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Abstract

We re-examine the OSp(N,4) invariant interacting model of massless chiral and gauge su-
perfields, whose superconformal invariance was instrumental, both in proving the all-order
no-renormalization of the mass and chiral self-interaction lagrangians, and in determining
the linear superfield renormalization needed. We show that the renormalization of the grav-
itational action modifies only the cosmological term, without affecting higher-order tensors.
This could explain why the effect of the cosmological constant 1s shadowed by the eftects of
newtonian gravity.
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1 Introduction

The introduction of locally supersymmetric theories [1] was motivated by the wish for a
unified description, encompassing the theories of elementary particles and gravity. The
resulting supergravity is not renormalizable, but its large symmetry provides powerful con-
straints, such as the vanishing of the lepton anomalous magnetic moment, as required by
the supersymmetry of the theory [2]. The finiteness of the fermionic (and therefore also
the bosonic) contribution to it, which can be traced back to an eflective chiral symmetry in
the gravitino sector [3], has been checked in [4,3] and, more recently in [5}, making use of
supersymmetry preserving regularization schemes. '

The quantum corrections to the low-energy limit of a theory couphng gravity to scalar
fields have been computed [7]. The equivalence principle has been invoked, in order to reduce
the terms with an arbitrary number of derivatives in the effective theory [8}.1

OSp(N,4) invariant models in the fixed four-dimensional background of anti-de Sitter
space (AdS,) occur as both ground state solutions of gauged extended supergravity theo-
ries (see [11] and references therein) and vacuum configurations for superstrings {12]. The
OSp(N,4) invariant generalization of the Wess-Zumino model [13] is the simplest one. We
recall that the Wess-Zumino model with softly broken supersymmetry in de Sitter space
plays a role in the Affleck-Dine mechanism [14] for baryogenesis, in contrast to the maximal
symmetry of AdSs which grants the existence of global supersymmetry. This mechanism
is effective for supersymmetric grand unified theories, as the quantum corrections do not
affect the flat directions in the superpotential, owing to the no-renormalization theorem [15].
Very recently, the one-loop effective potential along a flat direction in this model has been
calculated [16]. In [17] the one-loop effective action was computed for scalar-QED, taking
into account the large-scale configurations that change the topology. Also, the question
of the dynamics of a superstring propagating in AdSs, with the OSp(1,4) supersymmetry
group, deserves further study, within a geometrical framework, especially in connection with
the underlying algebraic structure of the W-algebra extension of two-dimensional conformal
symmetry (see, e.g. [18-20}).

The renormalization procedure for OSp(N,4) invariant theories breaks the naturality im-
plied by the no-renormalization theorem and so allows all classically invariant counterterms
to appear in the divergent structure of the quantum effective action [21-33]. This breakdown
of the no-renormalization theorem in AdS, forces us to introduce a hinear superfield in the
effective action, for the purpose of renormalization. An important point to recall is that
the corresponding modification of the classical potential does not induce the breaking of
supersymmetry invariance [24,11]. On the other hand, the fact that the superspace integral
that gets renormalized is mathematically of the same type, as the integrals of the quadratic
and cubic superfield terms in the action, suggests that a similar violation of the theorem
might occur at higher loops, for the mass and interaction lagrangians of the model.

Superfield techniques and a non-standard perturbative approach in the effects of the

curvature allowed us [32,33], to fully address the questions formulated above. The important
fact that the reflective boundary conditions do not play any role in the calculation of the
counterterms [31,26] enabled us to implement a perturbative treatment of the eflects of
the background space. The superconformal invariance of the model is discussed in Refs.

IThis principle constrains the spin-1 and spin-0 partners of the graviton in the N = 2,8 supergravity
multiplets [9,10].



132,33], where the superfield formulation of the model with interacting chiral and real gauge
superfields in AdSy i1s considered, following the line suggested in Ref. [34]. This perturbative
analysis, although completely independent from the standard DeWitt-Schwinger expansion,
allowed us

e to recover [32] the results of Refs. [21-24], for the one-loop renormalization of the chiral
self-interacting model, and

e to prove [33] that there is no renormalization of the mass nor the cubic interaction
action, to all orders in perturbation theory.

Hence the no-renormalization theorem holding in flat space-time, 1s also valid in AdS, back-
ground, except for the linear superfield renormalization, already present at the one-loop
level. The proof was easily extended to the model with gauge interactions [33].

We organize the present work as follows. We begin in section 2 with recalling the super-
field formulation of the AdSy Wess-Zumino model. In section 3 we consider the interacting
model of chiral and gauge superfields. The superconformal invariance of the massless model
allows us to implement an expansion in the curvature effects, in terms of the interaction ver-
tices of the quantum model. In chapter 4 we present the renormalization of the gravitational
action, based on the use of OSp(N,4) superfield techniques, and propose some interpreta-
tion for the shadowing of the effect of the cosmological constant by the effects of newtonian
gravity. We draw our conclusions in section 5.

2 The superfield formulation

We describe in this section a superspace approach [34,32] to the OSp(N, 4) invariant theory
of a supergravity multiplet coupled to the scalar multiplet of the Wess-Zumino mode]l. We
recall that, in the covariant approach to supergravity, the covariant derivatives V4 can
be determined in terms of the prepotential H™ and the density compensator ¥ for the
superconformal transformations. Here the superspace coordinates are denoted as follows:

A = (2°,0°,07) . _ (2.1)

A convenient way of breaking the superconformal invariance is to introduce a covariantly
chiral tensor-type compensator

Va® =0 . (2.2)

The choice of a gauge for the ® compensator fixes a relation between the ¥ and H™ su-

perfields. Then, the supermultiplet is described in terms of H™ and a flat space-time chiral

superfield ¢ (in the chiral representation) and the only gauge freedom left is that of super-
Poincaré transformations.

The transformation rules for the superdeterminant E made out of the supervierbein EY!

E~' — Elexp(iK) , - (2.3)
K = KMiDy + KfiMg + K5 (2.4)

and for the ¢ held
¢° — ¢exp(iAcn) , A = A™i0,, + A*iD, (2.5)
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allow us to write invariant actions for a real scalar superfield L,

S, = / dzd9EL,,, (2.6)
S, = / 2 d?08° Lonival - (2.7)
In particular, the supergravity action is obtained by setting
3
Lyen = — (2.8)

One can, of course, introduce also a cosmological term

1
Lenirar = a— . (2.9)
In order to choose AdSs as a background space for the matter model, we set H to zero
and introduce the background only through the compensator ¢. Its equation of motion can

be obtained from the action for supergravity with the cosmological term

3 1
§=—= / ded 0B~ + (a— / dPzd?04° + hc) . (2.10)
K K
In the present case we have, after the choice of the gauge ¢ =1, ¥ = ¢"1$1/2 and E~1 = ¢¢.
The equation of motion for the ¢ field concides with that of the chiral superfield describing
the massless Wess-Zumino model Y

D¢ =ad? . (2.11)

The solution to this equation which behaves regularly at inhnity reads

] ab?
= . ' 2.12
¢ 1 —aaz?/4 (1 — aaz?/4)? _ (2.12)

Then, by applying this solution to the construction of invariant actions of the general and chi-
ral type, we can formulate different supersymmetric matter models in the given background.
We recall the expression of the covariant derivatives in terms of the ¢ field

V,=018"7D, . V.=4 "¢'?D, . (2.13)
In the rest of this section we focus on the theory of a self-interacting chiral field 7, i.e. the

analogue in AdSy of the flat space-time Wess-Zumino model. Its action is readily obtained
with the help of the two prescriptions given above

1 1
S(n,7) = / dzdOE 1 + ( / dad 0 (mon® + Azn®) +hee) . (214)

This model possesses a partial superconformal invariance, which has been exploited (32|,
in order to treat perturbatively the effects of the background curvature, when carrying out
the renormalization procedure that yields its quantum effective action. For this task, the
functional integral approach proved usetul. We define, as usual, the generating functional

Z(J) :/DnD‘ﬁe:cp[S(n,"ﬁ)]e:cp(/ d*zd*64°Jn + h.c.) (2.15)
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but consider the mass term

(m%/d4:vd29qb3Jn2 + h.c.) (2.16)

as an interaction term, when splitting the action into the free-field part and the interaction
Sy = f Az d0 E- 1 (2.17)

Sine = (m%—/d4$d29¢3n2)\é/d4$d29¢3n3 + h.c.) . (2.18)

The usefulness of this splitting comes from the fact that in the equivalent expression of
the generating functional

5 &
Z(J) = e:cp[Smt((SJ, 67)] /DnDﬁexp(So)e:rp(/ d*zd*64°Jn + h.c.) (2.19)

all the dependence on the ¢ field in the free-field functional integral can be removed by
carrying out a superconformal transformation, in accordance with the n, J canonical weights

h=¢n , J=¢J . (2.20)

This points in the direction that the quantum model can be described in the most natural
form in terms of the transformed fields, 1.e. defining the eftfective action in terms of the
hatted fields # and 7. Hence we derive the Feynman rules from the generating functional

M

. Z(J) = Z(J)= Sdet(én)sdet(éﬁ) ea:p[m-é—/d‘l:z:dgﬁqfﬁ( 5...)‘2 + h.c.]

&1 5 5J
1 )
X er /\—fd4:cd29 (=) + h.c.
MO [ a0 + bl
X /DﬁDﬁe$p(/d4:cd4Qﬁ“ﬁ)e$p(/ d*zd?0J7 + h.c.) (2.21)

Notice that the Jacobian factors contain all ¢ dependence and can contribute to the vacuum-
to-vacuum amplitudes, yielding a conformal anomaly in the model [32].

The calculation of the free-field functional integral can be carried out in complete analogy
to the flat space-time limit [34], yielding the equations for the vacuum expectation values

< TH(z)ii(z') >=iD2D**(x — )64 (0 — 0') , O <Ti(z)i(z')>=0 .  (2.22)

The task of solving these equations in the flat conformal projection space 1s not straight-
forward, as one must take the solutions of the homogenous problem in such a way, as to
enforce the boundary conditions needed, in order to preserve supersymmetry for the scalar
and spinor propagators in AdS, {31]. This task has been accomplished in [32], where the
solutions of (2.22) are given, with the appropriate boundary conditions built in

1 I 1 :
i o < TiE)0) >= g (lef +2/afe0)
(2.23)

One can read from the generating functional also the contribution of the quadratic vertex,
naively, as follows:

< TH(2)H(0) >= —D2D25(0 — ')

42
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The naive contribution of the cubic vertex reads
1

However, taking into account the covariant functional derivative [34,32]

5J(z) _ P2 () 1
§J(20)  ¢*(2) () #%(2)

one effectively decreases the power of the ¢ field, so that in the calculation of any derivative
of the generating functional there are no ¢’s at every cubic vertex (in D = 4), whereas the
quadratic vertex appears with a factor ¢. This reflects the deviation of the theory from a
superconformal one, owing to the introduction of a mass term. Finally, we notice that the
usual flat space-time D-algebra remains intact and we can consider the Feynman rules, for

our purposes, as equivalent to those for the flat Wess-Zumino model with the inclusion of
the quadratic vertex

5258(2 -2, (2.26)

%mqﬁ + h.c. . (2.27)

A remarkable feature of the above rescaling, which eflectively removes ¢ from the super-
conformal invariant part of the superfield action (with the caveat of possible anomalous
contributions [32]), is that it takes automatically into consideration the need to resort to
some perturbative approach in the effects of the curvature of the background space, leading
us naturally to introduce the above implicit expansion in the compensator ¢.

3 Interacting chiral and real gauge superfields

The above superspace approach can be extended in a straightforward fashion to the case of
interacting chiral and real gauge superfields. This system is described (in the gauge-chiral
representation) by the action {34]

SaV) = [ d'ed* 0B lexp(V)in
1

1 |
+ / d*zd*0°W? + / d4xd29¢3(m§n2+kgn3)+h-c-] : (3.1)

with V! = VA(T4)';, and where (T4)*; is a matrix representation of the generators of the
gauge group that leaves this action invariant. Comparing with (2.14) it is easy to see that
the new terms are symmetric under a superconformal transformation. Therefore, we can
complement the transformation (2.20) with the following one:

N

Wa = ¢3/2ch y jV — ‘i’gJV . (32)

This reduces the m = 0 part of the action (3.1) to its flat space-time form.
The definition of W in terms of the familiar derivatives in flat background reads

”~

W,=1D*D,V . (3.3)
The covariantization of this expression in the Yang-Mills chiral representation

Wa =1i(V? + a)exp(—V)Vexp(V) (3.4)
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gives W, in terms of the background covariant derivatives (2.13). In writing the transfor-
mation (3.2), the relation holding in the background chiral representation

(Ve +a)f = D*¢of (3.5)

has to be taken into account.
In (3.2) Jv denotes the source in the term

/ Sad' 063V Iy (3.6)

After the superconformal transformation, the gauge-fixing procedure can be carried out,

along the line of the flat background theory. The resulting gauge propagator reads (in the
Fermi-Feynman gauge, with £ = 1)

1
< VV > = —-—;2—(54(9 — 9,) : (37)

In splitting the action we have now in the interaction part the additional term
© 1 )
/d4:cd4977[e:cp( ) — 19 = ]d4xd49n z _T it/ (3.8)

The corresponding modifications introduced in the generating functional Z(J) involve the
operator [33]

> 0
eT 4 4 3.3 o _ ' -
pl[ d*zd'04°3 Jﬂ; (qse;f»MV) =] (3.9)

Recalling (2.26), together with the covariant functional derivative [34,33].

Sv(z) _ HHe) b))

sJv(z)  (2)d(z")8Iv(Z) ~ $(2)d(2)

we conclude that there are no modifications of this vertex, with respect to the corresponding
one 1n the flat background theory. It is worthwhile to notice that, as a consequence of
superconformal invariance, the ghost propagators and vertices of the flat space-time theory
remain Intact 1n AdSs. The conclusion is that, for our purposes, we can handle the quantum
system of N = 1 super Yang-Mills coupled to matter scalar superfields in AdS4 in a way
similar to the corresponding theory in a flat background, with the only difference of the
additional quadratic vertex (2.27) present among the Feynman rules.

8z — 2" _ (3.10)

4 The renormalization of the gravitational action

Herewith we describe our main result, in an attempt to explain the shadowing of the cosmo-
logical constant. We build upon our previous work [32,33] and carry out the renormalization

of the gravitational action induced by OSp( N, 4) invariant matter multiplets in curved space.
Here great care is needed, as every sign at each step is crucial.

*Here we are correcting a minor typographical error in the intermediate passage of Eq. (21) of Ref. [33].

0



Figure 1: One-loop renormalization of gravitational actions from chiral matter (the 7 solid
lines): the curly lines denote the compensator ¢ and its h.c. ¢.

We start by discussing the renormalization of the gravitational action induced by a matter
chiral superfield, through the presence of the Feynman diagram in figure 1. This yields the
following divergent contribution:

amzl]d“:rd‘*ﬂqég : (4.1)
€

with @ > 0 in any case. One can doubt about the fact of interpreting this diagram as a
renormalization of the pure supergravity action

3 -
- / dIzd063 (4.2)
or the cosmological superspace action
2 / d2d04° + hee. . (4.3)
K

There are clear reasons to support this point of view, which goes in the direction of consid-
ering the above contribution as a renormalization of the second term, 1.e. the cosmological

action. In order to pursue this idea, we can translate the result in components, to read as
follows: '

1
amzaézfd“:c\/—g . (4.4)

Here, and throughout this section, we denote with subscript indices R, B the renormalized
and the bare parameters of the action, respectively..

On the other hand, we know that the final expression for the gravitational actions has
to be

1 0
S = “ﬁ/dﬁlﬂf\/"‘gR(?') | 2 ]d4$ “Qa?:g ’ (45)
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Figure 2: O(g?) two-loop corrections to the cosmological renormalization factor Z, in (4.7);
the wavy lines denote the gauge superhelds.

where, let us say, K is restricted to metrics of the anti-de Sitter type, with arbitrary radius
r. Then 1t i1s clear to us that the contribution (4.4) can be consistently interpreted as a
renormalization of only the cosmological term, i.e. the second term on the r.h.s. of Eq.
(4.5). This interpretation is also compatible with the fact that the renormalization of the
higher order gravitational tensors (i.e. the contributions of order a%) does not take place.
In our opinion, this 1s not a coincidence, rather it means that any vacuum diagram can be
seen as a renormalization of only one parameter in the gravitational action, namely ap.
So, let us write then

1 _ 1
am?- / d'zd*063 = am?=an / Sad08® (4.6)
€ €

where we make use of the equation of motion (2.11) for the chiral compensator superfield ¢.
Considering this contribution alone, we would have

Qg = Qg — a,m?aR%_-fcz = 4aOR (4.7)
but then 1t 1s obvious that this renormalization factor Z, cannot lead to a running ag,
since the above m and x parameters do not depend on the renormalization scale u (the m
parameter that appears here cannot be anything, other than the bare mass mpg).

In this way, we reach the conclusion that the relevant term in Z, is the two-loop contri-
bution to the vacuum, what forces us to introduce gauge interactions in the game. In fact,
when 1ntroducing gauge interactions, of all the plethora of diagrams that one can imagine
to the order ¢g* in the gauge coupling constant, we believe there are only two that survive,
after performing the D-algebra of the covariant derivatives, i.e. the diagrams in figure 2. We
give, in the following, the computation of the first graph (at the top of figure 2), as the other
one (at the bottom of figure 2) looks really frightening to compute, and anyhow it cannot



Figure 3: A finite contribution to the gravitational action produced, when integrating by
parts the superspace covariant derivatives in the Feynman diagram at the top of figure 2, in
order to obtain the graph of figure 4.

change the conclusion of this story. Using integration by parts for the superspace covariant
derivatives and discarding a finite remainder given in figure 3, one can identify the divergent
parts of the first graph in figure 2’and the diagram in figure 4.

The diagram in figure 4 yields the amplitude V

de qu 1 1 1 1
| 2 2

where we work in dimension DD = 4 — e. The usual Feynman parameter trick provides us
with the first integral

qu 1 1 . 1 7l_2—-c/2 E. 1 N |
/ erP gkt g? | @ne 2 Jo ® k22(1 — 2)]/

€ € € 1

_ 2—6/21‘\ NB(1 —~ — 1 4.
(271-)4—671- (2) ( 2? 2)(k2)€/2 ( 9)
Plugging 1t into the amplitude V yields |
1 € € €
= m?g’ 2=<2M()B(1 = =,1 — =)T 4.1
VEmg T BB =-5,1-5)T (4.10)

where we define the momentum integral

d°k 1 1
7=/ oLy p)2( o (4.11)




Figure 4: O(g*) two-loop Feynman diagram corresponding to the amplitude V in (4.8);
the two independent momenta (loop variables) of the internal lines are explicitly indicated,
together with the momenta of the external compensators.

The integral 7 can be evaluated as follows:

1 dPk 1
1—!—5—)] dy /2
2" Jo

- (2m)" 4 k% + pPy(1 — y)]>*</?

i

I

1 _ ['(¢) 1 1 1
/2 | 1.12
s : .
@my=" T +¢/2) (") o "y (1~ vy 1
Plugging this expression into the amplitude V we get

€ € € [(¢) 1
T TEBO - 5 - DT a2 )

Bl—=1—¢ .  (4.13)

1
_ 2.2,
Y =mg 5

(27 )82 27 2 2

‘Recalling the following property of the function B(1 — 2,1 — w):

B(l—2z,1—w) = /d
(1 —y)*
- (1 - z)F(l — W)
B F(2 — z — w) ’ (4.14)
we finally get the result
1 2 ] ¢ 1 2\
2,2 __pi-elp (1 — ) - — , 1. |
v mgR(27r)8‘2"57T € (6)1—-6[ ( 2)] ['(2 — 3¢/2) (pQ) (4.15)

Here we introduced the expression of the renormalized gauge coupling constant gg 1n terms
of the renormalization scale |

— &

gr =g . (4.16)
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Two remarks are in order about this result. First of all, the leading divergence 1s of
order ¢~2, what makes it relevant for the purpose of running agr. Secondly, it contains
subleading nonlocal divergencies of the form log(p/y). We will have to prove that they
cancel with similar terms coming from the other graph in figure 2, for this whole thing to
make sense. What is important about this other graph, apart from the cancellation of the
nonlocal divergencies, is that the leading divergence comes with a positive sign (as it 1s the
case for the amplitude V computed above). So let us assume that the whole contribution
from figure 2 is of the form

m?ghon(~ ) [diad0s @
€

with b > 0, plus perhaps 1/¢ subleading divergencies that are not relevant, when studying
the renormalization group equation for ar to the order g%. Then, we have that

1 1 |
lo = 1-— amzﬁzzz — bmzfs:?g%g(zf (4.18)
d d dZ,
——-—-——;#B = 0= 2, dCLR i QR (4.19)
dOfR . 1 dZa
dp  Z, du R
| ng 1
~ 2b 2,.2 2 O 3
1 — am?k2/e m K gr dy(e) Jar + O(gr)
_ 1 2.2 2110 3
— 1 _ amgﬁz/ﬁ(bm K QRM C)QR + O(gr) - (4.20)
In the limit ¢ — 0, we have then
daR b 9 1
DL, P Nl : 4.21
dﬂ CLngaR ( )

so that one can easily guess the kind of theories, in which the effective cosmological constant
goes to zero in the infrared, as a power of u. We can then write that, if g = constant

0 bg%,/a
ap = ao(———) . (4.22)
HO

The important thing, which we checked repeatedly, is that the exponent is positive, though
it is more obscure, under which circumstances it could be bigger than one.

5 Conclusion

We cannot add much more to the above considerations, apart from the fact that, if the
interpretation u® =~ R in a gravitational measurement is plausible, then this could explain
why the effect of the cosmological constant is always shadowed, no matter what the value ot
o might be, by the effects of newtonian gravity.

The calculation of the stress-tensor anomaly in AdSs supersymmetry showed [42] that
the choice of the vacuum, around which the model is quantized, does not affect the renor-
malization of the purely geometrical tensors in the effective action, nor the trace anomaly
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induced by matter multiplets invariant under the supersymmetry group OSp(N, 4) in curved
space. T'hese quantities are independent also from the boundary conditions for the free-field
propagators, as proven in Ref. [42].

Notice, as a last remark, that the conformal anomaly, as an integrability condition for the
supersymmetric sigma models corresponding to superstring theories, was obtained in Refs.

43-47).
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