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Abstract
We reconsider the calculation of O(�2

QCD=m
2
b) nonperturbative corrections to �B !

Xsl
+l� decay. Our analysis confirms the results of Ali et al. for the dilepton invariant

mass spectrum, which were in disagreement with an earlier publication, and for the lep-
ton forward-backward asymmetry. We also give expressions for theO(�2

QCD=m
2
b) correc-

tions to the left-right asymmetry. In addition we discuss the breakdown of the heavy quark
expansion near the point of maximal dilepton invariant mass q2 and consider a model inde-
pendent approach to this region using heavy hadron chiral perturbation theory. The modes
�B ! �Kl+l� and �B ! �K�l+l�, which determine the endpoint region of the inclusive de-
cay, are analysed within this framework. An interpolation is suggested between the region
of moderately high q2, where the heavy quark expansion is still valid, and the vicinity of
the endpoint described by chiral perturbation theory. We also comment on further nonper-
turbative effects in �B ! Xsl

+l�.
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1 Introduction

The inclusive decay �B ! Xsl
+l� (l = e, �, � ) has received considerable interest in the

literature [1]–[19]. As a loop-induced flavour-changing neutral current (FCNC) process

it provides a sensitive probe of flavour dynamics, the least tested sector of the Standard

Model. The rare decay modes �B ! Xsl
+l� are well within reach of the next generation

of precision B physics experiments and promise to yield much needed information com-

plementary to that from other sources such as �B ! Xs, �B ! Xs��� , B � �B mixing, CP

violation or rare K decays. The interest in �B ! Xsl
+l� and other inclusive rare B decay

processes is reinforced by the fact that their theoretical treatment is fairly well under con-

trol. Indeed, the rate for �B ! Xsl
+l� is dominated, in the region of q2 = (pl�+pl+)

2 away

from resonance backgrounds, by perturbatively calculable contributions. These are known

at next-to-leading order (NLO) [7,8]. Such a calculation at the parton level is formally jus-

tified by the heavy quark expansion (HQE), in which the free b quark decay b ! sl+l�

emerges as the leading contribution to �B ! Xsl
+l�. This result receives power correc-

tions of the form (�QCD=mb)n, which can be systematically addressed within the HQE

framework. The leading corrections arise at order n = 2. They have been first considered

in [5]. A further computation of these effects in [14] did not confirm the results obtained

in [5]. In particular, in [14] the relative O(�2
QCD=m

2
b) correction diverges at the high-q2

endpoint, indicating a manifest breakdown of the heavy quark expansion, a feature that is

absent in [5].

The O(�2
QCD=m

2
b) effects are relevant both conceptually, for assessing the validity of the

HQE, as well as for obtaining quantitative control over a class of theoretical uncertain-

ties beyond perturbation theory. In view of this, the phenomenological interest of �B !
Xsl

+l� and the situation in the literature described above, a further independent analy-

sis of the issue is certainly useful. The results of such an analysis of the O(�2
QCD=m

2
b)

corrections in �B ! Xsl
+l� will be presented in this paper. We will furthermore discuss

the breakdown of the HQE near the endpoint of the spectrum (at maximum q2). The im-

plications of this feature for a description of the high-q2 region will be pointed out. A

major part of this work will then be devoted to investigating the model independent con-

straints on the q2-spectrum that can be obtained using heavy hadron chiral perturbation

theory (HHChPT).

The paper is organized as follows. A brief description of the general framework and

a collection of basic formulas is given in Section 2. In Section 3 we present our results

for the 1=m2
b corrections to the dilepton invariant mass spectrum, the forward-backward

(FB) asymmetry and the left-right (LR) asymmetry in �B ! Xsl
+l�. Section 4 contains a

discussion of the breakdown of the HQE near the endpoint. In this section we also analyze
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the endpoint region of �B ! Xsl
+l� in terms of the exclusive modes �B ! �Kl+l� and

�B ! �K�l+l�, calculated within chiral perturbation theory. A few comments on further

nonperturbative effects in �B ! Xsl
+l� are made in Section 5. We summarize our results

in Section 6.

2 Framework and Basic Expressions

The starting point for the analysis of �B ! Xsl
+l� is the effective Hamiltonian, in the

Standard Model given by (neglecting the small contribution� V �

usVub)

Heff = �GFp
2
V �

tsVtb

"
8X
i=1

Ci(�)Qi +
�

2�
~C9(�)(�sb)V�A(�ll)V +

�

2�
~C10(�sb)V�A(�ll)A

#
:

(1)

The Hamiltonian is known at next-to-leading order [7,8]. A detailed review may be found

in [20], where the Wilson coefficients Ci and the four-quark operators Qi are defined ex-

plicitly (the operators are typically of the form Qi � (�sb)(�cc); for i = 1; : : : ; 6, whereas

Q7 � emb�s���(1 + 5)bF�� and Q8 � gmb�s���(1 + 5)�abGa
�� ).

From (1) the following general expression can be derived for the differential decay rate

d�( �B ! Xsl
+l�)

dx dy ds
=
G2
Fm

5
b

192�3
jV �

tsVtbj2
�2

4�2
3

4�m2
b

mb

MB

� (2)

�
h
LS��

n�
j ~Ceff

9 j2 + j ~C10j2
�
W ��

9 + 4m2
b jC7j2 W ��

7 + 4mbRe C7
~Ceff�
9 W ��

97

o
+LA��

n
2Re ~Ceff�

9
~C10 W

��
9 + 4mbRe C7

~C�

10 W
��
97

oi
:

Here mb (MB) is the b-quark (B meson) mass. ~Ceff
9 is a (scheme invariant) effective

Wilson coefficient that includes, in addition to ~C9 from (1), the contributions from the

b! sl+l� transition matrix elements of 4-quark operators Q1, : : :, Q6. Next

LS�� = p1�p2� + p2�p1� � g��p1 � p2 and LA�� = �i"��%�p%1p�2 (3)

are the symmetric and antisymmetric leptonic tensors, respectively (p1 (p2) is the momen-

tum of l� (l+) and "0123 = +1). We also set s = q2=m2
b (q = p1 + p2), x = 2p � p1=m2

b

and y = 2p � p2=m2
b , where p is the b-quark momentum defined as p� = mbv

� in terms

of the B-meson four-velocity v� = p
�
B=MB . The hadronic tensors W ��

i can be written as

W ��
i = 2Im T ��

i where

T ��
9 = i

Z
d4x e�iq�xhBjT jy�9 (x)j�9 (0)jBi ; (4)

T
��
97 = i

Z
d4x e�iq�xhBjT j

y�
9 (x)j��7 (0)jBiiq�

q2
; (5)

T
��
7 = i

Z
d4x e�iq�xhBjT j

y��
7 (x)j%�7 (0)jBiq�q%

q4
; (6)
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j
�
9 = �s�(1 � 5)b ; j

��
7 = �s���(1 + 5)b : (7)

Here the B meson state jBi is taken in conventional relativistic normalization hBjBi =
2EV (the explicit appearance of the factor 1=MB in (2) is due to this definition).

Evaluating the hadronic tensors to leading order in the heavy quark expansion, eq. (2)

reproduces the well known quark-level results for the �B ! Xsl
+l� decay distributions

and asymmetries. For instance, defining

R(s) =
d
ds
�( �B ! Xsl

+l�)

�( �B ! Xce�)
; (8)

one obtains upon integrating over x and y

R(s) =
�2

4�2

����VtsVcb

����
2 (1� s)2

f(z)�(z)
� (9)

�
�
(1 + 2s)

�
j ~Ceff

9 j2 + j ~C10j2
�
+ 4

�
1 +

2

s

�
jC7j2 + 12C7Re ~Ceff

9

�
:

Here f(z) = 1� 8z2 + 8z6 � z8 � 24z4 ln z is the phase space factor and �(z) the QCD

correction factor (z = mc=mb) entering �( �B ! Xce�); �(z) can be found in [20]. Note

that for the dilepton invariant mass spectrum R(s) only the symmetric part in (2) (propor-

tional to LS�� ) contributes. In (9) we have neglected O(m2
l =m

2
b) and O(m2

s=m
2
b) terms,

as we shall do throughout this paper, unless stated otherwise. The expressions given are

therefore applicable to the cases l = e, �. The extensions of (9) to the case ml 6= 0 (rel-

evant for l = � ) and ms 6= 0 are given in [9,12]. Neglecting the strange quark mass is a

very good approximation except near the q2 endpoint. This region, however, suffers from

large nonperturbative corrections and the entire partonic approach has to be reconsidered

there (we will come back later to this point).

A quantity closely related to R(s) is the left-right (LR) asymmetry, which measures

the difference in the rates of producing left handed or right handed leptons in �B ! Xsl
+l�

decay. As discussed in [21,22], the LR asymmetry can be directly extracted from (9).

Defining

RL;R(s) = R(s)

����� ~Ceff
9

!

~C
eff

9
� ~C10

2
; ~C10!

~C10�
~C
eff

9
2

; jC7j2!
1

2
jC7j2

(10)

one has

ALR(s) � RL(s)�RR(s) (11)

=
�2

4�2

����VtsVcb

����
2 (1 � s)2

f(z)�(z)

h
(1 + 2s)

�
�2 ~C10 Re ~Ceff

9

�
� 12C7

~C10

i
:
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Another interesting observable that can be studied in �B ! Xsl
+l� decays is the forward-

backward (FB) lepton asymmetry [4], which can be defined as

AFB(s) =
1

�( �B ! Xce�)

Z 1

�1
d cos �

d2�( �B ! Xsl
+l�)

ds d cos �
sgn(cos �) ; (12)

where � is the angle between l+ andB momenta in the dilepton center–of–mass frame. As

shown in [14] AFB(s) is identical to the energy asymmetry introduced in [11]. The NLO

perturbative result for AFB(s) is given by

AFB(s) = �
3�2

4�2

����VtsVcb

����
2 (1� s)2

f(z)�(z)
Re
n
~C�

10

h
2 C7 + s ~Ceff

9

io
: (13)

Interestingly enough, both ALR(s) and AFB(s) are sensitive to the relative signs between

C7, ~C
eff
9 and ~C10. These asymmetries therefore offer useful additional information on the

underlying short distance physics.

3 O(�2
QCD=m

2
b) Power Corrections to R, ALR and AFB

The hadronic tensors W ��
i in (2) can be systematically expanded in inverse powers of the

heavy quark mass using the operator product expansion (HQE) approach supplemented

by heavy quark effective theory (HQET). The general procedure is described in great de-

tail in [23] for the case of �B ! Xu;cl� decay. The first corrections to the parton result

(O(1)) appear atO(�2
QCD=m

2
b). To this order we obtain the following expressions for the

hadronic tensors (after contracting with LS�� )

3

4�mbMB

Z
dxdy LS��W

��
9 =

 
1 +

�1

2m2
b

!
(1� s)2(1 + 2s)

+
3�2
2m2

b

(1 � 15s2 + 10s3) ; (14)

1

4�MB

Z
dxdy LS��W

��
97 =

 
1 +

�1

2m2
b

!
(1� s)2

� �2

2m2
b

(5 + 6s � 7s2) ; (15)

3mb

4�MB

Z
dxdy LS��W

��
7 =

 
1 +

�1

2m2
b

!
(1� s)2

�
1 +

2

s

�

� 3�2
2m2

b

6 + 3s � 5s3

s
: (16)

Here

�1 =
hBj�h(iD)2hjBi

2MB

; �2 =
1

6

hBj�hg� �GhjBi
2MB

=
M2

B� �M2
B

4
; (17)
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with h the b-quark field in HQET.

The results in (14)–(16) agree with [14] but differ from the findings of [5]. The con-

tribution involving W ��
9 is the same that appears in the case of semileptonic �B ! Xul�

decay. Integration of (14) over s yields (1=2)[1+(�1�9�2)=(2m2
b)], reproducing the well

known correction factor derived in [23,24]. Inserting (14)–(16) into (2) we obtain for the

1=m2
b corrections to R(s) in (9)

�1=m2
b

R(s) =
3�2
2m2

b

 
�2

4�2

����VtsVcb

����
2 1

f(z)�(z)

"
(1 � 15s2 + 10s3)(j ~Ceff

9 j2 + j ~C10j2)

� (6 + 3s� 5s3)
4jC7j2
s

� (5 + 6s� 7s2)4C7Re ~Ceff
9

#
+
g(z)

f(z)
R(s)

!
: (18)

Here we have used the normalizing semileptonic rate including terms of order 1=m2
b

�( �B ! Xce�) =
G2
Fm

5
b

192�3
jVcbj2f(z)�(z)

"
1 +

�1

2m2
b

� 3�2
2m2

b

g(z)

f(z)

#
; (19)

g(z) = 3� 8z2 + 24z4 � 24z6 + 5z8 + 24z4 ln z ; (20)

that can be found for instance in [23]. Note that the correction due to the kinetic energy of

the b-quark � �1 is given as a simple overall factor (1 + �1=(2m2
b)) for both �B ! Xce�

and �B ! Xsl
+l� and therefore drops out in the ratio R(s). Since, in contrast to �2, the

quantity �1 is not well known anyway, its absence in (18) is a welcome feature.

Given the results in (14)–(16) it is straightforward to write down the 1=m2
b correction for

ALR(s) in (11)

�1=m2
b

ALR(s) =
3�2
2m2

b

 
�2

4�2

����VtsVcb

����
2 1

f(z)�(z)

"
(1 � 15s2 + 10s3)(�2 ~C10 Re ~C

eff
9 )

+(5 + 6s� 7s2)4C7
~C10

#
+
g(z)

f(z)
ALR(s)

!
: (21)

This correction has been discussed previously in [21], however based on the incorrect re-

sults of [5].

To calculate the FB asymmetry it is necessary to contractW ��
9 andW ��

97 with the asymmet-

ric component of the leptonic tensor. The relevant terms, expanded up to O(�2
QCD=m

2
b),

are given by

1

2�mbMB

Z
dxdy sgn(y � x) LA��W

��
9 = s(1 � s)2 +

�1

6m2
b

s(3 + 2s + 3s2)

� �2

2m2
b

s(9 + 14s � 15s2) ; (22)
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1

2�MB

Z
dxdy sgn(y � x) LA��W

��
97 = (1 � s)2 +

�1

6m2
b

(3 + 2s+ 3s2)

� �2

2m2
b

(7 + 10s � 9s2) ; (23)

leading to

�1=m2
b

AFB(s) =
3�2
2m2

b

 
�2

4�2

����VtsVcb

����
2 1

f(z)�(z)
Re

(
~C�

10

"
s(9 + 14s � 15s2) ~Ceff

9

+ (7 + 10s� 9s2)2C7

#)
+
g(z)

f(z)
AFB(s)

!
+

4�1
3m2

b

s

(1� s)2
AFB(s) : (24)

Also in this case our finding is in agreement with [14].

4 The High-q2 Region

4.1 Generalities

The size of the O(�2
QCD=m

2
b) corrections in (18), (21) and (24) is quite moderate, at the

level of several percent, for values of s below about 0:6. On the other hand, when s ap-

proaches the endpoint (s = 1), the corrections forR, ALR andAFB tend towards a nonzero

value, while the leading term of these quantities vanishes as (1� s)2. The relative correc-

tion thus diverges in the limit s! 1 and the rate R(s) becomes even negative for s close

enough to the endpoint. Obviously, the HQE breaks down in the endpoint region. From

the expressions given above one may recognize that in the case of R(s) and ALR this be-

haviour is exclusively related to the �2-term, whereas in the case of AFB also the kinetic

energy correction� �1 is not well behaved in the limit s! 1. We remark that these fea-

tures are not shared by the result given in [5] and have been first observed by the authors

of [14].

In order to account for nonperturbative effects that elude the HQE approach, [14] supple-

ment the partonic calculation with a Fermi-motion model to predict the q2 spectrum and the

shape of the FB asymmetry in the entire physical region including the endpoint. Although

such an approach could be useful in principle, in particular when employed in conjunction

with experimental data (used e.g. to fit model parameters), we will not perform such an

analysis here. Instead, we would like to discuss to what extent model independent predic-

tions can be made for the �B ! Xsl
+l� spectrum. We will thereby focus our attention on

the high-q2 region. For this purpose we shall first discuss the nature of the breakdown of

HQE in slightly more detail. We follow here the general discussion presented in [25,26].

The central element in the operator product expansion of the tensors T ��
i in (4) is the

s-quark propagator. This propagator emerges in the evaluation of the time-ordered prod-

ucts (4) and determines essential features of the 1=mb expansion. Denoting k = mbv� q,
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D� = @��igA� and neglecting the s-quark mass, the s-quark propagator in a gluon back-

ground field may be written as

Ss(k) =
6k + i 6D

k2 + 2ik �D� 6D 6D + i"
: (25)

Up to terms of order �QCD � �, k is the momentum of the final state hadronic system. In

the usual case, that is away from singular kinematical points, one has k � mb, k2 � m2
b

and consequently the hierarchy k2 � m2
b � k �D � mb�� 6D 6D � �2. Therefore one

can expand Ss(k) = 6k=k2 +O(�=mb) and the usual HQE is valid.

A different situation arises in the endpoint region of the lepton energy spectrum in �B !
Xc;ul� and for the photon energy spectrum in �B ! Xs. Here one still has k � mb in

terms of components, however the kinematics is now such that k2 � mb�. For the quan-

tities in the denominator of (25) this implies k2 � mb� � k �D � mb� �6D 6D � �2.

An expansion in �=mb is still possible, but k �D=k2 is now ofO(1) and the corresponding

effects have to be resummed to all orders. This is the case discussed in detail in [26,27]

for �B ! Xc;ul� and in [28] for �B ! Xs (see also [25]).

We would like to stress that the situation encountered in the endpoint region of the q2 spec-

trum in �B ! Xsl
+l� is substantially different from the two cases just described. For the

kinematics that is relevant here, q2 � m2
b �M2

B , it follows that k � � and k2 � �2. Then

all three terms in the denominator of (25) are of the same order of magnitude � �2. The

heavy quark expansion breaks down completely and not even an all-orders resummation,

of the type useful for �B ! Xc;ul� and �B ! Xs, can be performed. This conclusion

is clear on physical grounds, since at q2 � M2
B the two leptons are emerging back-to-

back, carrying almost all the energy released in the decay of the B meson. The final state

hadronic system has very low momentum and we are in a regime of manifestly nonpertur-

bative QCD.

At this point we would like to emphasize a conceptual consequence of this discus-

sion for the treatment of the q2 spectrum in �B ! Xsl
+l� within a Fermi-motion model,

as employed in [14]. In the case of the photon energy spectrum in �B ! Xs or the lepton

energy spectrum in �B ! Xc;ul� the resummation of leading singular contributions in the

HQE leads to a description of the endpoint region in terms of a shape function [27,28,25].

The shape function depends on nonperturbative physics that can qualitatively, at least to

some extent, be modeled by a Gaussian description of the b-quark momentum distribution

inside the B meson (Fermi-motion). As explained above, a similar interpretation does not

exist in the case of �B ! Xsl
+l�. A Fermi-motion description of nonperturbative effects,

particularly for high q2, appears therefore certainly less justified than in the usual applica-

tions to �B ! Xs and �B ! Xl�. In fact, as we have seen above, the divergence of the

1=m2
b corrections to the q2 spectrum near the endpoint arises from the chromomagnetic
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interaction term � �2 that does not have an obvious interpretation in terms of a Fermi-

motion ansatz.

On the other hand, the kinematical situation in �B ! Xsl
+l� near the q2 endpoint,

with few, low-momentum hadrons in the final state, lends itself to a treatment using heavy

hadron chiral perturbation theory (HHChPT) [29,30]. Combining this description at very

high q2 with the standard HQE result at somewhat lower q2, where the latter is still valid, a

model independent analysis of the entire high-q2 region (above the 	 and 	0 resonances)

could be conceived. In the following we shall examine such a possibility.

First, one may write down an effective Hamiltonian, suitable for the endpoint region

(q2 !M2
B) in �B ! Xsl

+l�. This Hamiltonian differs from the standard Hamiltonian (1).

‘Light’ quark (u, d, s, c) loops may be integrated out explicitly since they involve the hard

external scale q2 � m2
b � 1GeV . This endpoint effective Hamiltonian then takes the

form, valid at NLO in QCD

Heff;EP = �GFp
2
V �

tsVtb
�

2�
� (26)

�
"
~C9;EP (�sb)V�A(�ll)V + ~C10(�sb)V�A(�ll)A + 2mbC7 �s�

��(1 + 5)b
iq�

q2
�l� l

#
:

The Wilson coefficient ~C9;EP has the structure

~C9;EP = ~CNDR
9 + h(z; s)(3C(0)

1 + C
(0)
2 ) + (penguin contributions) ; (27)

with C(0)
1 , C(0)

2 , ~CNDR
9 from (1). These quantities, the function h(z; s) and the remaining

terms can be found in [20]. ~C9;EP is identical to ~Ceff
9 in (2) (see also [20]), except that

it does not include the QCD correction ~�(s) to the matrix element of the current (�sb)V�A,

which multiplies ~CNDR
9 in ~Ceff

9 .

The Hamiltonian (26) is still normalized at a scale � = O(mb). A further evolution

down to hadronic scales� 1 GeV is calculable perturbatively using HQET (‘hybrid renor-

malization’). However the HQET logarithms will be automatically contained in the matrix

elements of the (�s�b) operators if they are taken in full QCD and appropriately normalized

at � = O(mb). It is therefore not necessary to make these effects explicit in (26).

4.2 �B ! �Kl+l�

At the very high end of the spectrum, between theK� threshold and the physical endpoint,

the inclusive decay �B ! Xsl
+l� degenerates into the exclusive mode �B ! �Kl+l�. In-

troducing the variable sm � q2=M2
B , this region corresponds to sK�

m � sm � sKm where

sKm = sm;max = (1�MK=MB)
2 = 0:821 and sK�

m = 0:774.
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The matrix elements needed for �B ! �Kl+l� can be written as

h �K(p
K
)j�s�(1 � 5)bj �B(p)i = f+(q

2)(p+ p
K
)� + f�(q

2)(p � p
K
)� ; (28)

h �K(p
K
)j�s���bj �B(p)i = �iaT(q2)(p�

K
p� � p�

K
p�) ; (29)

in terms of the form factors f�(q2) and aT (q2). The decay rate (normalized to the semilep-

tonic width as in (8)) is then given by [31]

RK(sm) �
d

dsm
B( �B ! �Kl+l�)

B( �B ! Xce�)
=

� (Bd)

B( �B ! Xce�)

G2
FM

5
B

192�3
jVtbVtsj2

�2

4�2
f1(sm)�

�
(
f2+
2

�
j ~C9;EP j2 + j ~C10j2

�
+
a2T
2
m2

bjC7j2 � f+aTmbRe C7
~C�

9;EP

)
; (30)

where the phase space function f1 reads

f1(sm) = ((1� %+ sm)
2 � 4sm)

3=2 ; % =
M2

K

M2
B

: (31)

In general, the form factors are very difficult to calculate. However, as long as we are

interested in high q2, where the kaon momentum is small, HHChPT may be used to es-

timate these nonperturbative quantities. In this approach, to the lowest order, one finds

[29,30,32,33]

f� = � fB

2f�

 
1� g

MB � v � p
K

v � p
K
+�+ �s

!
; v � p

K
=

M2
B +M2

K � q2

2MB

; (32)

aT =
gfB

f�

1

v � p
K
+�+ �s

: (33)

Here fB and f� are the B meson and the pion decay constants in the normalization where

f� = 132MeV. � = MB� �MB = 46MeV, �s = MBs �MB = 90MeV and g is the

HHChPT parameter that determinesB�B� andD�D� couplings at low energy. The value

of g could in principle be inferred from a measurement of �(D� ! D�), but present data

only allow to set an upper limit gexp < 0:7. According to the theoretical estimates of [33]

in the following we will assume 0:4 < g < 0:6.

4.3 �B ! �K�l+l�

Between K� and K�� thresholds, i.e. for sK��
m = 0:728 � sm � sK�

m , also the �B !
�K�l+l� decay is kinematically allowed. No other modes are permitted and the hadronic

invariant mass is still small enough to justify the use of HHChPT.
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mb mc jVcbj jVtsj jVtbj
4.8 GeV 1.4 GeV 0.04 0.04 1

�mt(mt) MW sin2�W ��1 �(5)

MS

170 GeV 80.2 GeV 0.23 129 0.225 GeV

MB MK M� � (Bd) B( �B ! Xce�)
5.28 GeV 0.496 GeV 0.140 GeV 1.6 ps 0.104

g fB f� � =MB� �MB �s =MBs �MB

0.5 0.180 GeV 0.132 GeV 0.046 GeV 0.090 GeV

Table 1: Compilation of input parameters (central values).

The matrix element of the left-handed current relevant to �B ! �K�l+l� can be gen-

erally decomposed in terms of four independent form factors. Defining

h �K i(p
K
)�j(p�)j�s�(1 � 5)bj �B(p)i = icij

h
ap�;� + bpK;� + cp� � 2ih"���p

�p�
K
p�

i
;

(34)

the lowest order HHChPT results are given by [34]

a =
gfB

f2�

MB

v � p� +�
; b = 0 ; (35)

c =
fB

2f2�

"
1� 2g

v � p�
v � p� +�

� v � (p
K
� p�)

v � (p
K
+ p�) + �s

�2g2 p
K
� p� � v � p

K
v � p�

[v � p� +�][v � (p
K
+ p�) + �s]

#
; (36)

h =
g2fB

2f2�

1

[v � p� +�][v � (p
K
+ p�) + � + �s]

; (37)

where jc�+j2 = jc0�j2 = 2jc00j2 = 2jc�0j2 = 1.

We have checked the results (35)–(37), first obtained by the authors of [34], and

agree with their findings. In addition we need the corresponding matrix element of the

magnetic penguin operator. We obtain, again to leading order in HHChPT

h �K i(p
K
)�j(p�)j�s���(1 + 5)b

iq�

q2
j �B(p)i = (38)

icij
h
a0p�;� + b0pK;� + c0p� � 2ih0"���p

�p�
K
p�

i
;

a0 =
gfBMB

f2�q
2(v � p� +�)

"
MB � v � p

K
� v � p�
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+g
v � p

K
v � (p

K
+ p�)� p

K
� p� �M2

K

v � (p
K
+ p�) + � + �s

#
; (39)

b0 =
g2fBMB

f2�q
2(v � p� +�)

p
K
� p� +M2

� � v � p� v � (pK + p�)

v � (p
K
+ p�) + � + �s

; (40)

c0 = � gfB

f2�q
2(v � p� +�)

"
MBv � p� �M2

� � p
K
� p�

+g
p
K
� p� v � (pK � p�)�M2

Kv � p� +M2
�v � pK

v � (p
K
+ p�) + � + �s

#
; (41)

h0 =
gfB

2f2�q
2(v � p� +�)

"
1 + g

MB � v � p
K
� v � p�

v � (p
K
+ p�) + � + �s

#
: (42)

We proceed to compute the decay rate. The necessary four-body phase space integrations

can be performed using the general methods reviewed in [34]. The leading behaviour of

the differential �B ! �K�l+l� decay rate as a function of (sK�
m � sm) close to the K�

threshold may be written down analytically. It gives the correct asymptotic behaviour at

threshold and can be used as an approximation to the full result for values of sm not too

far from this point. We find

RK��+(sm) �
d

dsm
B( �B ! K��+l+l�)

B( �B ! Xce�)
=

� (Bd)

B( �B ! Xce�)

G2
FM

5
B

192�3
jVtbVtsj2

�2

4�2
�

� 1

32�2

n
F9(sm)

�
j ~C9;EP j2 + j ~C10j2

�
+ 4F7(sm)jC7j2 + 4F97(sm)Re C7

~C�

9;EP

o
; (43)

F9(sm) =
�

4

(t1x1x2)1=2

(1 �
p
t1)3=2

�
w2
1 +

4x1x2
t1

(1�
p
t1)w

2
2

�
(sK�
m � sm)

3 ; (44)

with x1 = M�=MB , x2 = MK=MB , t1 = (x1 + x2)2 and sK�
m = (1 � x1 � x2)2. The

functions F7 and F97 are obtained from F9 by replacing w2
i ! w02

i and w2
i ! wiw

0

i, re-

spectively, where

w1 =
fBMB

f2�

"
gM�

M� +�

�
MB

MK +M�

� 1
�
+

M� + �s=2

MK +M� + �s

#
; (45)

w2 = �fBMB

2f2�

gMB

M� +�
; (46)

w0

1 =
fBMB

f2�

gM�

M� +�

mb

MK +M�

; w0

2 = �fBMB

2f2�

gMB

M� +�

mb

MB �MK �M�

:

(47)

Adding the two isospin channels, the total result for the nonresonant �Bd(B�)! �K�l+l�

rate becomes

RK� � RK��+ +R �K0�0 = R �K0�� +RK��0 =
3

2
RK��+ : (48)
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With the explicit expressions forRK� at hand, we are in a position to estimate the relative

importance of the nonresonant K� mode relative to the single K channel in the endpoint

region. It is clear that the four-body process �B ! �K�l+l� is phase space suppressed.

This is obvious from (43), which exhibits the typical factor of � 1=(16�2). More quan-

titatively we find that RK� amounts to less than 2% of RK at sm = 0:7 and is still less

important for larger sm. RK� is therefore negligible in the entire endpoint region, which

is completely dominated by RK . The asymptotic formula (43) describes the behaviour of

RK� close to threshold (sm = 0:774). For sm = 0:7 (43) overestimates the full result by

about 50%. This is still useful for an order of magnitude estimate.

For sm below 0.7 a substantial enhancement of the K� mode is expected due to the con-

tribution of the K� resonance. However, for sm > 0:73 we are still far enough from the

K� threshold to safely neglect the K� mode with respect to the single kaon channel.

4.4 Discussion

In Fig. 1 we compare the HQE result for R(s) with the HHChPT picture close to the end-

point. For this purpose we rescale the ratioR(s) (9) from quark to physical (hadron) kine-

matics, replacing

R(s)! ~R(sm) �
M2

B

m2
b

R

 
M2

B

m2
b

sm

!
=

d
dsm

B( �B ! Xsl
+l�)

B( �B ! Xce�)
: (49)

This representation of the quark level result is furthermore useful since it makes the de-

pendence of the prediction on the b-quark mass explicit. The corresponding uncertainty,

which will unavoidably exist in comparing theory with experiment, is illustrated in Fig. 1

for the representative range mb = (4:8 � 0:1)GeV. In this context we recall that mb here

refers to the pole quark mass. In fact, since the NLO QCD calculation for b ! sl+l� is

available, the distinction of the pole mass from other mass definitions is already meaning-

ful at first nontrivial (i.e. one-loop) order. The value of mb is to be determined from some

other observable and can then be used as input for �B ! Xsl
+l�. In principle the error on

mb can be further reduced in the future. We remark that the dependence of ~R(sm) on the

renormalization scale � (mb=2 < � < mb) is less than�5% in the region 0:5 < sm < 0:7.

The 1=m2
b corrections to �B ! Xsl

+l�, which are included in Fig. 1, are negative for

sm > 0:5, increase with sm and reach about�20% of the leading result for sm = 0:65. As

discussed above, nonperturbative effects that are beyond the control of the HQE become

important for still larger values of sm.

Very close to the endpoint at sm = 0:821 HHChPT offers a complementary approach

that may be used to constrain the behaviour of the spectrum from the region of large sm.

An interpolation suggests itself between the regime sm < 0:65, where the HQE is valid,

13



Figure 1: The dilepton invariant mass spectrum (dB( �B ! Xsl
+l�)=dsm)= B( �B !

Xce�) � ~R(sm) as a function of sm = q2=M2
B . For sm < 0:65 the NLO partonic cal-

culation, including 1=m2
b effects, is used. There the lower, middle and upper curves corre-

spond to mb=GeV = 4:7, 4:8 and 4:9, respectively. For sm > 0:73 we show the HHChPT
prediction for ~R(sm), which is dominated by �B ! �Kl+l�. Lower, middle and upper
curve are obtained for g = 0:4, 0:5 and 0:6. Linear interpolations between the two regions
(0:65 < sm < 0:73) are indicated by dotted lines to guide the eye. The dashed curve illus-
trates a smooth interpolation using central parameter values. The thresholds for the various
exclusive modes occur at sm = 0:821 (K), 0.774 (K�), 0.728 (K��), 0:691�0:008 (K�,
� half width).

and sm > 0:73, where HHChPT may be used. In this way an essentially model indepen-

dent description of the entire high-q2 region sm > 0:5 (above the 	0 resonance) could be

obtained, at least in principle. In practice there are however several sizable uncertainties

associated in particular with the HHChPT treatment. The B�B� coupling g is still poorly

known. Other uncertainties are related to the values of jVtsj and � (Bd) entering (30), but

these are less important than the one from g. Also the B meson decay constant fB intro-

duces some uncertainty.

A further issue is the reliability of chiral perturbation theory in the present case. The kaon

mass is not very small with respect to the chiral symmetry breaking scale �� � 1:2 GeV.

Thus, even in the vicinity of the endpoint, corrections of order 30%–40% can be expected.

In the K� channel the situation could be even worse, given the presence of the nearby K�

14



resonance. However, for a given value of sm the hadronic invariant mass ranges fromMK

to Mmax
had = MB(1 � s1=2m ) ' 770 MeV and only near the upper figure the effect of the

resonance should be important. Given the above remarks, the result for ~R(sm) we have

presented should still provide a reasonable estimate. In addition, in view of the kinemat-

ical suppression of the K� channel, the fact that the region above sm = 0:73 is entirely

determined by �B ! �Kl+l� can be expected to be valid beyond the limitations of chiral

perturbation theory, which is useful for further studies.

Systematic improvements are possible by going beyond the lowest order in HHChPT.

In [32] chiral logarithmic corrections to the leading result have been investigated within

HHChPT for the exclusive mode �B ! �Kl+l�. The corrections were found to be about

40%, which is sizable but still moderate enough for the approach to make sense. A related

issue is the question of whether to use fK instead of f�, which also goes beyond the leading

order of chiral perturbation theory. The calculation of [32] can be considered as a naive

estimate of the expected size of the higher-order corrections, but lack of knowledge of the

corresponding counterterms makes any precise statement about their exact value difficult.

For this reason we have not explicitly included the chiral logarithms in our estimates. The

related uncertainty is at least partly included in our variation of the coupling g.

Apart from the differential branching fraction also the forward-backward asymmetry

can be studied in HHChPT at large q2. In this context we note that AFB vanishes identi-

cally for the single kaon mode �B ! �Kl+l�. The endpoint of AFB is therefore determined

by �B ! �K�l+l� and occurs at sm = (1� (MK +M�)=MB)2 = 0:774.

We finally remark that the entire high-q2 region (defined by 0:5 � sm � 0:821)

corresponds to an integrated branching ratio for �B ! Xsl
+l� of about 0:5 � 10�6 in the

Standard Model. Thus, although the dilepton mass spectrum is dropping to zero towards

the endpoint, a sizable branching fraction for �B ! Xsl
+l� exists in the region that is

characterized by the transition from quark level dynamics to HHChPT. The high-q2 regime

constitutes one of the interesting regions to search for �B ! Xsl
+l� in experiment [35–

37]. Attempts to describe this part of the spectrum in a model independent way along the

lines proposed in this paper should therefore be useful for the study of rare B decays at

future B physics facilities.

5 Other nonperturbative corrections

In addition to higher order terms in the 1=mb expansion, �B ! Xsl
+l� decays are af-

fected by long-distance corrections related to c�c intermediate states. These originate from

the nonperturbative interactions of the c�c pair in the process �B ! Xsc�c ! Xsl
+l�. If

the dilepton invariant mass is close to one of the two narrow JPC = 1�� c�c-resonances
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(	(3097) and 	0(3686)) this effect is very large and “obscures” the short-distance FCNC

process. However, this background can be eliminated by suitable cuts on the dilepton in-

variant mass. Given the vicinity of the two narrow resonances, two q2-regions naturally

emerge as appropriate for the study of short-distance dynamics: the region below the 	

and the one above the 	0. In the first case it is still necessary to deal with the c�c rescatter-

ing below threshold, whereas in the second case the effect of broader resonances and open

charm has to be evaluated.

Nonperturbative contributions generated by c�c intermediate states have been widely

discussed in the literature by means of phenomenological resonance-exchange models [4,

12–14]. These approaches are useful near the main resonance peaks, but their validity out-

side this region is certainly less reliable. Indeed, the shape of the resonance tails far from

the peaks is not under control. Moreover, a double-counting problem is usually posed by

the simultaneous use of quark and hadronic degrees of freedom. Within this framework,

the only way to avoid double counting is represented by the approach of [12] (KS). Here,

in order to take into account charm rescattering, the correction to C9 induced by b! c�cs

operators is estimated by means of experimental data on �(e+e� ! c�c-hadrons) using a

dispersion relation. To be more specific, the function h(z; s) appearing in (27) is replaced

by

h(z; s) �! h(z; 0) +
s

3
P

Z
1

sc

ds0
Rc�c
had(s

0)

s0(s0 � s)
+ i

�

3
Rc�c
had(s) ; (50)

where Rc�c
had(s) = �(e+e� ! c�c)=�(e+e� ! �+��) and sc is the c�c threshold. This

method has also the advantage of including open charm contributions. However, it is exact

only in the limit where the �B ! Xsc�c transition can be factorized into the product of �sb

and �cc color-singlet currents (i.e. non-factorizable effects are not included). Using this

method we have estimated the long-distance corrections to the plot in Figure 1. The effect

is quite small, at the level of several percent, essentially negligible for sm >
� 0:53. Below

this value the correction exceeds 10% because of the vicinity of the 	0 peak.

Larger effects from the higher c�c resonances (	(3770),	(4040), 	(4160), 	(4415))

are obtained when a phenomenological factor � � 2:3 is introduced to enhance reso-

nance production with respect to the factorization result [38]. This is motivated by the

fact that the factorization assumption yields too small values for the �B ! J=	Xs branch-

ing fraction. The validity of such a procedure for estimating the impact of higher reso-

nances in �B ! Xsl
+l� is not entirely clear. Further work on this issue is necessary. In

any case the deviations from quark-hadron duality due to resonances are reduced when the
�B ! Xsl

+l� spectrum is integrated over a large enough range of q2.

A more systematic and model-independent way to estimate c�c long-distance effects

far from the resonance region, based on a heavy quark expansion in inverse powers of
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the charm-quark mass, has been recently presented in [16] (see also [17]). This approach,

originally proposed in [39] to evaluate similar effects in B ! Xs decays, has the ad-

vantage of dealing only with partonic degrees of freedom. In this framework the leading

nonperturbative corrections toR(s) turn out to beO(�2
QCD=m

2
c). They originate from the

effective �sb–photon–gluon vertex (induced by charm loops), where the gluon is soft and

couples to the light cloud surrounding the b quark inside the B meson. The corresponding

matrix elements can be related to �2 and thus are known both in magnitude and in sign.

This kind of corrections is complementary to those computed in the KS approach, since

they are generated by the charm rescattering in a color-octet state. Since the factorizable

corrections vanish for s ! 0, as shown by (50), the O(�2
QCD=m

2
c) effect is expected to

be the dominant long-distance contribution for small values of the dilepton invariant mass.

For s < 0:2 the relative magnitude of the correction is very small (at the one or two percent

level). Higher-order terms become more and more important near the c�c threshold, where

the description in terms of partonic degrees of freedom is clearly inadequate. Using a sim-

ple order-of-magnitude estimate of higher-order terms, it has been shown that the leading

corrections should provide a reasonable estimate of the effect up to s = 3m2
c=m

2
b � 0:26

(sm < 0:21 ) [16]. In this region the effect is below 4%. The O(�2
QCD=m

2
c) corrections

are again very small above the 	0 peak.

6 Conclusions

Within the framework of the heavy quark expansion we have computed the nonperturba-

tive corrections of O(�2
QCD=m

2
b) to the dilepton invariant mass spectrum and the lepton

forward-backward asymmetry in �B ! Xsl
+l� decay. Our calculations confirm the results

of [14] for these quantities, which were at variance with earlier work [5]. For completeness

we have also written down theO(�2
QCD=m

2
b) corrections for the lepton left-right asymme-

try.

In the main part of our paper we have then focussed on the region of high dilepton

invariant mass q2 (with q2 > M2
	0 ). This is one of the relevant search regions in experi-

ments looking for �B ! Xsl
+l� and corresponds to an integrated branching ratio of about

0:5 � 10�6 in the Standard Model. The HQE breaks down for q2 too close to its maxi-

mum value at the endpoint of the dilepton mass spectrum. This is signalled by a mani-

fest divergence of the relativeO(�2
QCD=m

2
b) corrections in the limit q2 ! m2

b , as already

observed in [14]. We have discussed conceptual aspects of this breakdown of the HQE

for �B ! Xsl
+l� and emphasized that it is impossible to remedy the failure of the usual

1=mb expansion at the endpoint by an all-orders resummation, in contrast to the case of

e.g. the photon energy spectrum in �B ! Xs. We were therefore led to consider an al-

17



ternative, model independent approach to the endpoint region using HHChPT, which is in

principle well suited in this kinematical regime. For this purpose we have formulated, at

NLO in QCD, an effective Hamiltonian adapted to the endpoint region. This Hamiltonian

is a variant of the standard Hamiltonian for b ! sl+l� transitions and serves as the ba-

sis for calculating the relevant exclusive channels in the vicinity of q2 = (MB �MK)2

within HHChPT. We explicitly considered the modes �B ! �Kl+l� and �B ! �K�l+l� and

demonstrated that the latter is completely negligible in the kinematical region of interest.

To obtain a complete description of the high-q2 spectrum, an interpolation between the

HHChPT regime and the region of validity of the heavy quark expansion has been sug-

gested. At present there are still limitations in accuracy from uncertainties in the value

of mb and, particularly, in the poorly known HHChPT parameter g as well as due to ne-

glected higher order terms in the chiral expansion. However, the approach is essentially

model independent and systematic improvements can in principle be made.
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