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Abstract

We reconsider the calculation of O(A3.p/mi) nonperturbative correctionsto B —
X,{*l~ decay. Our anaysis confirms the results of Ali et a. for the dilepton invariant
mass spectrum, which were in disagreement with an earlier publication, and for the lep-
ton forward-backward asymmetry. Wealso giveexpressionsfor the O(Ag ., /m; ) correc-
tionsto theleft-right asymmetry. 1n addition we discuss the breakdown of the heavy quark
expansion near the point of maximal dilepton invariant mass ¢* and consider amodel inde-
pendent approach to thisregion using heavy hadron chiral perturbation theory. The modes
B — Kt~ and B — Krl*[~, which determinethe endpoint region of theinclusive de-
cay, are analysed within thisframework. An interpolationis suggested between theregion
of moderately high ¢*, where the heavy quark expansion is till valid, and the vicinity of
the endpoint described by chiral perturbation theory. We al so comment on further nonper-
turbative effectsin B — X,[T(~.
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1 Introduction

Theinclusivedecay B — X,I*1~ (I = e, 1, T) has received considerable interest in the
literature [1]{19]. As aloop-induced flavour-changing neutral current (FCNC) process
it provides a sensitive probe of flavour dynamics, the least tested sector of the Standard
Model. The rare decay modes 5 — X,/*/~ are well within reach of the next generation
of precision B physics experiments and promise to yield much needed information com-
plementary to that from other sourcessuchas B — X,v, B — X,vir, B — B mixing, CP
violation or rare K decays. Theinterestin B — X,I*{~ and other inclusive rare B decay
processes isreinforced by the fact that their theoretical treatment isfairly well under con-
trol. Indeed, theratefor B — X,/*(~ isdominated, intheregionof ¢> = (p;- +p;+ )? avay
from resonance backgrounds, by perturbatively cal culable contributions. These areknown
at next-to-leading order (NLO) [7,8]. Such acalculation at the partonlevel isformally jus-
tified by the heavy quark expansion (HQE), in which the free b quark decay b — si*i~
emerges as the leading contributionto B — X,/*/~. This result receives power correc-
tions of the form (Agcp/ms)", which can be systematically addressed within the HQE
framework. The leading correctionsarise at order n = 2. They have been first considered
in[5]. A further computation of these effectsin [14] did not confirm the results obtained
in[5]. In particular, in [14] the relative O(A3 ., /m}) correction diverges at the high-¢*
endpoint, indicating a manifest breakdown of the heavy quark expansion, afeaturethat is
absent in [5].

The O(A}p/mi) effects are relevant both conceptually, for assessing the validity of the
HQE, as well as for obtaining quantitative control over a class of theoretical uncertain-
ties beyond perturbation theory. In view of this, the phenomenological interest of B —
X,{*l~ and the situation in the literature described above, a further independent analy-
sis of the issue is certainly useful. The results of such an analysis of the O(A%.p/m})
correctionsin B — X/~ will be presented in this paper. We will furthermore discuss
the breakdown of the HQE near the endpoint of the spectrum (at maximum ¢*). Theim-
plications of this feature for a description of the high-¢* region will be pointed out. A
major part of thiswork will then be devoted to investigating the model independent con-
straints on the ¢*-spectrum that can be obtained using heavy hadron chiral perturbation
theory (HHChPT).

The paper isorganized as follows. A brief description of the general framework and
acollection of basic formulasis given in Section 2. In Section 3 we present our results
for the 1/m; corrections to the dilepton invariant mass spectrum, the forward-backward
(FB) asymmetry and the left-right (LR) asymmetry in B — X,/*/~. Section 4 containsa
discussion of the breakdown of the HQE near the endpoint. In thissection we also analyze



the endpoint region of B — X,I*(~ in terms of the exclusive modes B — K+~ and
B — Krl*i~, calculated within chiral perturbation theory. A few comments on further
nonperturbative effectsin B — X,/*(~ are madein Section 5. We summarize our results
in Section 6.

2 Framework and Basic Expressions

The starting point for the analysis of B — X[~ is the effective Hamiltonian, in the
Standard Model given by (neglecting the small contribution ~ V* V,;)

CEVEV [ C00Qs + 5 Colu6Bva(lhy + - Cra(sbyva()
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The Hamiltonianisknown at next-to-leading order [7,8]. A detailed review may be found
in [20], where the Wilson coefficients C'; and the four-quark operators ¢); are defined ex-
plicitly (the operators are typically of theform ); ~ (sb)(¢éc), fori = 1,...,6, whereas
Qr ~ emysot (1 4 v5)bF,, and Qg ~ gmpsa™’ (1 + v5)A*0GY,,).
From (1) the following general expression can be derived for the differential decay rate
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Here m, (M3) is the b-quark (B meson) mass. (/7 is a (scheme invariant) effective

Wilson coefficient that includes, in addition to Cy, from (1), the contributions from the
b — st~ transition matrix elements of 4-quark operators @), . . ., Qs. Next

A . o
LS, = prupaw + poupro — Gt -p2 and Lo, = —ic0pips 3)

are the symmetric and antisymmetric leptonic tensors, respectively (p; (p2) isthe momen-
tumof [~ (I*) and e*'** = +1). Weadsoset s = ¢*/mj (¢ = p1 + p2), * = 2p - p1/m}
andy = 2p - p,/mi, where p is the b-quark momentum defined as p* = mv* in terms
of the B-meson four-velocity v* = p% /M. The hadronic tensors W/ can be written as
W = 2Im T/ where

T = i [dae = (BIT jH(2)j0)]B). @)
1 =[BT 0B 5)
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=i [ e BT ) 0)B) (6)



Jo = 57*(L —75)b, g~ = 8" (L4 7)b. (7)
Here the B meson state | B) is taken in conventional relativistic normalization (B|B) =
2EV (the explicit appearance of the factor 1/Mp in (2) is dueto this definition).
Evaluating the hadronic tensors to leading order in the heavy quark expansion, eq. (2)
reproduces the well known quark-level results for the B — X,/*(~ decay distributions
and asymmetries. For instance, defining

LB = X,IT17)

Bls) = (B — X.ev) ®)
one obtains upon integrating over = and y
o? Vts (1 5)?
R = 9
& = vl fome ©
) N
[1+25)(|06ff|2+|010|) ( +E) IC4[2 4+ 12C5ReCe!!

Here f(z) = 1 — 82% 4+ 82° — 2® — 242" In 2 is the phase space factor and «(z) the QCD
correction factor (z = m./m,) entering I'(B — X.ev); x(z) can be found in [20]. Note
that for the dilepton invariant mass spectrum R(s) only the symmetric part in (2) (propor-
tional to L%,) contributes. In (9) we have neglected O(m}/m}) and O(m?/m}) terms,
as we shall do throughout this paper, unless stated otherwise. The expressions given are
therefore applicable to the cases [ = ¢, . The extensions of (9) to the case m; # 0 (rel-
evant for [ = 7) and m, # 0 aregivenin [9,12]. Neglecting the strange quark massis a
very good approximation except near the ¢* endpoint. This region, however, suffersfrom
large nonperturbative corrections and the entire partonic approach has to be reconsidered
there (we will come back later to this point).

A quantity closely related to R(s) istheleft-right (LR) asymmetry, which measures
the differencein therates of producing left handed or right handed leptonsin B — X, i+~
decay. As discussed in [21,22], the LR asymmetry can be directly extracted from (9).
Defining

RM(s) = R(s)

(10)
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Another interesting observablethat can be studiedin B — X,/*(~ decaysisthe forward-
backward (FB) lepton asymmetry [4], which can be defined as

1 21( B +7-
1 )/ cos d’I'(B — X, [*17)

Arp(s) = F(B — X.ev ds dcos 0

sgn(cos ) , (12

wheref isthe angle between [+ and B momentain the dilepton center—of—massframe. As
shownin[14] Arg(s) isidentical to the energy asymmetry introduced in [11]. The NLO
perturbativeresult for Axg(s) isgiven by

‘/ts 2 (1 - 5)2
Vol f(2)k(2)
Interestingly enough, both Az r(s) and Arp(s) are sensitive to the relative signs between
C7, C& and (. These asymmetries therefore offer useful additional information on the
underlying short distance physics.
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App(s) = Re{c 207+ G570} (13)

3 O(A}op/mi) Power Correctionsto R, Apr and Arp

The hadronic tensors W/ in (2) can be systematically expanded in inverse powers of the
heavy quark mass using the operator product expansion (HQE) approach supplemented
by heavy quark effective theory (HQET). The general procedureis described in great de-
tail in [23] for the case of B — X, .[v decay. The first correctionsto the parton result
(O(1)) appear at O(Aj.p/mj). Tothisorder we obtain the following expressions for the
hadronic tensors (after contracting with L)
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————— [ dady L} = [14+"=](1—s)*(1+2
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with £ the b-quark field in HQET.

The resultsin (14)—16) agree with [14] but differ from the findingsof [5]. The con-
tribution involving W, isthe same that appears in the case of semileptonic B — X, [v
decay. Integrationof (14) over s yields (1/2)[1+ (A1 —9Xq)/(2m?)], reproducing the well
known correction factor derived in [23,24]. Inserting (14)—16) into (2) we obtain for the
1/m} correctionsto R(s) in (9)

3 [ |V 1 . .
S0 s 5 _ 2 3 eff2 2
l/mbR( ) me (47T2 Vi f(Z)/i(Z) (1 155" + 10s )(|C9 | + |010| )
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Here we have used the normalizing semileptonic rate including terms of order 1/m;
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that can befound for instancein [23]. Note that the correction due to the kinetic energy of
the b-quark ~ )\, isgiven asasimple overal factor (1 + ), /(2m}?)) for both B — X ev
and B — X,I*(~ and therefore drops out in theratio R(s). Since, in contrast to \,, the
quantity \; isnot well known anyway, its absence in (18) is awelcome feature.

Given theresultsin (14)—(16) it is straightforward to write down the 1/m} correction for
Arr(s)in(11)

3)\2 Vi 1 N .
0 2 A = i 1—1 2 1 3 -9 eff
1/mj LR(S) me (47‘[‘ ‘/cb f(Z)/i(Z) [( Hs + 0s )( 010 ReCQ )
+(5 + 65 — 732)407010] + 5{8 ALR(S)) . (21)
This correction has been discussed previoudy in [21], however based on the incorrect re-

sults of [5].

To calculatethe FB asymmetry it isnecessary to contract W and W, with the asymmet-
ric component of the leptonic tensor. The relevant terms, expanded up to O(A . /m7),
are given by

A
/d:z;dy sgn(y — ) Lf}UWQW = s(1—3)"+ 6—125(3 + 25 + 3s%)
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Also in this case our finding is in agreement with [14].

4 TheHigh-¢* Region
4.1 Generalities

The size of the O(Ap/m}) correctionsin (18), (21) and (24) is quite moderate, at the
level of several percent, for values of s below about 0.6. On the other hand, when s ap-
proachestheendpoint (s = 1), thecorrectionsfor R, Arr and Arp tend towardsanonzero
value, while the leading term of these quantitiesvanishesas (1 — s)?. Therelative correc-
tion thus divergesin thelimit s — 1 and the rate R(s) becomes even negative for s close
enough to the endpoint. Obvioudy, the HQE breaks down in the endpoint region. From
the expressions given above one may recognize that in the case of R(s) and Ay g thisbe-
haviour is exclusively related to the A,-term, whereas in the case of App also thekinetic
energy correction ~ A; isnot well behaved in thelimit s — 1. We remark that these fea-
tures are not shared by the result given in [5] and have been first observed by the authors
of [14].
In order to account for nonperturbative effects that elude the HQE approach, [14] supple-
ment the partonic cal cul ation with aFermi-motion model to predict the ¢* spectrum and the
shape of the FB asymmetry in the entire physical region including the endpoint. Although
such an approach could be useful in principle, in particular when employed in conjunction
with experimental data (used e.g. to fit model parameters), we will not perform such an
analysis here. Instead, we would like to discuss to what extent model independent predic-
tions can be made for the B — X[+~ spectrum. We will thereby focus our attention on
the high-¢? region. For this purpose we shall first discuss the nature of the breakdown of
HQE in dightly more detail. We follow here the general discussion presented in [25,26].
The central element in the operator product expansion of thetensors 7" in (4) isthe
s-quark propagator. This propagator emerges in the evaluation of the time-ordered prod-
ucts (4) and determines essentia features of the 1 /m, expansion. Denoting & = m,v — q,



D, = 0,—19A, and neglecting the s-quark mass, the s-quark propagator in a gluon back-
ground field may be written as
f+ip

Ss(k):k2+2@'k-p—plﬂ+ig' (29
Uptotermsof order Agep = A, k isthe momentum of thefinal state hadronic system. In
the usual case, that isaway from singular kinematical points, one has k& ~ my, k* ~ m}
and consequently the hierarchy k* ~ mj > k- D ~ myA > P P ~ A?. Thereforeone
can expand S,(k) =§/k* + O(A/m;) and the usual HQE isvalid.
A different situation arises in the endpoint region of the lepton energy spectrumin B —
X, .lv and for the photon energy spectrumin B — X,v. Here one till has k& ~ my, in
terms of components, however the kinematics is now such that 4% ~ m;A. For the quan-
tities in the denominator of (25) thisimplies k? ~ myA ~ k- D ~ myA > P P ~ A%
Anexpansionin A/m;, isstill possible, but k- D/k* isnow of O(1) and the corresponding
effects have to be resummed to all orders. Thisis the case discussed in detail in [26,27]
for B — X.,lvandin[28] for B — X,y (seedso [25]).
Wewould liketo stress that the situation encountered in the endpoint region of the ¢* spec-
trumin B — X,[T[~ issubstantially different from the two cases just described. For the
kinematicsthat isrelevant here, ¢* ~ m} ~ M3, itfollowsthat £ ~ A andk* ~ A%, Then
all three terms in the denominator of (25) are of the same order of magnitude ~ A%. The
heavy quark expansion breaks down completely and not even an al-orders resummation,
of the type useful for B — X_,lvand B — X,v, can be performed. This conclusion
is clear on physical grounds, since at ¢*> ~ M} the two leptons are emerging back-to-
back, carrying almost all the energy released in the decay of the B meson. Thefina state
hadronic system has very low momentum and we are in aregime of manifestly nonpertur-
bative QCD.

At this point we would like to emphasize a conceptual consequence of this discus-
sion for the treatment of the ¢ spectrumin B — X[+~ within a Fermi-motion model,
asemployed in[14]. In the case of the photon energy spectrumin B — X,~ or the lepton
energy spectrumin B — X, (v the resummation of leading singular contributionsin the
HQE leadsto a description of the endpoint region in terms of a shape function[27,28,25].
The shape function depends on nonperturbative physics that can qualitatively, at least to
some extent, be modeled by a Gaussian description of the b-quark momentum distribution
inside the B meson (Fermi-motion). Asexplained above, asimilar interpretation does not
exist inthecase of B — X,/*/~. A Fermi-motion description of nonperturbative effects,
particularly for high ¢2, appearstherefore certainly less justified than in the usual applica
tionsto B — X,y and B — Xlv. Infact, as we have seen above, the divergence of the
1/mj} corrections to the ¢* spectrum near the endpoint arises from the chromomagnetic




interaction term ~ )\, that does not have an obvious interpretation in terms of a Fermi-
motion ansatz.

On the other hand, the kinematical situationin 5 — X,/*{~ near the ¢*> endpoint,
with few, low-momentum hadronsin the final state, lendsitself to atreatment using heavy
hadron chiral perturbation theory (HHChPT) [29,30]. Combining this description at very
high ¢* with the standard HQE result at somewhat lower ¢*, wherethelatter istill valid, a
model independent analysis of the entire high-¢* region (above the ¥ and ¥’ resonances)
could be conceived. In the following we shall examine such a possibility.

First, one may writedown an effective Hamiltonian, suitable for the endpoint region
(¢> = M3)in B — X,I*[~. ThisHamiltonian differsfrom the standard Hamiltonian (1).
‘Light’ quark (u, d, s, ¢) loops may beintegrated out explicitly sincethey involvethe hard
external scale ¢*> ~ m? > 1GeV. This endpoint effective Hamiltonian then takes the
form, validat NLO in QCD

G Q
Hepppp = —7;‘42‘4175 X (26)

5 | Cozp(36)v_a(lD)v + Cro(3b)y—a(ll) 4 + 2msCy 50 (1 + 75)5%5%5

The Wilson coefficient C zp» has the structure
Copp = CNPR 4 h(z,5)(3C + i) + (penguin contributions) , (27)

with %, ¢{”, CNDE from (1). These quantities, the function A(z, s) and the remaining
terms can be found in [20]. Cy zp isidentical to C¢// in (2) (see also [20]), except that
it does not include the QCD correction 7(s) to the matrix element of the current (sb)y _4,
which multiplies CY P in C§//.

The Hamiltonian (26) is still normalized at ascale 1 = O(m;). A further evolution
downto hadronic scales ~ 1 GeV iscalculable perturbatively using HQET (* hybrid renor-
malization’). However the HQET logarithmswill be automatically contained in the matrix
elementsof the (sI'b) operatorsif they aretaken in full QCD and appropriately normalized
at = O(my). Itistherefore not necessary to make these effects explicit in (26).

42 B — Kitl~-

At thevery high end of the spectrum, between the K ' threshold and the physical endpoint,
the inclusive decay B — X,/*/~ degeneratesinto the exclusive mode B — KI(*(~. In-
troducing the variable s,, = ¢*/M3, thisregion correspondsto s&™ < s,, < s& where
sB = s mar = (1 — My /Mp)? = 0.821 and s2™ = 0.774.

m



The matrix elements needed for B — KA[*T]~ can bewritten as
(K(p)|57u(1 = 5)bB(p)) = fr(®)(p+ pi)u + f=()p—pi)u,  (28)

(K(py)so™b|B(p)) = —iar(q)(pip” — pip") , (29)

intermsof theformfactors f+(¢?) and az(¢?*). The decay rate (normalized to the semilep-
tonic width asin (8)) isthen given by [31]

LB(B — KI*I7) m(By)  GEM} o?
) — dsm \ _ _ d B 2 &
Bxclsn) = B(B — X.ev) B(B — X.ev) 19273 [VioVis| 472 filsm)
2 . a2 .
X {J;—+ (|C9,EP|2 + |C10|2) + 7T7712|C7|2 — frarmiRe C7C§,EP} ) (30)

where the phase space function f; reads

2
Mg

Filsm) = (1= 0+ s)* — 45,,)* VPR

(31)

In generd, the form factors are very difficult to calculate. However, as long as we are
interested in high ¢*, where the kaon momentum is small, HHChPT may be used to es-
timate these nonperturbative quantities. In this approach, to the lowest order, one finds
[29,30,32,33]

B Mp Fv-p, M3+ M} — ¢
=2 (1t - Py = 32
f:l: 2f7r gU‘pK—I_A—I‘ILLS 2 v pI\ 2MB b ( )
1
ap = 9B (33)

o frvepe A
Here 5 and f, arethe B meson and the pion decay constants in the normalization where
fr=132MeV. A = Mg« — Mg = 46 MeV, us = Mp, — Mg = 90 MeV and g isthe
HHChPT parameter that determines B* Br and D* D7 couplingsat low energy. Thevalue
of ¢ could in principle be inferred from a measurement of I'( D* — D), but present data
only allow to set an upper limit ¢°** < 0.7. According to the theoretical estimates of [33]
in the following we will assume 0.4 < ¢ < 0.6.

43 B — Krltl-

Between K7 and K7 thresholds, i.e. for s8™ = 0.728 < s,, < si™ dsothe B —
Krltl~ decay iskinematically allowed. No other modes are permitted and the hadronic
invariant massis still small enough to justify the use of HHChPT.
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my me Ve |Vis] |Vis|
4.8 GeV 1.4 GeV 0.04 0.04 1
m(my) My sin? O a~! A%
170 GeV | 80.2 GeV 0.23 129 0.225 GeV
MB MK ]\47r T(Bd) B(B — Xcel/)
5.28 GeV | 0.496 GeV | 0.140 GeV 1.6 ps 0.104
g /B I= A= Mg« —Mp | ps = Mp, — Mp
0.5 0.180 GeV | 0.132 GeV 0.046 GeV 0.090 GeV

Table 1: Compilation of input parameters (central values).

The matrix element of the |eft-handed current relevant to B — K w/*[~ can begen-
erally decomposed in terms of four independent form factors. Defining

<R7i(p1c)7rj(p7r)|§7u(1 - 75)6|B(p)> = icyj {apmu + bpru + cpu — Qihguaﬁwpapipﬂ )

34

the lowest order HHChPT results are given by [34] >

« = gjf;Bv‘;‘ﬁA, b=0. (35)
Rl TR

L A ) ) )

) 9’ fs 1 (37)

2f72r [U-pW—I—A][U'(pK —I_pf)—l_A—l_/“LS] 7

where [c_y |* = |co_|* = 2|coo]? = 2|co]? = 1.

We have checked the results (35)—37), first obtained by the authors of [34], and
agree with their findings. In addition we need the corresponding matrix element of the
magnetic penguin operator. We obtain, again to leading order in HHChPT

-

(K (p )7 (pr)]50,(1 + %)b%'Bw = (38)

gy {a/pmu + b/plﬂw + c/pﬂ - Zih’aswmpapipﬂ )

ro_ ngMB MB—U'p —wep
f72rq2(v‘p7r_|_A) K fis

11



—|—gv'p1cv'(p1c+p7r)_pzc'pW_MI%], (39)
v (pe+pe) + A+
b/ _ ngBMB pK'pW—I_M?r_U'pWU'(pK—I_pW) (40)
f72rq2(v'p7r+A) U'(pf(—l_pf)—l_A—l_/“LS ’
/ ng 2
¢ = - Mpv-p.— M- —p, - pr
f?qz(v-pw+A)[ pey P b
eprv-(p,. —pr)— M2v-p. + M?v-p_
_I_gpI\' Pr v (pI\ p) KU P —I_ xU pI\]7 (41)
v (pe+pe) + A+
qf Mg —v-p, —v-p;
f = P g—2 ! (42)
2f7rq (U-pW—I—A) U'(pf(—l_pf)—l_A—l_/“LS

We proceed to compute the decay rate. The necessary four-body phase space integrations
can be performed using the general methods reviewed in [34]. The leading behaviour of
the differentil B — Kni*(~ decay rate as a function of (sX™ — s,,) close to the K=
threshold may be written down analytically. It gives the correct asymptotic behaviour at
threshold and can be used as an approximation to the full result for values of s,, not too

far from this point. We find

L B(B— K~ntItl7) r(By)  GLM: o?
. — dsm _ _ _ d Fitp 2 &
Big=rt(sm) = B(B — X.ev) B(B — X.ev) 19273 Vi V| 42 .
1 R R .
%5575 1 Fo(sm) (1Copl® + 1Cuol?) + 4Fe(5) | Crl* + 4For(s,)Re CrC5 pp |, (43)

m (t1$1$2)1/2

2 Aryzy 2 K7 3
Fo(sm) = 10— JapP [Uh + i (1 - \/E)wz] (sm™ = sm)”, (44)

W|th Ty = MW/MB, Lo = M[{/MB, tl == (1'1 + $2)2 and S{;ZW == (1 — 1 — $2)2. The
functions F» and Fy; are obtained from Fjy by replacing w? — w/? and w? — w;w!, re-
spectively, where

fBMBp gM, Mg M, + ps/2
w1, = 2 —1 + R (45)
f7r M7r + A MI( + M7r MI( + M7r + Hs
fBMp gMp
E—_— 46
RS Y PR VAN (46)
. IsMp gM; my . _ _fsMp gMp mp

w2:

YT T M AMg M, 272 M, + A Mp — Mg — M, -

(47)
Adding the two isospin channels, the total result for the nonresonant B,(B~) — Kwiti~
rate becomes

3
RI(W = RI(‘W"’ + RR'OWO = RR’ T + RI&"—WO = §RI(_7r+ . (48)
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With the explicit expressionsfor Ry . at hand, we arein aposition to estimate the relative
importance of the nonresonant A= mode relative to the single & channel in the endpoint
region. It is clear that the four-body process B — Kt~ is phase space suppressed.
This is obvious from (43), which exhibits the typical factor of ~ 1/(1672). More quan-
titatively we find that Ry, amounts to less than 2% of Ry at s,, = 0.7 and is ill less
important for larger s,,. Rx . iStherefore negligiblein the entire endpoint region, which
is completely dominated by Ry . The asymptotic formula (43) describes the behaviour of
Ry closeto threshold (s, = 0.774). For s, = 0.7 (43) overestimates the full result by
about 50%. Thisis till useful for an order of magnitude estimate.

For s,, below 0.7 a substantial enhancement of the A'r mode is expected due to the con-
tribution of the A= resonance. However, for s, > 0.73 we are till far enough from the
K™ threshold to safely neglect the K’ mode with respect to the single kaon channel.

44 Discussion

InFig. 1 we compare the HQE result for R(s) with the HHChPT picture close to the end-
point. For thispurpose werescaletheratio R(s) (9) from quark to physical (hadron) kine-
matics, replacing

ﬁB(B — X,J*7)
B(B — X_.ev)

R(s) — E)(Sm) = M—%R (M—ésm) = (49

2
my, my,

This representation of the quark level result is furthermore useful since it makes the de-
pendence of the prediction on the b6-quark mass explicit. The corresponding uncertainty,
which will unavoidably exist in comparing theory with experiment, isillustrated in Fig. 1
for the representative range m;, = (4.8 + 0.1)GeV. Inthis context we recall that m, here
refers to the pole quark mass. In fact, since the NLO QCD calculation for b — sl™(™ is
available, the distinction of the pole mass from other mass definitionsis aready meaning-
ful at first nontrivia (i.e. one-loop) order. The value of m, isto be determined from some
other observable and can then be used asinput for B — X,[*/~. In principle the error on
my, can be further reduced in the future. We remark that the dependence of R(s,, ) on the
renormalizationscale i (my /2 < p < my) islessthan £5% intheregion0.5 < s, < 0.7.

The1/m? correctionsto B — X,/*/~,whichareincludedinFig. 1, are negativefor
sm > 0.5, increase with s,,, and reach about —20% of theleading result for s, = 0.65. As
discussed above, nonperturbative effects that are beyond the control of the HQE become
important for still larger values of s,,,.

Very closetotheendpoint at s, = 0.821 HHChPT offersacomplementary approach
that may be used to constrain the behaviour of the spectrum from the region of large s,,, .
An interpolation suggests itself between the regime s,,, < 0.65, where the HQE is valid,
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Figure 1: The dilepton invariant mass spectrum (dB(B — X,*17)/ds.)/ B(B —

X.ev) = R(s,,) asafunctionof s,, = ¢*/M3. For s,, < 0.65 the NLO partonic cal-
culation, including 1/m7 effects, isused. There thelower, middle and upper curves corre-
spond tomy,/GeV = 4.7, 4.8 and 4.9, respectively. For s,, > 0.73 we show the HHChPT
prediction for R(s,,), which is dominated by B — K{*/~. Lower, middle and upper
curve areobtained for ¢ = 0.4, 0.5 and 0.6. Linear interpolations between the two regions
(0.65 < s, < 0.73) areindicated by dotted linesto guide the eye. The dashed curveillus-
tratesasmooth interpolationusing central parameter values. Thethresholdsfor thevarious
exclusive modes occur at s, = 0.821 (K),0.774 (K),0.728 (K 7m), 0.691 + 0.008 (K™,
+ half width).

and s, > 0.73, where HHChPT may be used. In thisway an essentially model indepen-
dent description of the entire high-¢* region s,, > 0.5 (above the ¥’ resonance) could be
obtained, at least in principle. In practice there are however severa sizable uncertainties
associated in particular with the HHChPT treatment. The B* Br coupling ¢ is still poorly
known. Other uncertainties are related to the values of |V;;| and 7( B,) entering (30), but
these are less important than the one from ¢. Also the B meson decay constant fz intro-
duces some uncertainty.

A further issueistherdliability of chiral perturbation theory inthe present case. The kaon
mass is not very small with respect to the chiral symmetry breaking scale A, ~ 1.2 GeV.
Thus, eveninthevicinity of the endpoint, correctionsof order 30%—40% can be expected.
In the K7 channel the situation could be even worse, given the presence of the nearby K
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resonance. However, for agiven value of s,,, the hadronic invariant mass rangesfrom M,
to M = Mp(1 — s!/?) ~ 770 MeV and only near the upper figure the effect of the
resonance should be important. Given the above remarks, the result for R(s,, ) we have
presented should still provide areasonable estimate. In addition, in view of the kinemat-
ical suppression of the K'w channel, the fact that the region above s,, = 0.73 is entirely
determined by 5 — K1+~ can be expected to be valid beyond the limitations of chiral
perturbation theory, which is useful for further studies.

Systematicimprovementsare possi ble by going beyond thelowest order in HHChPT.
In [32] chira logarithmic corrections to the leading result have been investigated within
HHChPT for the exclusive mode B — K*i~. The corrections were found to be about
40%, which is sizable but still moderate enough for the approach to make sense. A related
issueisthe question of whether to use fr instead of f., whichalso goesbeyondtheleading
order of chiral perturbation theory. The calculation of [32] can be considered as a naive
estimate of the expected size of the higher-order corrections, but lack of knowledge of the
corresponding counterterms makes any precise statement about their exact value difficult.
For thisreason we have not explicitly included the chiral logarithmsin our estimates. The
related uncertainty is at least partly included in our variation of the coupling g.

Apart fromthedifferential branching fraction a so theforward-backward asymmetry
can be studied in HHChPT at large ¢*. In this context we note that Axp vanishes identi-
cally for thesinglekaon mode B — K(*/~. Theendpoint of Arp istherefore determined
by B — Krl*l~ andoccursat s,, = (1 — (Mg + M,)/Mg)* = 0.774.

We finally remark that the entire high-¢? region (defined by 0.5 < s,, < 0.821)
corresponds to an integrated branching ratio for B — X, /*{~ of about 0.5 - 10~ in the
Standard Model. Thus, although the dilepton mass spectrum is dropping to zero towards
the endpoint, a sizable branching fraction for B — X,/T/~ existsin the region that is
characterized by thetransition from quark level dynamicsto HHChPT. The high-¢* regime
congtitutes one of the interesting regions to search for B — X,I*(~ in experiment [35-
37]. Attemptsto describe this part of the spectrum in a model independent way along the
lines proposed in this paper should therefore be useful for the study of rare B decays at
future B physicsfacilities.

5 Other nonperturbativecorrections

In addition to higher order terms in the 1/m,; expansion, B — X,I*(~ decays are af-
fected by long-distance correctionsrelated to c¢ intermediate states. These originate from
the nonperturbative interactions of the cc pair in the process B — X,cc — X, 1. If
the dilepton invariant mass is close to one of the two narrow J7¢ = 1=~ cc-resonances
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(¥(3097) and U’(3686)) thiseffect isvery large and “ obscures’ the short-distance FCNC
process. However, this background can be eliminated by suitable cuts on the dilepton in-
variant mass. Given the vicinity of the two narrow resonances, two ¢*-regions naturally
emerge as appropriate for the study of short-distance dynamics. the region below the ¥
and the one above the ¥'. Inthefirst caseit is still necessary to deal with the cc rescatter-
ing below threshold, whereasin the second case the effect of broader resonances and open
charm has to be evaluated.

Nonperturbative contributionsgenerated by cc intermediate states have been widely
discussed in the literature by means of phenomenol ogical resonance-exchange models[4,
12-14]. These approaches are useful near the main resonance peaks, but their validity out-
side thisregion iscertainly lessreliable. Indeed, the shape of the resonance tails far from
the peaksis not under control. Moreover, a double-counting problem is usually posed by
the ssimultaneous use of quark and hadronic degrees of freedom. Within this framework,
the only way to avoid double counting is represented by the approach of [12] (KS). Here,
in order to take into account charm rescattering, the correction to Cy induced by b — cés
operatorsis estimated by means of experimental dataon o(ete™ — cc-hadrons) using a
dispersion relation. To be more specific, the function ~.(z, s) appearing in (27) isreplaced
by

S [ Biaals) T
h(z,s) — h(z,0) + gp/sc dslm + Zthad(S) ) (50)

where RS (s) = o(ete™ — cc)/o(ete” — ptp™) and s, isthe cc threshold. This
method has al so the advantage of including open charm contributions. However, it isexact
only in the limit wherethe B — X, cc transition can be factorized into the product of sb
and ¢c color-singlet currents (i.e. non-factorizable effects are not included). Using this
method we have estimated the long-distance correctionsto the plot in Figure 1. The effect
isquite small, at the level of several percent, essentially negligiblefor s,, 2 0.53. Below
this value the correction exceeds 10% because of the vicinity of the U’ peak.

Larger effectsfromthehigher ¢ resonances (W (3770), W(4040), U(4160), W(4415))
are obtained when a phenomenological factor « ~ 2.3 is introduced to enhance reso-
nance production with respect to the factorization result [38]. This is motivated by the
fact that the factorization assumption yieldstoo small valuesfor the B — .J/W X, branch-
ing fraction. The validity of such a procedure for estimating the impact of higher reso-
nancesin B — X,[T/~ isnot entirely clear. Further work on thisissue is necessary. In
any case the deviationsfrom quark-hadron duality due to resonances are reduced when the
B — X,IT1~ spectrum isintegrated over alarge enough range of ¢°.

A more systematic and model-independent way to estimate cc long-distance effects
far from the resonance region, based on a heavy quark expansion in inverse powers of
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the charm-quark mass, has been recently presented in [16] (see aso [17]). This approach,
originaly proposed in [39] to evaluate similar effectsin B — X+ decays, has the ad-
vantage of dealing only with partonic degrees of freedom. In this framework the leading
nonperturbative correctionsto £(s) turn out to be O(A ., /m?). They originatefromthe
effective sb—photon—gluon vertex (induced by charm loops), where the gluon is soft and
couplesto the light cloud surrounding the 6 quark inside the B meson. The corresponding
matrix elements can be related to A\, and thus are known both in magnitude and in sign.
This kind of corrections is complementary to those computed in the KS approach, since
they are generated by the charm rescattering in a color-octet state. Since the factorizable
corrections vanish for s — 0, as shown by (50), the O(A% ., /m?) effect is expected to
be the dominant long-distance contribution for small values of the dilepton invariant mass.
For s < 0.2 therelative magnitude of the correctionisvery small (at the one or two percent
level). Higher-order terms become more and more important near the c¢ threshold, where
the description in termsof partonic degrees of freedom isclearly inadequate. Usingasim-
ple order-of-magnitude estimate of higher-order terms, it has been shown that the leading
corrections should provide a reasonable estimate of the effect upto s = 3m?/m;j ~ 0.26
(sm < 0.21)[16]. Inthisregion the effect is below 4%. The O(A,/m?) corrections
are again very small above the ¥’ peak.

6 Conclusions

Within the framework of the heavy quark expansion we have computed the nonperturba-
tive corrections of O(A3./m;) to the dilepton invariant mass spectrum and the lepton
forward-backward asymmetry in B — X[~ decay. Our calculationsconfirmtheresults
of [14] for these quantities, which were at variance with earlier work [5]. For completeness
we have aso writtendown the O(A%, ., /mj ) correctionsfor thelepton left-right asymme-
try.

In the main part of our paper we have then focussed on the region of high dilepton
invariant mass ¢ (with ¢*> > M32,). Thisisone of the relevant search regionsin experi-
ments looking for B — X/t~ and correspondsto an integrated branching ratio of about
0.5 - 107° in the Standard Model. The HQE breaks down for ¢* too close to its maxi-
mum value at the endpoint of the dilepton mass spectrum. This is signalled by a mani-
fest divergence of therelative O(A3 ., /m}) correctionsin thelimit ¢* — mj, asaready
observed in [14]. We have discussed conceptual aspects of this breakdown of the HQE
for B — X,I*I~ and emphasized that it isimpossible to remedy the failure of the usual
1/m, expansion at the endpoint by an all-orders resummation, in contrast to the case of
e.g. the photon energy spectrumin B — X,~. We were therefore led to consider an al-
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ternative, model independent approach to the endpoint region using HHChPT, whichisin
principle well suited in this kinematical regime. For this purpose we have formulated, at
NLO in QCD, an effective Hamiltonian adapted to the endpoint region. This Hamiltonian
is avariant of the standard Hamiltonian for b — si{*[~ transitions and serves as the ba-
sis for calculating the relevant exclusive channels in the vicinity of ¢* = (Mp — Mk )?
within HHChPT. We explicitly considered themodes B — Ki*{~ and B — K=l*(~ and
demonstrated that the latter is completely negligible in the kinematical region of interest.
To obtain a complete description of the high-¢* spectrum, an interpolation between the
HHChPT regime and the region of validity of the heavy quark expansion has been sug-
gested. At present there are still limitations in accuracy from uncertainties in the value
of my, and, particularly, in the poorly known HHChPT parameter ¢ as well as due to ne-
glected higher order termsin the chiral expansion. However, the approach is essentially
model independent and systematic improvements can in principle be made.

Acknowledgments

We thank Stefano Bellucci, Martin Beneke and Gilberto Colangelo for interesting discus-
sions and acritical reading of the manuscript.

References

[1] W.S. Hou, R.I. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987).
[2] B. Grinstein, M.J. Savage and M.B. Wise, Nucl. Phys. B319, 271 (1989).
[3] W.Jausand D. Wyler, Phys. Rev. D41, 3405 (1990).
[4] A.Ali, T. Manndl and T. Morozumi, Phys. Lett. B273, 505 (1991).
[5] A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D49, 3367 (1994).
[6] A.Ali, G.F. Giudiceand T. Mannel, Z. Phys. C67, 417 (1995).
[7] M. Misiak, Nucl. Phys. B393, 23 (1993); erratum ibid. B439, 461 (1995).
[8] A.J. Burasand M. Miinz, Phys. Rev. D52, 186 (1995).
[9] JL. Hewett, Phys. Rev. D53, 4964 (1996).
[10] G. Buchalla, G. Burdman, C.T. Hill and D. Kominis, Phys. Rev. D53, 5185 (1996).

[11] P Cho, M. Misiak and D. Wyler, Phys. Rev. D54, 3329 (1996).

18



[12] F. Kriuger and L.M. Sehgal, Phys. Lett. B380, 199 (1996).

[13] M.R. Ahmagdy, Phys. Rev. D53, 2843 (1996); C.-D. Luiand D.-X. Zhang, Phys. Lett.
B397, 279 (1997).

[14] A.Ali, G. Hiller, L.T. Handoko and T. Morozumi, Phys. Rev. D55, 4105 (1997).
[15] J.L. Hewett and J.D. Wells, Phys. Rev. D55, 5549 (1997).

[16] G. Buchalla, G. Isidori and S.J. Rey, SLAC-PUB-7448, hep-ph/9705253, to appear
in Nucl. Phys. B.

[17] J-W. Chen, G. Rupak and M.J. Savage, DOE/ER/41014-10-N97, hep-ph/9705219.
[18] A.Maseroand L. Silvestrini, TUM-HEP-291-97, hep-ph/9709244.

[19] G. Burdman, hep-ph/9710550.

[20] G. Buchala, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[21] O.Ba and N. Pott, Phys. Rev. D55, 1684 (1997).

[22] D.S. Liuand R. Delbourgo, Phys. Rev. D53, 548 (1996).

[23] A.V. Manohar and M.B. Wisg, Phys. Rev. D49, 1310 (1994).

[24] 1.1. Bigi, M.A. Shifman, N.G. Uraltsev and A.l. Vainshtein, Phys. Rev. Lett. 71, 496
(1993).

[25] I.l. Bigi, M.A. Shifman, N.G. Urdtsev and A.l. Vainshtein, Int. J. Mod. Phys. A9,
2467 (1994).

[26] T. Mannel and M. Neubert, Phys. Rev. D50, 2037 (1994).

[27] M. Neubert, Phys. Rev. D49, 3392 (1994).

[28] M. Neubert, Phys. Rev. D49, 4623 (1994).

[29] M.B. Wise, Phys. Rev. D45, R2188 (1992).

[30] G.Burdman and J.F. Donoghue, Phys. Lett. B280, 287 (1992).
[31] P. Colangelo et a., Phys. Rev. D53, 3672 (1996).

[32] A.F. Falk and B. Grinstein, Nucl. Phys. B416, 771 (1994).

19



[33] R. Casalbuoni et al., Phys. Rept. 281, 145 (1997).

[34] C.L.Y.Lee, M. Luand M.B. Wise, Phys. Rev. D46, 5040 (1992).

[35] C. Albgjar et a. (UA1L collaboration), Phys. Lett. B262, 163 (1991).
[36] S. Glennetal. (CLEO collaboration), CLNS-97-1514, hep-ex/9710003.
[37] B. Abbott et a. (DO collaboration), hep-ex/9801027.

[38] Z. Ligeti, |.W. Stewart and M.B. Wise, hep-ph/9711248.

[39] M.B. Voloshin, Phys. Lett. B397, 275 (1997); A. Khodjamirian, R. Ruckl, G. Stall
and D. Wyler, WUE-1TP-97-001, hep-ph/9702318.

20



