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The problem of many holes inh a coaxial beam pipe is studied by means of the modified Bethe theory. The
electromagnetic fields propagating in the coaxial region couple the equivalent dipole moments of the holes.
The effect of the coupling on the longitudinal impedance and on the loss factor is investigated, showing that the
interference phenomena are significant for such geometries. [S1063-651X(97)08110-5]
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I. INTRODUCTION

In this paper we study the coupling impedance and the
loss factor of coaxial structures with multiple pumping holes.

The analytical solution of a many-hole problem has been
given in the case of a circular beam pipe with thick walls [1],
the method being based on Bethe’s diffraction theory. The
longitudinal impedance 1s calculated from the coherent sum
of the fields generated by each hole.

The impedance of a single hole in a coaxial structure has
been calculated numerically [2] and analytically applying
Bethe’s modified theory [3] and by variational methods [4].
The results obtained with these different procedures show a
good agreement.

In this paper we extend Bethe’s modified theory to the
general case of N holes in an infinitely long perfectly con-
ducting coaxial pipe (Fig. 1). The reaction fields have to be
considered 1n order to fulfill the energy conservation law.
We evaluate the effect of the interference of the fields gen-
erated by the equivalent dipoles taking into account also the
coupling among the dipoles. The self-consistent solution
shows that the coupling between holes can affect signifi-
cantly the radiated energy spectrum and the coupling imped-
ance. The reaction fields introduce 1n fact a coupling be-
tween the equivalent dipole moments of different holes.

In Sec. II we outline Bethe’s modified theory applied to
the calculation of the longitudinal impedance. Impedance
and loss factor are treated in Sec. III. Finally, in Sec. 1V, we
compare our results to those obtained with the MAFIA simu-
lation code.

II. GENERAL THEORY

The general theory adopted 1n our calculation is described
in [3,5]. For the sake of convenience, we summarize its im-
portant features at frequencies below the beam pipe cutoff
considering only scattered TEM-type fields.

Bethe's diffraction theory states that each hole is equiva-
lent to an electric and a magnetic dipole whose moments are
given by
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M (z;)=a,[Hoo(z;) —H; (2} ],

Pr(zi):‘gae[EOr(Zi)_Esr(Zj)]v (1)

where «,, and a, are the hole polarizabilities and H, and
E .. are the scattered fields calculated at the hole center. The
primary magnetic and electric fields, generated by a point
charge g, traveling with velocity ¢ along the axis of a per-
fectly conducting pipe, are

Hoo(2:) = Hoo(0)e /0%, Eq (z,)=Eq,(0)e 0%, (2)

with

q
EOr(O):ZOH{)cp(O):ZU Y1b (3)

In general the scattered fields can be expressed as a su-
perposition of modes. The coefficients of the modal expan-
sion are determined through the Lorentz reciprocity principle
[5]; they are linear functions of the equivalent dipole mo-
ments of the apertures which can be obtained solving a 2N
X 2N sized linear system.

Once the equivalent dipole moments have been deter-
mined, using the definition of the longitudinal impedance [6]

1 [t .
Z(w)=— q j E,(r=0)e/*0%dz, (4)

— 00

it is straightforward to derive a general expression of the
longitudinal impedance for N holes centered in z=z;,

1 |
~ M (2)+ P (z) |05 (5)

CYA
Z(w)=) 21mqb E

=1 |

FIG. 1. Relevant geometry.
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FIG. 2. (a) TEM field generated by an equivalent magnetic di-

pole moment M ,. (b} TEM field generated by an equivalent elec-
tric dipole moment P, .

III. HOLES IN A COAXIAL PIPE

Each dipole moment radiates a forward and a backward
wave along the coaxial pipe. While the waves produced by
the electric and magnetic dipole have the same phase along
the beam direction, they are in phase opposition along the
other (Fig. 2).

Using the expressions of the fields generated by the di-
poles (Appendix), we can therefore write Eqgs. (1) as

N
w

M(P(Z;):Cf HU(\D(Z) j 5 p,h 2 M (Zh)e“jk{ﬂzh Zl

N
£, :
+J 3 hogeo, 24 Po(zy)sgn(h—i)e ok,

(6)

P,.(Z,-):Sa

Eor(Z )—J ‘2“ eOrz Pr(zh)e“JkULh Zil

N
w

) ‘””’0@30";,21 M ,(z;)sgn(h—i)e Foln=zd |

(7)
having indicated with ey, and h(, the normalized modal
function tor the TEM mode.

Equations (6) and (7) can be summarized as

/ i amH()(p(ZE))

ambfh.
i )|
\.E_;_bjh Cir P(z;)) \eaEy(z)

(i,h=12,....N), (8)

where Hﬂcp:(Hﬂtp(Zl)v - . aH(J(p(ZN))a EOI‘:(EO!‘(ZI)# y
Eo.(zy)), similarly for M, and P,, and
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f)

— 2= jkolzi—z4]
Ain—J] 5 amlu’h()q}e Ol a4 0y,

? ~jkolzi =24
b,_-;,zsgn(i*—h)j "j‘hg@(i'{)rf? JRolZ Zha

W
2 — ik Z <
Cin=J] = 5 XcE€q€ Jkolzi=z4 Oin » (9)

d;, being the Kronecker symbol.

System (8) can be solved directly by inversion of the co-
efficients’ matrix or by some iterative procedure. Since we
are interested in the low frequency behavior of the imped-
ance below the cutoff of the TE, ;| mode, we can limit our-
selves to the first step of the iterative procedure, that is, re-
placing the electric and magnetic dipole moments in the

right-hand side of Eqgs. (6) and (7) with their approximated
values

M (z)=a,Hy,(z) and P (z)=¢gaEo(z) (10)

from which we derive the low frequency approximation for
the longitudinal impedance

ko | Ko
+ —
Z(w)=j2Z, Amep2 hN(a’m ) A7b*In(d/b)

N—1 N—h

X (a,, —aVZ > sm(zk.gE thﬂ)

h=1 w=1

k2 N2
20 167 b In(dlb) 2

(anta,)’

N—1 N—h

—a,)r D 2

h=1 w=1

N 2
+ '2- (am“ae) +(Cl’

X COS

2k¢,§:l z,,H) , (11)
I: ol

Wlth lh:Zh_Zh_ | -
For N equally spaced holes Eq. (11) yields

ko

2 4 2
Zrlw)=2, 322 b%In(d/b) LN (a,,+ a,)
sin®(Nkgl) ]’
—a.)? | 12
Hlan=a) 5ot | (12)
and
Nk

Zimlw)=2Z, 1252 (a,,+a,) (13)

having neglected the frequency higher order term in the
imaginary impedance. It i1s worth noting that the 1maginary
impedance of N holes is, in first approximation, independent
of the holes’ position, equal to N times the impedance of a
single hole. The real part oscillates between
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(ap+a,)’
2((1.',2”-!- 013)

N? and (14)

times the impedance of a single hole. It 1s worth noting that
the real impedance of N holes around the pipe at the same z
is N’ times the impedance of a single hole.

From Eq. (11) the loss factor for a Gaussian bunch of
length o, 1s

ZOC \f;

1287*b* In(d/b) o,
N—1
2
—2(ay—a,)’ 2 (N—h)e 1o
h=1

k(o,)= N*(a,+a,)*+N(a,,—a,)?

X

12
- h2—1) . (15)
< i

The above expression 1s valid for bunch lengths o> (b
+ d)/2. For shorter bunches, higher order modes have to be
included in the theory.

A. Single hole

For a single hole, choosing the hole center as the origin of
the longitudinal axis, system (8) becomes
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[+ = he 0
J 7~ a, i,
2 ¢ (M@(O))
w 2 Pr(O)
O 1 +J _ a€8€0r
2
_ amHOrp(O)
R (SaeEOr(O) | (16)
The real part of the longitudinal impedance is
Zoke
Zpe= — __ (al+add). (17)

167°b* In(d/b)

Replacing in Eq. (16) the polarizability for a round hole,
one finds an impedance value five times larger than that pre-
viously presented in {3] which was affected by an oversight
in the calculations. More recent results obtained by difterent
methods [4] agree with Eq. (17).

From Eq. (15) the loss factor is

ZOC \/—' 9

ko;)= 647°b*In(d/b) o (et a). (18)

B. Two holes

Here we discuss the case of two holes, to better under-
stand the interference and coupling effects. Choosing z,=0
and z,=1, the linear system for two holes becomes

. W 5 W kot © o
' 2 Umtthog ) 2 a’"#h e —J 5 5 @ mhogeore 0
5 a ) - : ) M (0
J 5 9 ;U»hoq, Jkol l+] 5 m,u.h%q, ] 5 '8 4 hﬂzpeﬂr jko! 0 M“D((l))
Q@
Focre y w ] P,(0)
0 ""'] 7 - hgfpeore jkpl l+_] 2 44 88(2)r ] 5 Y 36’%,- Jkol Pr(l)
koo, | © | "
J ;c hog€ore e” /% 0 J = 5 @ 86(2),.8_”‘0! 1+ 5 aeseﬁr
amHOcp(O)
apHo (1)
) N (19)
t‘3a‘iﬁ'E‘Or(O)
ea,Eo, (1)

The real impedance, due to the interference between the

propagating reaction fields, has the following approximate
EXpression:

Zoko
167°b*In(d/b)

ZRe: {2(am+a€)2

+(a,,—a,)’[1+cos(2kyl)]}. (20)

In Fig. 3(a) we show a typical plot of Zg, for circular
holes, as a function of the frequency. According to Eq. (14),
the real part of the impedance oscillates between 4 and 0.4
times the single-hole value. Because of interference effects

between the scattered fields in the coaxial pipe, maxima and
minima occur at frequencies depending on the hole distance

| Fig. 3(b)].
The loss factor, applying Eq. (15), is

Zoc \/-7_7' - 9

k(0,)= 2a,+ a,)+(a,—
(a2) 6476 In(d/b) o (anta)"+(a,—a.)

& '
—(am—-ae)%*<’2’ﬂ' (2—-——1) . (21)

In Fig. 4 (solid line) we show the loss factor for a o=5
cm Gaussian bunch, for the same geometry of Fig. 3. The
behavior of the loss factor 1s quite general, as we will see for
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FIG. 3. {a) Z. for two round holes (b =20 mm, d=24 mm, R
=6 mm, /=300 mm). (b) Zg. for two round holes at different /,
Gaussian bunch spectrum for o= 50 mm.

the case of N holes. It reaches a minimum value when /
~ g, while it saturates for />3 ¢. The minimum is caused by
the destructive interference between fields, which surpris-
ingly occurs only for one distance between the holes. For
larger distances, the impedance has more maxima peaks un-
der the bunch spectrum, however, since their amplitude de-
creases, the total area covered by the power spectrum re-
mains almost constant.
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FIG. 4. Two-hole loss factor (,=20mm, d=24 mm, R
=6 mm, o= 50 mm).

C. Randomly spaced holes

It 1s interesting to compare the coupling impedance and
the loss factor of N holes uniformly and randomly spaced.
To calculate the impedance of N randomly spaced holes, we
can assume in Eq. (11) [,=[+,, where 5, is a random
variable. Again the imaginary part of the longitudinal imped-
ance 1s N times the imaginary impedance of a single hole.
The real part is

. Zoky [N L2, N i
Re(w) — 167T3b41n(dfb) | 2 (am ae) 7 (a’m_ ae)
N—1 N—h

+ (am_ae)2; 2

=] w=1]

X cosi 2k

=1

Consequently we can calculate the loss factor, which turns
out to be

ZoC \/; r

k = {Ni(a. +a )+ Nla. —a.)?
(o) 1287°b%In(d/b) o | (an+ar)"+Nay~a)
N-—1 h
—-2(am“ae)22 E e"(“"+8N—h,w)2"’§
h=1 w=1
- (wltey_p)°
|t ALILLENE R (23)
a

Z

where we have defined

N—h+w

En-hw= 2 O (24)
’ t=N—-h+1

As an example, we compare the real part of the longitu-
dinal impedance for 15 round holes with /=30 cm and §,
uniformly distributed between *£0.2/. We notice that the in-
troduction of the positioning randomization clearly lowers
the peak values (Fig. 5), while it does not affect the minima

level. The loss factor, nevertheless, is almost unchanged
(Fig. 6).

IV. COMPARISON OF ANALYTICAL
AND NUMERICAL RESULTS

To check the vahidity of the expressions tound, we per-
formed simulations with the numerical code MAFIA [7] in the
case of two holes {3]. To this end, it has been necessary to
slightly modify the equations to account for the wall thick-
ness which changes the problem geometry and introduces an
attenuation for the fields in the holes.

Calling b; and b,, respectively, the inner and the outer
radius of the beam pipe, one can see that the factor b* in the
denominator of Egs. (12) and (15) has to be replaced by the

product b;b5. Furthermore, the polarizabilities must be cor-

rected; for a round hole of radius R we use the expressions in
Ref. [8],
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FIG. 5. (a) Zg. for 15 round holes (=20 mm, d=24 mm, R
=6 mm, /=300 mm). (b) Z;. for 15 round holes randomly spaced

with uniform distribution —02[=6,<02] (»=20mm, d
=24 mm, R=6 mm, [=2300 mm).
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FIG. 6. Loss factor for 15 round holes randomly spaced with
uniform distribution —0.2{=<6,<0.2! (=20 mm, d=24 mm, R
=6 mm, /=300 mm).

where W is the wall thickness (in our case W=b,—5b,) and
&, and £] | are the zeros of the Bessel function J4 and J |,
respectively.

We can thus rewrite Eq. (20) as

Zok§
167°b1b5In(dlb,)

ZRe

x{2(a,+a,)+(a,—a,)[1+cos(2kyl) 1}
(26)

As a result, the loss factor becomes

Z(}C\/—’T; - — 7

k(o,)= 2(a@,+ a,) +(a,—
(02) 647 b2b2In(d/by) o | (anta,)+(ay—a.)

(27)

b

/2 "
_(Emﬂge)ze(lzfag)(zj_l) |

In Fig. 4 the dependence of the loss factor on the hole
distance [ is presented for a =15 cm Gaussian bunch. The
numerical results (black diamonds) are in good agreement
with the analytical expression (solid line). The difference
between theory and simulations tends to become larger for
very short hole distances, when the coupling effect of the
evanescent modes begins to be non-negligible.

V. CONCLUSIONS

The effect of the coupling between the equivalent dipoles
seems to be important for a correct evaluation of the cou-
pling impedance and the loss factor of N holes in a coaxial
structure.

At low frequency, the real part of the longitudinal 1mped-
ance grows as w”, as in the case of a single hole, being
related to the TEM mode propagating in the coaxial region.
Moreover, because of interference effects between the scat-
tered fields, the real impedance and the loss factor are pro-
portional to N?.

A randomization in the hole position can lower signifi-
cantly the peak value of the impedance while the minima and

the loss factor are almost unchanged.
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APPENDIX

A TEM field radiated by a hole centered 1n z=z; can be
written as

Er(zazi) — Cg;€9,€ “kolz =) G(Z o ZE)
+dgeq,e’ 09—z +2;),

H ,(z,2;) = coihgpe 705 0(z—z))
md0£h0¢€jkg(2425)9(__.Z_!_Z!_)& (A1)

where ko= w/c, 6(z) 1s the Heaviside function, and
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[ 2o\ 1 !
POF | 277_ \/ln(d/b) r ’ h()q}wé-; eOr (Az)
are the normalized modal function for a TEM wave.
The coefficients cy; and d; are given by
Jw

CO:':_Q_ [Mh{)q;Mq:(Zf)_}_eOrPr(Zf)]a

Jw |
dO.E: - E— [ﬂh(}qugo(zi)_e{)rPr(Zf)]* (A?’)

When there are N holes radiating, the scattered fields on a
generic hole center appearing in Eq. (1) are thus

i — ]
| Coit+do;
—_— —tkn(z,— 2 ! {
Esr(zf)_e()r E Cor€ Jkolz, k)+ 5
-k:l
N
+ > dgelkotzizad |
k=i+1 |

b Coi— dy;
H (z;)=hy, 2, cope HOtETH 4

(A4)

k=1[+]

— 2 dOkejko(_Z,"‘Zk) _

Replacing Eq. (A3) in Eq. (A4) one obtains Egs. (6) and
(7).
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