiral perturbation theory [13]. In this framework the lowest-order
realization of the QCD Lagrangian in the chiral limit, as a function of light pseudoscalar
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fields and external sources, is given by

2
c§>:12u{VWJquﬁ+XUV+UXq, (10)

wherel, transforming a$’ — ¢zUgl underSU(3)z ® SU(3),, chiral rotations, can be
written asU' = exp(2:®/ f) with

A
P = T .{%+% K° | . (11)
K- K° —2

NG

Heref = 132 MeV is the pion decay constany; transforming a#/, is the external scalar
source; andy,, = 0,U —ir, U+iUl, istheSU(3) p®SU(3),, covariant derivative, which
depends on the vector souregsand/,, (see e.g. [14] for conventions and a review on the
subject). As usual, to incorporate mass terms we shall replace

X — 2BM , M = diag(my, mg, ms) , (12)

whereB is a real constant that can be expressed in terms of quark and meson masses (e.g.
to lowest ordern?,, = B(m; + my)).

The derivatives otg) with respect to the external sources allow us to compute the
lowest-order matrix elements of the corresponding quark currents. For instance, this leads
to

f2
Gl =%l = i (0U0);+0(p"), (13)
_ B f2 +
G(1=7s)g; = —5BU;+O0(p ?), (14)

where the above equalities have to be understood as identities of the corresponding matrix
elements. For the derivative operators we are interested in here, the lowest non-vanishing
order isO(p?) and this statement alone would lead to th factor in the naive estimate

(9). To be more specific, chiral symmetry implies the following general representation at

O(p?)

q_iﬁa’Y,u(l - 75)QJ = Z‘[gcz,u(c[)XTUv + 6[)[]]LX) + ClaaUTayU + CQa,uUTaaU
+038a8uUTU — ic4€a#g,,85UT8"U]ji . (15)

Note that the further possible tertifi9,0,U satisfies the identity
U'0,0,U = —0,0,U'U — 0,U"0,U — 0,U'0,U (16)
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and is not independent of those already present in (15).

CP invariance of the strong interactions implies that all coefficients,, ci, ...,
¢4 are real (we employ the CP conventio® ®;; = —®;;). Adding to (15) its Hermitian
conjugate yields an expression 0 (g;v,(1 — 75)g;) in terms of thec;. This can be
compared with the derivative of tHé — A current from (13). Taking into account (16),
we obtain

2 2
Cco = Cp , CQ—Clzfz and ngfz. (17)
Additional constraints follow from the quark equations of motion
f2
7 %(1 —¥5)q; = igim;(1 — 75)q; = _iZ(UTX)ji : (18)
or equivalently from the equations of motion of thidield
(*U'U - U'0*U) ;i = (X'U - U'x);i (i # 7). (19)
Comparing (18) with (15) fop, = « and using
1 1
’UU = 5(aQUTU + U0?U) + 5(E)ZUTU — U'9%U) (20)
= —9UTOU + %(XfU —U'y), (21)
one finds
S and +co = f—2 (22)
Co — 863 Il (&1 Cy — 1 .
Together with (17) we then have
-y _ Lot 7 Lo (T4 Ut
4i a%(l - ’75)(]]‘ = ZZ[aﬂU OuU + 0,0,U'U — ggau(X U+U X)]ji
+CaEapsr (0°UTO"U ) ji - (23)
Recalling that in our conventio@ P|K) = —|K) and|K;) = (|K) + |K))/V?2, we
finally get
1 1
<7ro(p)|Tau|KL(k)> ) (k= p)alk +p)u + Zmi(gau ) (24)

where the undetermined coefficienthas dropped out.

Interestingly enough, the matrix element (24) gives zero when multiplied with the
leptonic current from (7). We then conclude thatvv|Hepeo|K 1) vanishes to leading
order in chiral perturbation theory and the CP-consening — #°vi transition from
Hcepe therefore receives an additior@(m3 /(872 f2)) suppression.
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To obtain a quantitative estimate we may write

FT K1) =G0 ol ), 0 =0 (55 ) v 0% @9

Introducing the kinematical variables

2k - —
Y12 = 2(]1’2 ; y= h_ b ; (26)
mi 2
2
7((]1 + o) and 2z = m—; (27)
mk M

(with ¢; (¢2) the (anti)neutrino momentum), this implies
‘A(KL — 7vp)?B | = ‘y ay 0280 A(Kp, — ﬂ'OVﬂ)va‘ . (28)
Including the phase-space integrations we obtain for the decay rates
DKy = mvp)$Be = T(Ky = nwP)epy lay* [552c] R, (29)
where Q(a, b, ¢) = a? + b* + ¢ — 2ab — 2ac — 2bc)

C JdTpop ML u, 2) —49%y* 1 g(2)
Ryin = [dToms ML, 2) —492] 30 f(2) 0.03 (30)

and

g(z) = 1—92+452> — 452" +92° — 2% + 602’ In 2, (31)
flz) = 1-82+82—2'—122%Inz. (32)

We thus find that the CP-conserving raték; — n%vi)22 . is further suppressed by
phase space, in addition to the parametric effect fég#). and the chiral suppression
described byz,. Numerically the three suppression factors on the r.h.s. of (29) give
~4-1072 x 1072 x 3 - 1072 = 10~°. We therefore conclude th&{ K} — 7%vi)22 . is
safely negligible, by a comfortably large margin.

3 The long-distance part of the CP-conserving amplitude

Chiral perturbation theory provides a reliable framework also to estimate the long-dis-
tance CP-conserving contribution 16; — 7’vi generated by the up-quark exchange

in Fig. 1. The lowest-order contributions correspond to the chargadd X exchange

in Fig. 2, added to an appropriate local counterterm. Since the lowest-order coupling of
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Figure 2: Long-distance diagram that contributes to the CP-conseiing— m’vi
amplitude.

the pseudoscalar mesons with the leptonic currents can be derivedcﬁgb,mhe loop
amplitude is completely determined. The result is logarithmically divergent and is given

by
GF (0%

_ 1 _
A(KL - Woyy)égc = E2ﬂ_ sin? @W)\u MI%V Huyfy”(l - 75)1/ ) (33)
where

H,=H]+HY, (34)

1 2

H™ = Zk,m%y lln—+2+
a o HTK m3
1-— In(1 — — (1 — In(1 —
i ( y1) In( y1) — ( y2) In( Y2) +i7r] ’ (35)
Yr — Y2

(36)

1 2 1 2] 2]
HE = Zk, miy llnu—2+2+ (y1 SEA ny?)
4 my yi—y2 \1—m T —ys

Here we have used dimensional regularization and subtracted the divergence according
to the M S prescription. The imaginary part is due to the absorptive contribution of the
pion. We are neglecting the pion mass in the loop integration. ltependence in (35)
and (36) has to be cancelled by the counterterm, whose finite contribution is however not
know. As a matter of fact, adding the counterterm to the loop result would just produce
the effect of fixingu in (35) and (36) to some typical hadronic scale.

In principle, looking at the quark-level result, one could think thattliependence
of (35) and (36) should be partially related to the scale dependence of the charm contribu-
tion in (7). However, the vanishing ¢fvv|Hcpc| K1) to the lowest order implies that
there is no direct matching between the two contributions at this level: the ultraviolet cut-
off of the leading long-distance contribution is more likely to be a hadronic scale below
the charm mass.



An indirect confirmation of the above statement is obtained by estimating higher-
order contributions in the framework of vector-meson dominance. In this limit the point-
like form factors of the vector currents in Fig. 2 are replaced by vector-meson propagators
(1 — M2 /(M — ¢?)) and as a result the loop amplitude becomes finite. Note that other
potentially divergent contributions generated by vector or axial-vector exchange vanish
to leading order, as can be checked explicitly using the lowest-order chiral Lagrangian of
[15]. Thus the main effect of vector resonances is just to provide a natural cut-off for the
loop amplitude of Fig. 2. Expanding the full result thus obtainet)/ii/,, and neglecting
terms suppressed by powersmof. /M?Z, one recovers an amplitude of the form (35) and
(36), with

2 M2 3
[ P = (37)
mi my 2

It is convenient to further expand the result in the kinematical variapksd«, which

yields

1 3. Mg 1 1

Comparing (38) with (35) and (36), it is seen that the common vector-mesonihiass
800 MeV (we can safely neglect the smallU(3)-breaking effects in the vector-meson
sector) provides the ultraviolet cut-off for the lowest-order calculation. The expansion in
powers of the kinematical variables is well justified not only by the size of the higher-
order terms but, especially, because the phase-space integration strongly suppresses their
contribution to the total rate.

Using the approximate expression (38) the integration overrthe Dalitz plot
can be done analytically. Normalizing the CP-conserving amplitude to the leading CP-
violating term, generated by (1), we can write

‘A(KL — WOVﬂ)éllgc‘ = ‘y 6&P o A(Kp — m°vi)epy |, (39)
where, analogously to (9), we have defined
2 A 3. M2 1
§EB, = K PV s - S tin| A~ 0.04. 40
CPC = N2 T Xo(ey) [2 "z Td4 2T (40)

Taking into account the phase-space integration, the CP-conserving rate can be written as
2
F(KL — WOVIj)éIQC = F(KL — WOVIj)CpV ‘(Ségc‘ Ryin . (41)

The total suppression factor on the r.h.s. of (41) is thus estimated+tozel03 x 3 -
1072 =6-107".



4 Conclusions

Even if CP were exactly conserved, the deday — 7°v could in principle proceed
within the Standard Model. We have presented a detailed analysis of both the short-
distance and the long-distance contributions to the CP-conserving rate. We have shown
that these contributions are suppressed by more than four orders of magnitude in com-
parison to the leading, direct CP-violating branching ratio of allout0—!!. Several
reasons are responsible for this very strong suppression: first, the CP-conserving ampli-
tude, which is parametricall?(10%) of the direct CP-violating one, does not interfere
with the latter, but is added simply in rate. In addition, there is a substantial suppression
factor (~ 0.03) from phase space. Finally, the short-distance part of the CP-conserving
amplitude is also chirally suppressed.

The hierarchy of the direct CP-violating, indirect CP-violating [16] and CP-conser-
ving contributions tdB (K, — 7°vv) inthe Standard Modelisthus: 1072 : <107
Note, however, that in the absence of direct CP violation, as in a superweak model [17],
the K;, — 7% branching fraction due to indirect CP violation alone would only be
~ 2-10"'°, comparable tB(K; — 7’vv)cpc. The above hierarchy of contributions
can be contrasted with the casef — 7% Te~, where all three mechanisms are of
roughly comparable magnitude [18].

We have also found that the calculation of the CP-conserking— 7°vv rate is
quite well under control, although the precise value depends on long-distance dynamics
that is hard to quantify in detail. The extremely strong suppression of such contributions
highlights the theoretically clean nature 8§, — 7°v in a striking manner.
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