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Abstract

We cal culate nonperturbative O(Af ., /m?) correctionsto thedilepton invariant mass spec-
trum and the forward—backward charge asymmetry in B — X,e*e™ decay using aheavy
quark expansion approach. The method has recently been used to estimate |ong—distance
effectsin B — X,~. We generalize this analysis to the case of non—vanishing photon in-
variant mass, ¢* # 0, relevant for therare decay mode B — X,ete™. Inthe phenomeno-
logically interesting ¢? region away fromthe cc resonances, the heavy quark expansion ap-
proach should provide a reasonabl e description of possible non—perturbative corrections.
In particular thispictureispreferableto the model—-dependent approach relying on thetails
of Breit-Wigner resonances, which has been employed so far in the literature to account
for these effects. Wefind that the O(A3.,/m?) correctionsto the dilepton invariant mass
spectrum and to the forward—backward asymmetry in B — X ete™ amount to several
percent at most for ¢*/m; < 0.3 and ¢*/m; = 0.6 respectively. The O(A%p/m?) cor-
rection to the B — X,~ decay rateis aso computed and found to be +3%), which agrees
in magnitude with previous calculations. Finally, we comment on long—distance effects
in B — X,vv, whichin this case are extremely suppressed due to the absence of virtual
photon contributions.
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1 Introduction

Inclusive rare decays of B mesons, suchas B — X,v, B — X,ete- or B — X,vv,
provide important opportunities to test the Standard Model of flavor physics. These pro-
cesses are particularly suited for this purpose, since they occur only at the loop level and
are dominated by contributions that are reliably calculable in perturbation theory. Heavy
quark (1/m;) expansion and renormalization group improved perturbative QCD form a
solid theoretical framework to describe these decays. The rates of the B meson decays
are essentialy determined by those of free b quarks, which have been computed at next—
todeading order in QCD for B — X,v[1,2], B — X,ete™ [3/4 and B — X,vv [5].
The first subleading O(1/m}) power correctionsin the heavy quark expansion have also
been studied and arein general well under control [6-9]. However, to properly assess the
prospectsfor precisetests of the Standard Model and its extensions (seefor instance[10]),
further possible sources of theoretical uncertainty, beyond those from 1/m, expansion or
QCD perturbation theory, have to be investigated.

It had been realized that there are, in principle, long—distance contributionsto B — X,y
and B — X,eTe™ related to the ce intermediate state, whose account requires going be-
yond QCD perturbation theory and which are al so not described by non—perturbative higher
order contributionsin the 1/m, expansion. They originate from the quark level process
b — scc — sy and have previoudy been estimated using model calculations based on
c¢ resonance exchange. For B — X,y onemay have b — s¥ — s+, wherethe ¥ (or
a higher resonance) convertsinto an on—shell photon (¢ = 0). This requires extrapolat-
ing the ¥ couplings to far off—shell values (from ¢ = M3 to ¢> = 0). From estimates
perfomed along these lines effects of typicaly ~ 10% at the amplitude level were found
in[11,12]. Although the accuracy of thisapproach isdifficult to quantify, a sizable uncer-
tainty from this source could not strictly be excluded.

Inthe case of B — X,eTe™ *, the intermediate c¢ resonances can be on—shell for appro-
priate values ¢* of the dilepton invariant mass. In this region of ¢, the resonance contri-
butions form a very large background to the flavor—changing neutral current signal. Ex-
perimental cuts are therefore necessary to removethis part of the ¢—spectrum in the anal -
ysisof B — X,eTe™, which isthen restricted to the range of ¢* below (and in principle
also above) the resonance region. Far from the resonances the situation with respect to
long—distance effects is analogous to the case of B — X,~. The tails of the resonances
can extend into thisregion, however, the Breit—-Wigner form usually employed in model -
ing the resonance peaks cannot be expected to give a correct description of the tail region

*For smplicity wewrite B — X, ete~ throughout the paper with the understanding that our discussion
isequaly applicableto B — X utpu~.



away from the peak. Model dependent treatments of the long—distance effects related to
thetails of cc resonances have been discussed in the literature [7,13,14], but again cannot
be considered as a fully conclusive account.

Recently, it has been proposed to treat in a model independent way, employing a heavy
guark expansion in inverse powers of the charm—quark mass, the nonperturbative contri-
butionsin B — X~ related to the intermediate cc state [15-18]. This interesting ap-
proach, which leadsto O(A3, /m?) corrections, has the advantage of being well defined
and systematic. It avoids problems of double—counting of certain contributions, which are
present in model descriptionsinvolving both charm—quark and hadronic charm degrees of
freedom simultaneoudly. Furthermore, for cc statesfar off—shell, the quark picture appears
to be more appropriate than a description in terms of hadronic resonances (¥, ¥/, ...). Ir-
respective of the ultimate numerical accuracy that can be expected from an expansion in
Agep/m., webelieve that thismethod can still yield auseful order of magnitude estimate
of the effect, which isat least complementary, and probably superior, to alternative model
dependent calculations.

The main purpose of the present articleisto study nonperturbativelong—distance effectsin
B — X,ete™ inamodel independent way, using the methods previously appliedto B —
X,v. Wewill calculate the O(A ., /m?2) correctionsto the dilepton invariant mass spec-
trum and to the forward-backward charge asymmetry in B — X ete~. We also obtain
the O(A3p/m?) correction to the branching ratio for B — X,y asaspecial case of this
analysis. Contrary to model estimates (involving c¢ resonances) both the magnitude and
the sign of the long—distance effect are calculable and we find AB(B — X,v)/B(B —
Xsv) = +0.02. Our result agreesin magnitude with previous calculations [15,17,18].
We remark that in comparisonto thecase of B — X,y and B — X,ete™, long—distance
effectsin B — X,vi are strongly suppressed by factors of O(m?/M?%). Obvioudy the
reason is that neutrinos do not couple to photons but to weak bosons only, whose contri-
butions are likewise completely negligible for the long—distance effectsin B — X,v and
B — X,eTe™. From these observationsitisclear that B — X,vv isaparticularly clean
channel from atheoretical point of view.

The paper is organized as follows. After this Introduction, in section 2, we briefly
review non—perturbative effectsin B — X,y and B — X,ete™. We aso discuss the
sb—photon—gluon vertex, which will be of central importance for our subsequent calcula-
tions. Using the results of section 2 in the limiting case of an on—shell photon, we derive
the O(Ajp/m?) correctiontothe B — X, ratein section 3. The main results of our
paper, the O(Aj ., /m?) effects on the dilepton invariant mass spectrum and the forward—
backward asymmetry in B — X,ete™, are calculated and discussed in section 4. Section
5 contains some comments on long—distance effectsin B — X,vr. A short summary is
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presented in section 6.

2 Non—perturbativeEffectsin B — X,~* and the sbyg—Vertex

As mentioned before, B — X,y and B — X,ete™ are dominated by perturbatively cal-
cul able short—distance contributions, including those from virtual top quarks. At NLO in
QCD theintrinsic uncertainty of the perturbative calculation, indicated by residual renor-
malization scale dependence, is about 6% for B — X,~ [1,2] and of similar magnitude
(or somewhat smaller) for the ¢*—spectrumin B — X ete™ [4]. Itisuseful to keep these
numbers in mind for comparison with uncertainties from other sources. Several effects
that are beyond a perturbative treatment lead to corrections to the purely partonic decay
picture and have to be considered for a more complete assessment of the total theoretical
uncertainty:

e Power correctionsin 1/m,: Sub-eading correctionsin the heavy quark expansion
start at O(Aj.p/m;) and amount typically to several percent. The effects are cal-
culable, generaly well under control, and can be taken into account in a complete
analysis [7,6]. An exception is the photon energy spectrumin B — X~ [19] and
the endpoint region of the dilepton invariant mass (¢*) spectrumin B — X ete™
[7], wherethe 1 /m,, expansion breaksdown. Thisisnot aproblem for theintegrated
total B — X, rateand for the B — X,eTe™ spectrum in the lower ¢* region. Itis
more troublesomefor the shape of the photon energy spectrumin B — X+, which
isneeded to extract B(B — X,v) fromthedata At present thisfact still introduces
some amount of model dependence in the measurement of this quantity [20].

e On—shdll cc resonances: Inthecaseof B — X~ thereis abackground from the
process B — X, U, with the (on—shell) ¥ subsequently decaying into a photon plus
light hadrons. However, the energy spectrum of photons from this cascade process
peaks at lower values than the one from the short—distance decay B — X;~. In
the window 2.2 GeV < F, < 2.7 GeV used to measure B(B — X,v) [21] this
background is fairly small and can be corrected for. Inthecase of B — X, ete™
the cc resonance background shows up as large peaks in the dilepton invariant mass
gpectrum. Asdiscussed inthe Introduction, it hasto be removed by appropriatecuts.

e Off—shell cc non—perturbative effects: A particular non—perturbative contributionto
the short—distance process B — X~ comes from the diagrams shown in Fig. 1.
It arises when the gluon is soft and interacts with the spectator cloud of the b quark
insidethe B meson. Thisisthe effect pointed out in [15,16] and further discussed in
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Figure 1: The sbyg vertex at lowest order in QCD.

[17,18]. The same mechanism affectsalso B — X,ete™, in which case the photon
invariant massis ¢* # 0.

Itisthislast point we would like to focus on in the present paper. Sincethegluonis
very soft and interacting with the light spectator cloud, the processin Fig. 1 corresponds
to acc pair from b decay converting into a (on— or off—shell) photon. Previous attempts
to describe long—distance contributions based on the conversion of intermediate (cc) res-
onances into a photon (for both B — X,y and B — X,e*e™) can be viewed as model
calculations aimed at addressing essentially the same effect.

Staying with the quark picture, one may evaluate the diagramsin Fig. 1 directly. Tofirst
order in the gluon momentum & (with 4% = 0), the vertex function can be written as

G F(r)
A ul 5
Asbwg = _ZEACCQGQQCSV%‘(]‘ - 75)Gong 247T2m2
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Here * isthe Lorentz index of the photon, ¢ the photon momentum and 7, = G* , I the
gluon field strength. C; isthe Wilson coefficient of the operator Q5 = (5¢)v_4(eb)y_4 in
the standard effective weak Hamiltonian. In the leading |ogarithmic approximation,

o ()" (a7 .
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Furthermore, \. = V1V, and (). = +2/3 isthe charm—quark electric charge. The form
factor F'(r) asafunction of

p= L (3)



isgiven by
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Our sign conventions are such that :°!?* = +1 and the covariant derivativeis

—1 0<r<l1,

D, = 0, — igT" A% + ieQ A, . (5)

ThediagramsinFig. 1 generateafiniteamplitude. However, in additionto the gauge—
invariant m .—~dependent structurein (1), also terms proportional to e>*#¢(q — k)., appear.
We have not included these termsin Aﬁbw because they are cancelled by the top—quark
contribution viathe GIM mechanism. This can be easily seen by considering the hierar-
chy m. < m; < My, whichissufficient since we are not interested in the detailed form
of the top—quark contribution to A3, . and neglect O(1/m}) terms anyway. We note also
that by virtue of the GIM cancellation between top— and charm—quark contributions, the
integralsareall manifestly convergent and thefull calculation, includingtheDirac algebra,
can be safely performed in four dimensions.

Eq. (1) will besufficient for our actual calculationsof O(Af ., /m?) effectsin B —
X etem and B — X,v. Itis, however, useful to also consider the more general result
for the sbyg—vertex obtained without expanding in & - ¢. Thiswill allow us to get some
idea about the reliability of the lowest order approximation and its stability against higher
order effects. Of course, there are further contributions, beyond those from higher powers
in k& - ¢q. For instance, one could have terms with more than one gluon field. But these
are suppressed by additional powers of A3, /m?2 and we shall neglect them. The vertex

function (validto al ordersin ¢* and k - ¢, but with &2 = 0) isthen given by

— GF _ a al
Asbwg = —ZEACCQGQQCS’V“(l — ")/5)T b 487T2m2€ He
X [F(r + 1. 4)(G5,07 F oo + Fro07 Gy + G207 Fo) + F(r,—1)G2 07 F, . (6)
where
=t ™
N 2m?

and F°# isthe electromagnetic field strength. The form factor F is given by?

' Note that the form factor I can be written as F(r, ¢) = —384x2m2Ca0(q2, k - ¢) in terms of the sub-

tracted three—point function C'yo defined in [22]; the explicit expression of C'y can be found in the second
ref. in[22].
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The following relations hold

F(r,0)= F(r), F(0)=1. 9)
Expanding F' in powers of ¢, (6) can be understood as a sum over an infinite number of
operators involving al powers of the gluon momentum [17,18]. Unfortunately, for the
physical processes we want to study, only the lowest order contribution can be calcul ated.
The higher derivative operators lead to matrix elements that are unknown and one has to
resort to amerely qualitative discussion in this case.

Since ¢ is of order m; and we are interested in the limit where & ~ O(Agep), we
expect the matrix elements of these operators to be suppressed by corresponding powers
of myAgep/m? (suppression of ¢! with respect to ¢*) and Agcp/m, (suppression of
FOG versus GO F'). If both of the following inequalities were satisfied

my > Agep (10)
m?/my > Agep (11)

we could neglect al the operators involving higher powers of the gluon momentum and
use (1) instead of (6). However, whereas (10) iswell justified, (11) is not a priori a good
approximation in the real world. Thus we can safely neglect the F'9G term in (6) but we
must have a closer look at the O(¢") correctionsto (1).

Inthe B — X,~ case(¢* = 0) thesecorrectionsare estimated to be small [17,18]. |ndeed,
eventhough k- q/m? ~ O(1), the Taylor expansionof F'(¢,¢) intermsof k- q/m? involves
small coefficients

_ Ak-gq 3 (k-¢\> 16 [(k-q¢\° 8 [k-q\"
F<t7t>_1+ﬁmz+£(mz) —I_%(mz ‘|‘@ m? + ... (12

A typical valuefor t would be ¢ ~ 0.3 [17]. Then we have (0.3, 0.3) ~ 1.2, compared
with F(0,0) = 1. Thisindicates that the summed contribution of the t"—terms (n > 1)
is probably not too important, owing to the small numerical coefficientsin the series[17,
18]. Of course, thisis arather crude argument, since the matrix elements of the higher
derivative operators may be weighted differently for different n. Furthermore, coherent
addition of al the terms may not be correct either. Nevertheless we take this at least as a
conservative assumption. (Indeed, the matrix element of then = 1 operator turns out to
bevanishinginthecaseof B — X~ [18].) Thisestimate, despite being rough, providesa
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certain measure of the possible importance of neglected effects, exploiting theinformation
contained in the form factor.

In the same spirit one may investigate the general case ¢*> # 0. Theratio F/(r +
t,t)/F(r,0), measuring the sensitivity to anonvanishing ¢, reads ~ 1.3, 1.4, 1.5, 1.75 for
r = 0.3,0.4, 0.5 and 0.6, respectively, using ¢t = 0.3 (these values of r correspond to
q*/mi ~0.1,0.14, 0.17 and 0.2). This suggests that the expansion in ¢ makes sense pro-
vided that ¢* isfar enough from the 4m? threshold. On the other hand, due to the physical
cutsat ¢* = 4m? and (k+q)? = 4m? of thediagramsin Fig. 1, thefunctions F' diverge near
the 4m? threshold. This breakdown of the gluon—momentum expansion can be viewed as
an indication of the appearance of large genuine long—distance effects due to the nearby
c¢ resonances. Hence, we conclude that if

2

P—q*zm? (13)

4m

the lowest order (¢t = 0) result is still reasonable, as a sensible approximation for smaller
¢* and as an order—of—magnitude estimate closer to this bound.

So far wehave been considering theregion of ¢* below the resonance domain. Above
the resonancesr isparametrically large, r ~ ¢*/m? =~ mi/m? > 1, and one may expand
F(r +t,t) not only in ¢ but subsequently also in inverse powers of ». Keeping only the
leading termin 1/ in each of the coefficients of ¢* one has

F(r+t,t)zi(—l)”“#t”:—iJriJr... (14)
(n + 2)rntt 2r 12

n=0

This shows that the leading correctionsto the ¢ = 0 result behave as a series in powers of
t/r ~ k-q/q* ~ Agcp/my. Numericaly, using the full expression for F(r + ¢,¢) and
taking r = 2 asarelevant example, wefind that 7°(2 — 0.3, —0.3) = —1.40+ 1.10:. Tobe
more conservativewe have herechosen ¢ < 0 sothat all contributionsadd coherently. The
result isreasonably closetothet = 0 value F'(2,0) = —1.22+0.83:. It appearsjustifiedto
neglect the higher dimensional operatorsin this case, hence, we expect the approximation
t = 0 towork in the large ¢* region of the spectrum.

In the previous discussion we have restricted our attention to the function F'(r + ¢, ¢), but
similar conclusions hold aso for F(r, —t). The latter contributes only for ¢* # 0 and its
expansion in ¢ shows a better behavior than the one of F'(r + ¢, ¢).

At thispoint it is natural to address the question of the effect generated by the dia-
gramsin Fig. 1in case the charm quark inside the loop is replaced by an up quark. At first
sight, the explicit m? dependence of (6) would suggest that the effect diverges as 1/m
when m, — 0. Thisisstill not aproblem for B — X,v*, where the up—quark contribu-
tion is suppressed by the CKM hierarchy, but could be a dramatic effect in B — X ,v*.
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However, it should be noted that the 1 /2 behavior of (6) is correct only if the expansion
of Fintermsof k - q/m? is@lowed. Thisissimply not true for the up—quark contribu-
tion. Inthiscase, and considering ¢* = 0 for the moment, it ismore appropriate to expand
F(t,t) ininverse powersof ¢: theleading termin this expansion goesliket=! ~ m2/k-q
and cancels the artificial 1/m; divergence of (6). The operators generated by this expan-
sion are nonlocal and their matrix elements cannot be estimated reliably. However, from
naive dimensional counting, we expect the leading contribution to be of order Agcp /M.
For the up—quark contributionin B — X, sete™ the situation is, in a sense, even more
favorable. If ¢*> 2 (2GeV)?, one stays above the region of uu resonances and ¢? itself
provides the relevant short—distance scale. The leading long—distance contributionisthen
of the order A%, /¢*. Correctionsto this behavior arise as powersof t/r ~ k- q/q* ~
Agen /v 42, corresponding to a series of local, higher—dimensional operators. These re-
sults follow from (14). The situation is analogous to the one for the high—¢* end of the
spectrum in the case of intermediate cc, except that for the uwu case the operator product
expansion approach remains vaid down to smaller ¢* due to the absence of heavy reso-
nances.

Wefinally remark that the diagramsin Fig. 1 actually contributein two distinct ways
to thedecays B — X, v*. First, the gluon can be soft and couple to the light cloud in the
B meson. Thisisthe effect we are mainly interested in here and which we shall calculate,
far fromthe resonance region, using (1). Second, the gluon, now not necessarily soft, may
be radiated from the charm—quark loop to end up in thefinal state X,. These processesare
calculable in perturbation theory, it isinfrared finite and contributes as part of the matrix
element calculationat NLO in B — X,~[23,1]. For B — X, ete™ the situation isanal-
ogous, except that the diagrams of Fig. 1 would enter only beyond the next—to— eading
order (at ‘ next—to—next—to-eading order’). The first of these processes is not contained
within the second one, which isentirely perturbative. Thereforein calculating the nonper-
turbative correctionthereisno double counting of contributionsalready taken into account
in the higher order perturbative result.

3 B— Xy

In this section we re—derive the O(A3, ., /mj) correctionto I'( B — X,v) viathe results
of the previous chapter in the limit of an on—shell photon.
By means of the optical theorem the total rate of a B meson decay can be expressed asthe

expectation value
1
- _ 1
r 5 B<B|’7 | B) (15)



of aforward transition operator 7~ defined by
T = Imi/d4x TH.;s(2)Hess(0) . (16)

Here H.;; is the low energy effective Hamiltonian governing the decay under consid-
eration. The states | B) in (15) are to be taken in conventional relativistic normalization
((B|B) = 2EV).

Since we are analyzing a small correction to the full decay width, it is sufficient to work
to leading logarithmic accuracy and to neglect consistently all relative O(«) effects. In
this approximation we may write

Hery = MY, +HY), (17)

where
1O — _CEyey o O, = ——m,50"(1 bF 18
eff__ﬁ 15 Vb 7 7—|- .C., 7—@77%50- ( +75) I ( )

represents the well known leading— og effective Hamiltonian for 6 — s~ decay [24] (for a
review see[25]). C'; ~ —0.30 isthe scheme independent (* effective’) Wilson coefficient,
whose analytic form can be found for instancein [25].

The correction Hg)f can be derived from the amplitude (1) in the limit where the photon
isput on—shell. Inthis case the vertex (1) isequivalent to alocal operator. Performing the
usual matching procedure one obtains

G
Hglf)f _— 7;‘/:9%6 CQ 011 —I— h,C, 5 (19)
ch g Voo
On = WSWO — ¥5)gG b DN, . (20)

C

To leading order only Hg)f contributes to (15), (16). One finds the well-known result
(VaVe >~ =ViiVi)
Gy

19273

6
(B — X,y) = (VEVi)? =2 (21)
s

The interference between 17, and 1!"); leads to a correction of the transition operator

_ GEmy o, o O30 _ !
AT = —1927T3( Vo) - bgo - Gb , O = 5[%7%]- (22)
Using [8] _
Blbgo - Gb|B
\Blbgo CHIB) _ 3y _zpey, (23)
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we finally obtain

AT(B = X,y)  Cy M — M
= _ ~ +0.03 . 24
T(B= X)) 360, m? + 24

C

Thisresult suggests that the potentially problematic non—perturbative effectsin B — X~
should indeed be negligible, re—enforcing theroleof the B — X~ processas asignificant
test of the Standard Model.

We stress that the correction (24) has a definite sign, contrary to previous estimates of
nonperturbative ce effects based on off—shell resonance exchange [11,12]. In this context
we note that for a positive matrix element (23) and negative 7, the consistent covariant
derivative, specifying the sign of strong and electromagnetic couplings and thus of (24),
istheone givenin (5).

The non—perturbative correction in (24) may be compared with model cal culations of the
long—distance effect. Assuming that the dominant contribution to (24) is generated by the
¥ exchange, the above result can be used to fix sign and magnitude of the non—factorizable
bsW coupling at ¢> = 0 (g¢- in the notation of [12]). The result thus obtained is consistent
with the lower values givenin [12] (g2 ~ 1072).

4 B X,ete™

In the present section we proceed to compute the non—perturbative correction to the rare
decay B — X ete™. The effective Hamiltonian for b — sete™ at next—to-eading order
hasbeen reviewedin[25]. Inthefollowing wewill make use of theresultscollected inthis
article and adopt its notation. At next—to—leading order, the amplitudefor B — X, ete™
can be written as

G 3 R e _ = _
A= —i—F)\cg 2771;,07J?”g uy,v + Cgffjg uy,v + Crody uy,ysv| (25)
V2 "2m ¢
where
S = (Xsls0™ (1 + 95)b] B) (26)
J5 = (Xs[37"(1 — 75)b| B) (27)

and u, v denote the electron and positron spinor, respectively. C'; and C, are Wil son coef-
ficients; Cs’/ isnot strictly speaking a Wilson coefficient, sinceit includes also contribu-
tionsfromthe b — se™e™ matrix elements of the operators (), ... ()¢ in the Hamiltonian
[25]. However, the amplitude expressed in terms of €'/ provides a convenient notation.
In particular, C'// aready contains contributions from intermediate charm—quark states
entering the one-loop matrix elements (these are smilar to the graphsin Fig. 1 but with-
out the gluon and a lepton line connected to the photon propagator).
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In writing (25) we have used V;*Vy, ~ —V:V, = —A.. Note aso that, to calculate
B — X,ete™ a NLO, only the leading logarithmic approximation is necessary for €'z
(= ¢/ in the notation of [25]).

The non—perturbative correction we want to eval uate stems from the vertex function
in (1), which yields the following correction to the leading amplitudein (25)

Grp . o Q. F(r)
A= —itEy 2 .
Z\/§ 27 3m?  ¢? J6 e

aluo 2

qsq” — "¢ amaw (28)

{gﬁkw

with

J6 poe = (Xsl57u(1 = 75)9Ga,0| B) . (29)
Note that the term proportional to ¢* in (1) vanishes when multiplied by «~,v dueto cur-
rent conservation.
Adding A + A°, squaring the amplitude, summing over inclusive states X, and perform-
ing the necessary phase space integration, one may calculate the differential decay ratefor
B — X eTe™. Defining s = ¢*/mi and

AIT(B — X,eteT)
__ ds S
B = 555X (30
one hasat NLO in QCD perturbation theory (z = m./m;)
— a? (1—s) Meff |2 52
R(s) = yp (z)/i(z)[ (1 + 2s) (|09 |“ + |C1o ) +
4 (1 + 2) |C[* + 1207ReCy ] (31)
S

Here f(z) isthe phase space factor and (=) the QCD correction factor entering I'( B —
X.ev); they can be foundin [25].
For the O(A%p/m?) correctionterm, arising from the interference of .A° with A, we ob-

tan
a® | 2AME. — ME) (1 — s)?

ARG = = im0

> Re{F(r) [C;m

2
+ O 2+ s)] } . (32)
For the evaluation of A R we have used the identity [26]

(B G B) = (o (Blbo - GUIB) (T4 Pous(l4 4}, (3

which isvalid to leading order in the 1/m, expansion. Here v denotesthe B meson four—
velocity and I anarbitrary string of y—matrices. For handling the Dirac algebrathroughout
our calculations we have used the program Tracer [27].
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Figure 2: The dilepton invariant mass spectrum of B — X ete™ normaized to the
semileptonic width (30). The solid curve is the short—distance result (31) whereas the
dashed oneincludesthe O(A3 ., /m?) corrections. Thedotted curvesindicate the position
of the ¥ and W’ resonances. A dash—dotted curveis shown at ¢> = 3m?. The corrections
divergeat ¢* = 4m?. Inthisplot we have used m. = 1.4 GeV and m; = 4.8 GeV.

The final result isdisplayed in Fig. 2, showing the corrected and uncorrected R(s).
The conditionsfor the validity of the corrections have already been discussed in section 2.
They are best satisfied for the high—¢* end of the spectrum, above the resonances, and for
very low ¢? respectively. Thereliability of the approximation used deteriorates somewhat
as ¢* isincreased from = 0 towards the resonance region. As an order of magnitude esti-
mate the calculation should still make sense around ¢* ~ 3m?, indicated in Fig. 2 by the
dash—dotted curve. For larger ¢* one getstoo close to the lowest resonance and the heavy
quark expansion breaks down. Further up, at ¢* = 4m?, the correction develops a (un-
physical) square root divergence (in our choice m. = 1.4 GeV). The difference between
My and 2m. isof O(Agep) and corresponds to non—perturbative effects that are beyond
the control within our approximation.
As can be noticed, the O(A3,/m?) corrections are very small in the region where this
calculation should betrusted, viz. below 3m? and above the resonance peaks. Actually, in
the high ¢* region the effect is further suppressed since F'(r) decreases as 1/r for large
r, as discussed in section 2. For ¢> ~ O(mj}) the corrections behave in fact more as

12



O(Agop/mi) instead of O(A%p/m?). We also observe that for s below 0.1 the correc-
tions become vanishingly small due to a cancellation among the termsin (32) (C'; is neg-
ative, ReC';’/ positive). Thisis related to the fact that the correction AR(s) is negative
for s above 0.1, where C'c// dominates, but positive for s close to zero, which essentially
corresponds to the case of B — X,~. In fact, one may obtain (24) as a special case of
AR/ R from (31) and (32) in the limit ¢> — 0.
The sign of the effect for s around 0.2 isdifferent from the one obtained by the approaches
based on resonance exchange[13,14,7]. Thisisnot aproblem since the sign of the correc-
tion determined in model calculationsis not reliable far from the resonances. Moreover,
as discussed in the previous section, the correctionswe are considering are essentially re-
lated to the non—factorizable contributions of charmed resonances. The latter are usually
considered in B — X+, where the factorizable terms vanish, but are always neglected in
B = X,ete™.
The factorizabl e resonance contributions can be identified, to the lowest order in o, with
diagrams as those in Fig. 1 but without gluons. The effect of such diagrams is positive
but isalready included in the NLO cal culation as the matrix element contribution to €5/ .
As pointed out in [ 28] within the context of exclusive decays, adding the factorizableres-
onance effects to the NLO calculation leads to a double counting problem related to the
simultaneous use of quark and hadronic (c¢ resonances) degrees of freedom. On the other
hand, thisis not the case for the A%, /m? effect we have evaluated, where we have con-
sistently used apure quark level description. Of course, some model—dependent treatment
may still be useful close to the W—esonance (an interesting approach has been presented
in[29]). If one should attempt this, the O(A ., /m?) effect could be used to fix the small
q* limit.

Another interesting quantity that can be measured in B — X, ete™ decaysisthe
forward—backward chargeasymmetry [13]. NormalizingT'( B — X ete™) tothesemilep-
tonic width, asin (30), we define

1 1 d’T(B — X ete™)
Als) = o [ deostd :
(=) I'(B — X.ev) J-1 o8 ds dcos b sn(cos 0) . (34)

where ¢ isthe angle between the et and B momentain the dilepton center—of—massframe.
Proceeding similarly to the case of R(s), the NLO perturbative result turns out to be

3a? (1 —s)?

A = = T T

Re{Ct,[2 07 +5 C57]} (35)

whereas the O(A3 ., /m?) correction term, arising from the interference of .A° and A, is
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10° A(g)

Figure 3: The differential forward—backward asymmetry defined in (34) as a function of
the dilepton invariant mass. Notationsareasin Fig. 2.

given by

30 | M. — M3 (1—s

AA(s) = 4727 36m? f(2)k(

);) Re{CioF(r)} (1 +3s) . (36)

The corrected and uncorrected resultsfor A(s) are shown in Fig. 3. Concerning range of

validity and size of the correctionssimilar commentsapply to A(s) asto the spectrum E(s)
discussed above. In addition we note that the small correctionsto A(s) and R(s) have a
tendency to further cancel in the normalized asymmetry A(s)/R(s), auseful observable
for direct comparison with experiment.

5 B— X,vv

In B — X,vv thereareno contributionsfromvirtual photons. Consequently the pattern of
GIM cancellation is not logarithmic (*soft’), asin B — X,ete™, but powerlike (‘hard’)
due to the exchange of heavy gauge bosons. Therefore it is clear that long—distance ef-
fectsin B — X,vv from charm quarks are additionally suppressed by a factor of order
m? /M3, . Inprinciple, however, in this case al so long—distance contributionsrel ated to the
cc intermediate state do exist. The largest of these is associated with the cascade process
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B — X,¥ — X,vv. Inthefollowing we shal try to estimate this effect to show more
quantitatively to which extent the short—distance contribution dominatesin B — X, vu.
Using therelation (0|cy*c|¥) = my fye” and the coupling of the ¢y*¢ current with the
electroweak fields

2 1 8
N —1_—'29w)z] 7
L 6070[3 M—I_leim@wcos&w( 3s1n 1 S
we obtain
AV — vr)| (Mq;)2 3 —8sin?40, 4
R, = = ~ 33 x107". 38
AW — ete)| My/) 16v/2cos?8,sin? 0, (38)

Then, using the theoretical result B**(B — X,vv) = (4.0 &£ 1.0) x 107° [5] and the
experimental valuesof B(B — X, V) and B(V — ete™) [30], wefind

B(B — X,U(vi))
BB — X,v0)

B(B = X,W)B(¥ — ¢*e)
Bst(B — X,vv)

= 3R ~5x107%. (39

Unfortunately we cannot reliably estimate the interference termsbetween short—and long—
distance contributions, since we have no useful information about the strong phases in
B — X, V. However, theresult (39) indicatesthat the long—distance correctionsto theam-
plitude are at thelevel of 10~ at most. Thisis by far enough to concludethat B — X, v/
isan extraordinarily clean channel [5] and, therefore, avery interesting probe of the Stan-
dard Model and its extensions [9].

6 Summary

In this paper we have cal cul ated long—distance correctionsof O(A ., /m?) tothedilepton
invariant mass (¢?) spectrum and to the forward-backward asymmetry in B — X ete™.
For low ¢*/m} < 0.1 these corrections can be expected to give afairly accurate descrip-
tion of long—distance effects due to intermediate (far off—shell) c¢ pairs. Contributions
from higher—dimensional operators, formally suppressed by powers of m,Agcp/m? rel-
aiveto the A3, /m? effect, involve unknown hadronic matrix elements and have been
neglected. Despite the fact that m,Agcp/m? ~ 0.6, thisisjustified for small ¢* dueto
small numerical coefficients accompanying these additional contributions. They could be
more important for larger ¢*>. Close to the resonance region ¢*/mi ~ 4m?/mi ~ 0.34
the assumptions on which the calculation is based clearly break down. On the other hand,
simple order—of—magnitude estimates suggest that even for ¢?/m} ~ 0.26 the calculable
leading O(Ajp/m?) effect should give areasonable account of the approximate size of
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the corrections within, say, a factor of two. Above the resonance region ¢*/m; = 0.7
the calculated effect isagain reliable. In spite of the various uncertainties we believe that
the 1/m. expansion approach is still preferable to model dependent estimates relying on
off—shell ¢¢ resonances.

Numerically the correctionswefind are small (at the one to two percent level) in the
phenomenologically interesting region of ¢* away from the resonances. For comparison
one may recall that uncertaintiesfrom QCD perturbation theory are at thelevel of 6% at
next—to—eading order. Thisindicates that |ong—distance correctionsrelated to intermedi-
ate cc should not be a serious problem in the analysisof B — X, ete™ decay, unless the
neglected effects of higher order in A3, /m?2 or myAgep/m? turned out to be substan-
tially larger than anticipated.

We have pointed out that the O(A7 ., /m?2) effect is calculable in both magnitude
and sign, which isto be contrasted with the situation in hadronic model calculations. The
O(A}op/m?) correctionto B(B — X,v), considered in previous work, can be obtained
as aspecial application of our analysis and isfound to be ~ +3%.

The decays B — X,y and B — X,ete™ may be contrasted with the mode B —
X,vv, where the corresponding nonperturbative effects due to intermediate cc are till
much stronger suppressed, down to alevel of ~ 1072 in the amplitude.

Long—distance effectsare in general anotorioudy difficult problem. However, they
have to be controlled sufficiently well to address fundamental questionsin flavor physics.
The existence of arealistic limit in which such effects can in fact be computed from first
principles is therefore of considerable theoretical interest in its own right, as well as of
interest for phenomenology. It is particularly gratifying that for the important processes
B — X,yand B — X,ete™ acalculation of thistypeispossible and aclass of potentially
large long—distance correctionsisindeed found to be rather small and well under control.

Noteadded: After thispaper wasfinished, we havereceived apreprint[31] inwhich
the O(Ajp/m?) correction to the differential decay rate of b — se* e~ has been calcu-
lated. We disagree with their result in sign.

Acknowledgements

We are grateful to P. Kim for illuminating discussions concerning experimental issues of
B — X~ decay andto Z. Ligeti, M. Voloshin, M. Wiseand D. Wyler for informativedis-
cussions about their work. We a'so thank C. Greub, Y. Grossman, H. Quinn and T. Rizzo
for discussions,

16



References

[1] C. Greub, T. Hurth and D. Wyler, Phys. Rev. D54, 3350 (1996).

[2] K.G. Chetyrkin, M. Misiak and M. Miinz, ZU-TH-24-96, hep-ph/9612313.

[3] M. Misiak, Nucl. Phys. B393, 23 (1993); erratum ibid. B439, 461 (1995).

[4] A.J. Burasand M. Miinz, Phys. Rev. D52, 186 (1995).

[5] G.Buchallaand A.J. Buras, Nucl. Phys. B400, 225 (1993).

[6] A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D49, 3367 (1994).

[7] A.Ali, G. Hiller, L.T. Handoko and T. Morozumi, Phys. Rev. D55, 4105 (1997).

[8] I.1.Bigi etal., in B-Decays (2nd edition), ed. S.L. Stone, World Scientific, Singapore
(1994), p. 132.

[9] Y. Grossman, Z. Ligeti and E. Nardi, Nucl. Phys. B465, 369 (1996); erratum ibid.
B480, 753 (1996).

[10] J.L. Hewett and JD. Wells, Phys. Rev. D55, 5549 (1997).

[11] N.G. Deshpande, X.-G. He and J. Trampetic, Phys. Lett. B367, 362 (1996);
G. Eilam, A. loannissian, R.R. Mendel and P. Singer, Phys. Rev. D53, 3629 (1996).

[12] JM. Soares, Phys. Rev. D53, 241 (1996).
[13] A.Ali, T. Mannel and T. Morozumi, Phys. Lett. B273, 505 (1991).

[14] M.R. Ahmady, Phys. Rev. D53, 2843 (1996); C.-D. Li1and D.-X. Zhang, Phys. Lett.
B397, 279 (1997).

[15] M.B. Voloshin, Phys. Lett. B397, 275 (1997).

[16] A. Khodjamirian, R. Ruckl, G. Stoll and D. Wyler, WUE-ITP-97-001, hep-
ph/9702318.

[17] Z. Ligeti, L. Randall and M.B. Wise, CALT-68-2097, hep-ph/9702322.

[18] A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei, UCLA/97/TEP/5, hep-
ph/9702380.

17



[19] M. Neubert, Phys. Rev. D49, 4623 (1994): J. Chay and S.-J. Rey, Z. Phys. C68 (1995)
425,

[20] A.Ali and C. Greub, Phys. Lett. B361, 146 (1995).
[21] M.S. Alam et al. (CLEO Coallaboration), Phys. Rev. Lett. 74, 2885 (1995).

[22] G.D’Ambrosio, G. Ecker, G. Isidori and H. Neufeld, Phys. Lett. B380, 165 (1996);
G. D’Ambrosio and G. Isidori, LNF-96/036(P), hep-ph/9611284.

[23] A.AliandC. Greub, Z. Phys. C49, 431 (1991); ibid. C60, 433 (1993); N. Pott, Phys.
Rev. D54, 938 (1996).

[24] M. Ciuchini, E. Franco, L. Reinaand L. Silvestrini, Nucl. Phys. B421, 41 (1994).
[25] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[26] A.F. Fak and M. Neubert, Phys. Rev. D47 (1993) 2965.

[27] M. Jamin and M.E. Lautenbacher, Comput. Phys. Commun. 74, 265 (1993).

[28] Z.Ligeti and M.B. Wise, Phys. Rev. D53, 4937 (1995).

[29] F. Kriuger and L.M. Sehgal, Phys. Lett. B380, 199 (1996).

[30] Review of Particle Properties, Phys. Rev. D54, 1 (1996).

[31] J.-W. Chen, G. Rupak and M.J. Savage, DOE/ER/41014-10-N97, hep-ph/9705219.

18



