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Abstract
We calculate nonperturbativeO(�2

QCD=m
2
c) corrections to the dilepton invariant mass spec-

trum and the forward–backward charge asymmetry in B ! Xse
+e� decay using a heavy

quark expansion approach. The method has recently been used to estimate long–distance
effects in B ! Xs
. We generalize this analysis to the case of non–vanishing photon in-
variant mass, q2 6= 0, relevant for the rare decay mode B ! Xse

+e�. In the phenomeno-
logically interesting q2 region away from the c�c resonances, the heavy quark expansion ap-
proach should provide a reasonable description of possible non–perturbative corrections.
In particular this picture is preferable to the model–dependent approach relying on the tails
of Breit–Wigner resonances, which has been employed so far in the literature to account
for these effects. We find that theO(�2

QCD=m
2
c) corrections to the dilepton invariant mass

spectrum and to the forward–backward asymmetry in B ! Xse
+e� amount to several

percent at most for q2=m2
b �< 0:3 and q2=m2

b �> 0:6 respectively. The O(�2
QCD=m

2
c) cor-

rection to the B ! Xs
 decay rate is also computed and found to be +3%, which agrees
in magnitude with previous calculations. Finally, we comment on long–distance effects
in B ! Xs��� , which in this case are extremely suppressed due to the absence of virtual
photon contributions.
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1 Introduction

Inclusive rare decays of B mesons, such as B ! Xs
, B ! Xse
+e� or B ! Xs��� ,

provide important opportunities to test the Standard Model of flavor physics. These pro-

cesses are particularly suited for this purpose, since they occur only at the loop level and

are dominated by contributions that are reliably calculable in perturbation theory. Heavy

quark (1=mb) expansion and renormalization group improved perturbative QCD form a

solid theoretical framework to describe these decays. The rates of the B meson decays

are essentially determined by those of free b quarks, which have been computed at next–

to–leading order in QCD for B ! Xs
 [1,2], B ! Xse
+e� [3,4] and B ! Xs��� [5].

The first subleading O(1=m2
b) power corrections in the heavy quark expansion have also

been studied and are in general well under control [6–9]. However, to properly assess the

prospects for precise tests of the Standard Model and its extensions (see for instance [10]),

further possible sources of theoretical uncertainty, beyond those from 1=mb expansion or

QCD perturbation theory, have to be investigated.

It had been realized that there are, in principle, long–distance contributions to B ! Xs


and B ! Xse
+e� related to the c�c intermediate state, whose account requires going be-

yond QCD perturbation theory and which are also not described by non–perturbative higher

order contributions in the 1=mb expansion. They originate from the quark level process

b ! sc�c ! s
 and have previously been estimated using model calculations based on

c�c resonance exchange. For B ! Xs
 one may have b ! s	 ! s
, where the 	 (or

a higher resonance) converts into an on–shell photon (q2 = 0). This requires extrapolat-

ing the 	 couplings to far off–shell values (from q2 = M2
	 to q2 = 0). From estimates

perfomed along these lines effects of typically � 10% at the amplitude level were found

in [11,12]. Although the accuracy of this approach is difficult to quantify, a sizable uncer-

tainty from this source could not strictly be excluded.

In the case of B ! Xse
+e� �, the intermediate c�c resonances can be on–shell for appro-

priate values q2 of the dilepton invariant mass. In this region of q2, the resonance contri-

butions form a very large background to the flavor–changing neutral current signal. Ex-

perimental cuts are therefore necessary to remove this part of the q2–spectrum in the anal-

ysis of B ! Xse
+e�, which is then restricted to the range of q2 below (and in principle

also above) the resonance region. Far from the resonances the situation with respect to

long–distance effects is analogous to the case of B ! Xs
. The tails of the resonances

can extend into this region, however, the Breit–Wigner form usually employed in model-

ing the resonance peaks cannot be expected to give a correct description of the tail region

�For simplicity we writeB ! Xse
+e� throughout the paper with the understanding that our discussion

is equally applicable to B ! Xs�
+��.
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away from the peak. Model dependent treatments of the long–distance effects related to

the tails of c�c resonances have been discussed in the literature [7,13,14], but again cannot

be considered as a fully conclusive account.

Recently, it has been proposed to treat in a model independent way, employing a heavy

quark expansion in inverse powers of the charm–quark mass, the nonperturbative contri-

butions in B ! Xs
 related to the intermediate c�c state [15–18]. This interesting ap-

proach, which leads toO(�2
QCD=m

2
c) corrections, has the advantage of being well defined

and systematic. It avoids problems of double–counting of certain contributions, which are

present in model descriptions involving both charm–quark and hadronic charm degrees of

freedom simultaneously. Furthermore, for c�c states far off–shell, the quark picture appears

to be more appropriate than a description in terms of hadronic resonances (	, 	0, ...). Ir-

respective of the ultimate numerical accuracy that can be expected from an expansion in

�QCD=mc, we believe that this method can still yield a useful order of magnitude estimate

of the effect, which is at least complementary, and probably superior, to alternative model

dependent calculations.

The main purpose of the present article is to study nonperturbative long–distance effects in

B ! Xse
+e� in a model independent way, using the methods previously applied toB !

Xs
. We will calculate theO(�2
QCD=m

2
c) corrections to the dilepton invariant mass spec-

trum and to the forward–backward charge asymmetry in B ! Xse
+e�. We also obtain

the O(�2
QCD=m

2
c) correction to the branching ratio for B ! Xs
 as a special case of this

analysis. Contrary to model estimates (involving c�c resonances) both the magnitude and

the sign of the long–distance effect are calculable and we find �B(B ! Xs
)=B(B !
Xs
) = +0:02. Our result agrees in magnitude with previous calculations [15,17,18].

We remark that in comparison to the case of B ! Xs
 and B ! Xse
+e�, long–distance

effects in B ! Xs��� are strongly suppressed by factors of O(m2
c=M

2
Z). Obviously the

reason is that neutrinos do not couple to photons but to weak bosons only, whose contri-

butions are likewise completely negligible for the long–distance effects in B ! Xs
 and

B ! Xse
+e�. From these observations it is clear that B ! Xs��� is a particularly clean

channel from a theoretical point of view.

The paper is organized as follows. After this Introduction, in section 2, we briefly

review non–perturbative effects in B ! Xs
 and B ! Xse
+e�. We also discuss the

�sb–photon–gluon vertex, which will be of central importance for our subsequent calcula-

tions. Using the results of section 2 in the limiting case of an on–shell photon, we derive

the O(�2
QCD=m

2
c) correction to the B ! Xs
 rate in section 3. The main results of our

paper, theO(�2
QCD=m

2
c) effects on the dilepton invariant mass spectrum and the forward–

backward asymmetry in B ! Xse
+e�, are calculated and discussed in section 4. Section

5 contains some comments on long–distance effects in B ! Xs��� . A short summary is
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presented in section 6.

2 Non–perturbative Effects in B ! Xs

� and the �sb
g–Vertex

As mentioned before, B ! Xs
 and B ! Xse
+e� are dominated by perturbatively cal-

culable short–distance contributions, including those from virtual top quarks. At NLO in

QCD the intrinsic uncertainty of the perturbative calculation, indicated by residual renor-

malization scale dependence, is about �6% for B ! Xs
 [1,2] and of similar magnitude

(or somewhat smaller) for the q2–spectrum in B ! Xse
+e� [4]. It is useful to keep these

numbers in mind for comparison with uncertainties from other sources. Several effects

that are beyond a perturbative treatment lead to corrections to the purely partonic decay

picture and have to be considered for a more complete assessment of the total theoretical

uncertainty:

� Power corrections in 1=mb: Sub–leading corrections in the heavy quark expansion

start at O(�2
QCD=m

2
b) and amount typically to several percent. The effects are cal-

culable, generally well under control, and can be taken into account in a complete

analysis [7,6]. An exception is the photon energy spectrum in B ! Xs
 [19] and

the endpoint region of the dilepton invariant mass (q2) spectrum in B ! Xse
+e�

[7], where the 1=mb expansion breaks down. This is not a problem for the integrated

total B ! Xs
 rate and for the B ! Xse
+e� spectrum in the lower q2 region. It is

more troublesome for the shape of the photon energy spectrum inB ! Xs
, which

is needed to extract B(B! Xs
) from the data. At present this fact still introduces

some amount of model dependence in the measurement of this quantity [20].

� On–shell c�c resonances: In the case of B ! Xs
 there is a background from the

process B ! Xs	, with the (on–shell) 	 subsequently decaying into a photon plus

light hadrons. However, the energy spectrum of photons from this cascade process

peaks at lower values than the one from the short–distance decay B ! Xs
. In

the window 2:2 GeV < E
 < 2:7 GeV used to measure B(B ! Xs
) [21] this

background is fairly small and can be corrected for. In the case of B ! Xse
+e�

the c�c resonance background shows up as large peaks in the dilepton invariant mass

spectrum. As discussed in the Introduction, it has to be removed by appropriate cuts.

� Off–shell c�c non–perturbative effects: A particular non–perturbative contribution to

the short–distance process B ! Xs
 comes from the diagrams shown in Fig. 1.

It arises when the gluon is soft and interacts with the spectator cloud of the b quark

inside the B meson. This is the effect pointed out in [15,16] and further discussed in
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Figure 1: The �sb
g vertex at lowest order in QCD.

[17,18]. The same mechanism affects also B ! Xse
+e�, in which case the photon

invariant mass is q2 6= 0.

It is this last point we would like to focus on in the present paper. Since the gluon is

very soft and interacting with the light spectator cloud, the process in Fig. 1 corresponds

to a c�c pair from b decay converting into a (on– or off–shell) photon. Previous attempts

to describe long–distance contributions based on the conversion of intermediate (c�c) res-

onances into a photon (for both B ! Xs
 and B ! Xse
+e�) can be viewed as model

calculations aimed at addressing essentially the same effect.

Staying with the quark picture, one may evaluate the diagrams in Fig. 1 directly. To first

order in the gluon momentum k (with k2 = 0), the vertex function can be written as

A�
sb
g = �iGFp

2
�cC2egQc�s
�(1� 
5)G�%b

F (r)

24�2m2
c

�
h
"���%q�q

� � "���%q2 + "���%q�q
�
i
: (1)

Here � is the Lorentz index of the photon, q the photon momentum and G�% = Ga
�%T

a the

gluon field strength. C2 is the Wilson coefficient of the operatorQ2 = (�sc)V�A(�cb)V�A in

the standard effective weak Hamiltonian. In the leading logarithmic approximation,

C2 =
1

2

2
4 �s(MW )

�s(mb)

!6=23

+

 
�s(MW )

�s(mb)

!
�12=23

3
5 : (2)

Furthermore, �c = V �

csVcb and Qc = +2=3 is the charm–quark electric charge. The form

factor F (r) as a function of

r =
q2

4m2
c

(3)
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is given by

F (r) =
3

2r

8>>>>>><
>>>>>>:

1q
r(1� r)

arctan

s
r

1� r
� 1 0 < r < 1 ;

1

2
q
r(r � 1)

0
@ln 1 �

q
1 � 1=r

1 +
q
1� 1=r

+ i�

1
A� 1 r > 1 :

(4)

Our sign conventions are such that "0123 = +1 and the covariant derivative is

D� = @� � igT aAa
� + ieQfA� : (5)

The diagrams in Fig. 1 generate a finite amplitude. However, in addition to the gauge–

invariant mc–dependent structure in (1), also terms proportional to "���%(q � k)� appear.

We have not included these terms in A�
sb
g because they are cancelled by the top–quark

contribution via the GIM mechanism. This can be easily seen by considering the hierar-

chy mc � mt �MW , which is sufficient since we are not interested in the detailed form

of the top–quark contribution toA�
sb
g and neglect O(1=m2

t ) terms anyway. We note also

that by virtue of the GIM cancellation between top– and charm–quark contributions, the

integrals are all manifestly convergent and the full calculation, including the Dirac algebra,

can be safely performed in four dimensions.

Eq. (1) will be sufficient for our actual calculations ofO(�2
QCD=m

2
c) effects inB !

Xse
+e� and B ! Xs
. It is, however, useful to also consider the more general result

for the sb
g–vertex obtained without expanding in k � q. This will allow us to get some

idea about the reliability of the lowest order approximation and its stability against higher

order effects. Of course, there are further contributions, beyond those from higher powers

in k � q. For instance, one could have terms with more than one gluon field. But these

are suppressed by additional powers of �2
QCD=m

2
c and we shall neglect them. The vertex

function (valid to all orders in q2 and k � q, but with k2 = 0) is then given by

Asb
g = �iGFp
2
�cC2egQc�s
�(1 � 
5)T

ab
1

48�2m2
c

"���%

�
h
F (r + t; t)(Ga

��@
�F%� + F��@

�Ga
%� +Ga

�%@
�F��) + F (r;�t)Ga

�%@
�F��

i
; (6)

where

t =
k � q
2m2

c

(7)

and F �� is the electromagnetic field strength. The form factor F is given byy

y Note that the form factor F can be written as F (r; t) = �384�2m2
c

eC20(q2; k � q) in terms of the sub-
tracted three–point function eC20 defined in [22]; the explicit expression of eC20 can be found in the second
ref. in [22].
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F (r + t; t) = 6
Z 1

0
dz

(
�1� z

t
� 1� 4z(1 � z)r

4zt2
ln

1 � 4z(1 � z)(r + t)

1� 4z(1 � z)r

)
: (8)

The following relations hold

F (r; 0) = F (r) ; F (0) = 1 : (9)

Expanding F in powers of t, (6) can be understood as a sum over an infinite number of

operators involving all powers of the gluon momentum [17,18]. Unfortunately, for the

physical processes we want to study, only the lowest order contribution can be calculated.

The higher derivative operators lead to matrix elements that are unknown and one has to

resort to a merely qualitative discussion in this case.

Since q is of order mb and we are interested in the limit where k � O(�QCD), we

expect the matrix elements of these operators to be suppressed by corresponding powers

of mb�QCD=m
2
c (suppression of tn+1 with respect to tn) and �QCD=mb (suppression of

F@G versus G@F ). If both of the following inequalities were satisfied

mb � �QCD ; (10)

m2
c=mb � �QCD ; (11)

we could neglect all the operators involving higher powers of the gluon momentum and

use (1) instead of (6). However, whereas (10) is well justified, (11) is not a priori a good

approximation in the real world. Thus we can safely neglect the F@G term in (6) but we

must have a closer look at the O(tn) corrections to (1).

In theB ! Xs
 case (q2 = 0) these corrections are estimated to be small [17,18]. Indeed,

even though k �q=m2
c � O(1), the Taylor expansion ofF (t; t) in terms of k �q=m2

c involves

small coefficients

F (t; t) = 1 +
4

15

k � q
m2

c

+
3

35

 
k � q
m2

c

!2

+
16

525

 
k � q
m2

c

!3

+
8

693

 
k � q
m2

c

!4
+ : : : (12)

A typical value for t would be t � 0:3 [17]. Then we have F (0:3; 0:3) � 1:2, compared

with F (0; 0) = 1. This indicates that the summed contribution of the tn–terms (n � 1)

is probably not too important, owing to the small numerical coefficients in the series [17,

18]. Of course, this is a rather crude argument, since the matrix elements of the higher

derivative operators may be weighted differently for different n. Furthermore, coherent

addition of all the terms may not be correct either. Nevertheless we take this at least as a

conservative assumption. (Indeed, the matrix element of the n = 1 operator turns out to

be vanishing in the case of B ! Xs
 [18].) This estimate, despite being rough, provides a
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certain measure of the possible importance of neglected effects, exploiting the information

contained in the form factor.

In the same spirit one may investigate the general case q2 6= 0. The ratio F (r +

t; t)=F (r; 0), measuring the sensitivity to a nonvanishing t, reads� 1:3, 1:4, 1:5, 1:75 for

r = 0:3, 0:4, 0:5 and 0:6, respectively, using t = 0:3 (these values of r correspond to

q2=m2
b ' 0:1, 0:14, 0:17 and 0:2). This suggests that the expansion in t makes sense pro-

vided that q2 is far enough from the 4m2
c threshold. On the other hand, due to the physical

cuts at q2 = 4m2
c and (k+q)2 = 4m2

c of the diagrams in Fig. 1, the functionsF diverge near

the 4m2
c threshold. This breakdown of the gluon–momentum expansion can be viewed as

an indication of the appearance of large genuine long–distance effects due to the nearby

c�c resonances. Hence, we conclude that if

4m2
c � q2 >

� m2
c (13)

the lowest order (t = 0) result is still reasonable, as a sensible approximation for smaller

q2 and as an order–of–magnitude estimate closer to this bound.

So far we have been considering the region of q2 below the resonance domain. Above

the resonances r is parametrically large, r � q2=m2
c � m2

b=m
2
c � 1, and one may expand

F (r + t; t) not only in t but subsequently also in inverse powers of r. Keeping only the

leading term in 1=r in each of the coefficients of tn one has

F (r + t; t) �
1X
n=0

(�1)n+1 3

(n+ 2)rn+1
tn = � 3

2r
+

t

r2
+ : : : (14)

This shows that the leading corrections to the t = 0 result behave as a series in powers of

t=r � k � q=q2 � �QCD=mb. Numerically, using the full expression for F (r + t; t) and

taking r = 2 as a relevant example, we find that F (2�0:3;�0:3) = �1:40+1:10i. To be

more conservative we have here chosen t < 0 so that all contributions add coherently. The

result is reasonably close to the t = 0 valueF (2; 0) = �1:22+0:83i. It appears justified to

neglect the higher dimensional operators in this case, hence, we expect the approximation

t = 0 to work in the large q2 region of the spectrum.

In the previous discussion we have restricted our attention to the function F (r+ t; t), but

similar conclusions hold also for F (r;�t). The latter contributes only for q2 6= 0 and its

expansion in t shows a better behavior than the one of F (r + t; t).

At this point it is natural to address the question of the effect generated by the dia-

grams in Fig. 1 in case the charm quark inside the loop is replaced by an up quark. At first

sight, the explicit m2
c dependence of (6) would suggest that the effect diverges as 1=m2

q

when mq ! 0. This is still not a problem for B ! Xs

�, where the up–quark contribu-

tion is suppressed by the CKM hierarchy, but could be a dramatic effect in B ! Xd

�.
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However, it should be noted that the 1=m2
q behavior of (6) is correct only if the expansion

of F in terms of k � q=m2
q is allowed. This is simply not true for the up–quark contribu-

tion. In this case, and considering q2 = 0 for the moment, it is more appropriate to expand

F (t; t) in inverse powers of t: the leading term in this expansion goes like t�1 � m2
q=k � q

and cancels the artificial 1=m2
q divergence of (6). The operators generated by this expan-

sion are nonlocal and their matrix elements cannot be estimated reliably. However, from

naive dimensional counting, we expect the leading contribution to be of order �QCD=mb.

For the up–quark contribution in B ! Xs;de
+e� the situation is, in a sense, even more

favorable. If q2 �> (2GeV)2, one stays above the region of u�u resonances and q2 itself

provides the relevant short–distance scale. The leading long–distance contribution is then

of the order �2
QCD=q

2. Corrections to this behavior arise as powers of t=r � k � q=q2 �
�QCD=

p
q2, corresponding to a series of local, higher–dimensional operators. These re-

sults follow from (14). The situation is analogous to the one for the high–q2 end of the

spectrum in the case of intermediate c�c, except that for the u�u case the operator product

expansion approach remains valid down to smaller q2 due to the absence of heavy reso-

nances.

We finally remark that the diagrams in Fig. 1 actually contribute in two distinct ways

to the decays B ! Xs

�. First, the gluon can be soft and couple to the light cloud in the

B meson. This is the effect we are mainly interested in here and which we shall calculate,

far from the resonance region, using (1). Second, the gluon, now not necessarily soft, may

be radiated from the charm–quark loop to end up in the final state Xs. These processes are

calculable in perturbation theory, it is infrared finite and contributes as part of the matrix

element calculation at NLO in B ! Xs
 [23,1]. For B ! Xse
+e� the situation is anal-

ogous, except that the diagrams of Fig. 1 would enter only beyond the next–to–leading

order (at ‘next–to–next–to–leading order’). The first of these processes is not contained

within the second one, which is entirely perturbative. Therefore in calculating the nonper-

turbative correction there is no double counting of contributions already taken into account

in the higher order perturbative result.

3 B ! Xs


In this section we re–derive the O(�2
QCD=m

2
b) correction to �(B ! Xs
) via the results

of the previous chapter in the limit of an on–shell photon.

By means of the optical theorem the total rate of a B meson decay can be expressed as the

expectation value

� =
1

2MB

hBjT jBi (15)
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of a forward transition operator T defined by

T = Im i

Z
d4x THeff(x)Heff (0) : (16)

Here Heff is the low energy effective Hamiltonian governing the decay under consid-

eration. The states jBi in (15) are to be taken in conventional relativistic normalization

(hBjBi = 2EV ).

Since we are analyzing a small correction to the full decay width, it is sufficient to work

to leading logarithmic accuracy and to neglect consistently all relative O(�s) effects. In

this approximation we may write

Heff = H(0)
eff +H(1)

eff ; (17)

where

H(0)
eff = �GFp

2
V �

tsVtb C7O7 + h:c: ; O7 =
e

8�2
mb�s�

��(1 + 
5)b F�� ; (18)

represents the well known leading–log effective Hamiltonian for b! s
 decay [24] (for a

review see [25]). C7 ' �0:30 is the scheme independent (‘effective’) Wilson coefficient,

whose analytic form can be found for instance in [25].

The correction H(1)
eff can be derived from the amplitude (1) in the limit where the photon

is put on–shell. In this case the vertex (1) is equivalent to a local operator. Performing the

usual matching procedure one obtains

H(1)
eff =

GFp
2
V �

csVcb C2 O11 + h:c: ; (19)

O11 =
eQc

48�2m2
c

�s
�(1 � 
5)gG��b "
��%�@�F%� : (20)

To leading order only H(0)
eff contributes to (15), (16). One finds the well–known result

(V �

csVcb ' �V �

tsVtb)

�(B ! Xs
) =
G2
Fm

5
b

192�3
(V �

csVcb)
2 6�

�
C2
7 : (21)

The interference between H(0)
eff and H(1)

eff leads to a correction of the transition operator

�T = �G
2
Fm

5
b

192�3
(V �

csVcb)
2 �

9�

C2 C7

m2
c

�bg� �Gb ; ��� � i

2
[
�; 
� ] : (22)

Using [8]
hBj�bg� �GbjBi

2MB

=
3

2
(M2

B� �M2
B); (23)

9



we finally obtain

��(B ! Xs
)

�(B ! Xs
)
= � C2

36C7

M2
B� �M2

B

m2
c

� +0:03 : (24)

This result suggests that the potentially problematic non–perturbative effects inB ! Xs


should indeed be negligible, re–enforcing the role of theB ! Xs
 process as a significant

test of the Standard Model.

We stress that the correction (24) has a definite sign, contrary to previous estimates of

nonperturbative c�c effects based on off–shell resonance exchange [11,12]. In this context

we note that for a positive matrix element (23) and negative C7, the consistent covariant

derivative, specifying the sign of strong and electromagnetic couplings and thus of (24),

is the one given in (5).

The non–perturbative correction in (24) may be compared with model calculations of the

long–distance effect. Assuming that the dominant contribution to (24) is generated by the

	 exchange, the above result can be used to fix sign and magnitude of the non–factorizable

bs	 coupling at q2 = 0 (g2 in the notation of [12]). The result thus obtained is consistent

with the lower values given in [12] (g2 � 10�2).

4 B ! Xse
+e�

In the present section we proceed to compute the non–perturbative correction to the rare

decay B ! Xse
+e�. The effective Hamiltonian for b! se+e� at next–to–leading order

has been reviewed in [25]. In the following we will make use of the results collected in this

article and adopt its notation. At next–to–leading order, the amplitude for B ! Xse
+e�

can be written as

A = �iGFp
2
�c

�

2�

"
2mbC7J

��
7

iq�

q2
�u
�v + ~Ceff

9 J�9 �u
�v + ~C10J
�
9 �u
�
5v

#
; (25)

where

J��7 = hXsj�s���(1 + 
5)bjBi (26)

J�9 = hXsj�s
�(1� 
5)bjBi (27)

and u, v denote the electron and positron spinor, respectively. C7 and ~C10 are Wilson coef-

ficients; ~Ceff
9 is not strictly speaking a Wilson coefficient, since it includes also contribu-

tions from the b! se+e� matrix elements of the operators Q1, ... Q6 in the Hamiltonian

[25]. However, the amplitude expressed in terms of ~Ceff
9 provides a convenient notation.

In particular, ~Ceff
9 already contains contributions from intermediate charm–quark states

entering the one–loop matrix elements (these are similar to the graphs in Fig. 1 but with-

out the gluon and a lepton line connected to the photon propagator).

10



In writing (25) we have used V �

tsVtb � �V �

csVcb = ��c. Note also that, to calculate

B ! Xse
+e� at NLO, only the leading logarithmic approximation is necessary for C7

(� C
(0)eff
7
 in the notation of [25]).

The non–perturbative correction we want to evaluate stems from the vertex function

in (1), which yields the following correction to the leading amplitude in (25)

Ac = �iGFp
2
�c

�

2�

C2Qc

3m2
c

F (r)

q2
JG;��%

h
"���%q�q

� � "���%q2
i
�u
�v (28)

with

JG;��% = hXsj�s
�(1� 
5)gG�%bjBi : (29)

Note that the term proportional to q� in (1) vanishes when multiplied by �u
�v due to cur-

rent conservation.

Adding A+Ac, squaring the amplitude, summing over inclusive states Xs and perform-

ing the necessary phase space integration, one may calculate the differential decay rate for

B ! Xse
+e�. Defining s = q2=m2

b and

R(s) =
d
ds
�(B ! Xse

+e�)

�(B ! Xce�)
; (30)

one has at NLO in QCD perturbation theory (z = mc=mb)

R(s) =
�2

4�2
(1 � s)2

f(z)�(z)

h
(1 + 2s)

�
j ~Ceff

9 j2 + j ~C10j2
�
+

4
�
1 +

2

s

�
jC7j2 + 12C7Re ~Ceff

9

i
: (31)

Here f(z) is the phase space factor and �(z) the QCD correction factor entering �(B !
Xce�); they can be found in [25].

For theO(�2
QCD=m

2
c) correction term, arising from the interference ofAc withA, we ob-

tain

�R(s) = � �2

4�2
C2

2(M2
B� �M2

B)

9m2
c

(1� s)2

f(z)�(z)

�Re

(
F (r)

"
C�

7

1 + 6s� s2

s
+ ~Ceff�

9 (2 + s)

#)
: (32)

For the evaluation of �R we have used the identity [26]

hBj�b�G��bjBi = 1

48
hBj�b� �GbjBi tr f�(1+ 6v)���(1+ 6v)g ; (33)

which is valid to leading order in the 1=mb expansion. Here v denotes the B meson four–

velocity and� an arbitrary string of 
–matrices. For handling the Dirac algebra throughout

our calculations we have used the program Tracer [27].
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Figure 2: The dilepton invariant mass spectrum of B ! Xse
+e� normalized to the

semileptonic width (30). The solid curve is the short–distance result (31) whereas the
dashed one includes theO(�2

QCD=m
2
c) corrections. The dotted curves indicate the position

of the 	 and 	0 resonances. A dash–dotted curve is shown at q2 = 3m2
c . The corrections

diverge at q2 = 4m2
c . In this plot we have used mc = 1:4 GeV and mb = 4:8 GeV.

The final result is displayed in Fig. 2, showing the corrected and uncorrected R(s).

The conditions for the validity of the corrections have already been discussed in section 2.

They are best satisfied for the high–q2 end of the spectrum, above the resonances, and for

very low q2 respectively. The reliability of the approximation used deteriorates somewhat

as q2 is increased from� 0 towards the resonance region. As an order of magnitude esti-

mate the calculation should still make sense around q2 � 3m2
c , indicated in Fig. 2 by the

dash–dotted curve. For larger q2 one gets too close to the lowest resonance and the heavy

quark expansion breaks down. Further up, at q2 = 4m2
c , the correction develops a (un-

physical) square root divergence (in our choice mc = 1:4 GeV). The difference between

M	 and 2mc is of O(�QCD) and corresponds to non–perturbative effects that are beyond

the control within our approximation.

As can be noticed, the O(�2
QCD=m

2
c) corrections are very small in the region where this

calculation should be trusted, viz. below 3m2
c and above the resonance peaks. Actually, in

the high q2 region the effect is further suppressed since F (r) decreases as 1=r for large

r, as discussed in section 2. For q2 � O(m2
b) the corrections behave in fact more as

12



O(�2
QCD=m

2
b) instead of O(�2

QCD=m
2
c). We also observe that for s below 0:1 the correc-

tions become vanishingly small due to a cancellation among the terms in (32) (C7 is neg-

ative, Re ~Ceff
9 positive). This is related to the fact that the correction �R(s) is negative

for s above 0:1, where ~Ceff
9 dominates, but positive for s close to zero, which essentially

corresponds to the case of B ! Xs
. In fact, one may obtain (24) as a special case of

�R=R from (31) and (32) in the limit q2 ! 0.

The sign of the effect for s around 0:2 is different from the one obtained by the approaches

based on resonance exchange [13,14,7]. This is not a problem since the sign of the correc-

tion determined in model calculations is not reliable far from the resonances. Moreover,

as discussed in the previous section, the corrections we are considering are essentially re-

lated to the non–factorizable contributions of charmed resonances. The latter are usually

considered in B ! Xs
, where the factorizable terms vanish, but are always neglected in

B ! Xse
+e�.

The factorizable resonance contributions can be identified, to the lowest order in �s, with

diagrams as those in Fig. 1 but without gluons. The effect of such diagrams is positive

but is already included in the NLO calculation as the matrix element contribution to ~Ceff
9 .

As pointed out in [28] within the context of exclusive decays, adding the factorizable res-

onance effects to the NLO calculation leads to a double counting problem related to the

simultaneous use of quark and hadronic (c�c resonances) degrees of freedom. On the other

hand, this is not the case for the �2
QCD=m

2
c effect we have evaluated, where we have con-

sistently used a pure quark level description. Of course, some model–dependent treatment

may still be useful close to the 	–resonance (an interesting approach has been presented

in [29]). If one should attempt this, theO(�2
QCD=m

2
c) effect could be used to fix the small

q2 limit.

Another interesting quantity that can be measured in B ! Xse
+e� decays is the

forward–backward charge asymmetry [13]. Normalizing�(B ! Xse
+e�) to the semilep-

tonic width, as in (30), we define

A(s) =
1

�(B ! Xce�)

Z 1

�1
d cos �

d2�(B ! Xse
+e�)

ds d cos �
sgn(cos �) ; (34)

where � is the angle between the e+ andB momenta in the dilepton center–of–mass frame.

Proceeding similarly to the case of R(s), the NLO perturbative result turns out to be

A(s) = �3�2

4�2
(1� s)2

f(z)�(z)
Re
n
~C�

10

h
2 C7 + s ~Ceff

9

io
; (35)

whereas the O(�2
QCD=m

2
c) correction term, arising from the interference of Ac and A, is
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Figure 3: The differential forward–backward asymmetry defined in (34) as a function of
the dilepton invariant mass. Notations are as in Fig. 2.

given by

�A(s) =
3�2

4�2
C2

M2
B� �M2

B

36m2
c

(1 � s)2

f(z)�(z)
Re
n
~C�

10F (r)
o
(1 + 3s) : (36)

The corrected and uncorrected results for A(s) are shown in Fig. 3. Concerning range of

validity and size of the corrections similar comments apply toA(s) as to the spectrumR(s)

discussed above. In addition we note that the small corrections to A(s) and R(s) have a

tendency to further cancel in the normalized asymmetry A(s)=R(s), a useful observable

for direct comparison with experiment.

5 B ! Xs���

InB ! Xs��� there are no contributions from virtual photons. Consequently the pattern of

GIM cancellation is not logarithmic (‘soft’), as in B ! Xse
+e�, but powerlike (‘hard’)

due to the exchange of heavy gauge bosons. Therefore it is clear that long–distance ef-

fects in B ! Xs��� from charm quarks are additionally suppressed by a factor of order

m2
c=M

2
W . In principle, however, in this case also long–distance contributions related to the

c�c intermediate state do exist. The largest of these is associated with the cascade process
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B ! Xs	 ! Xs���. In the following we shall try to estimate this effect to show more

quantitatively to which extent the short–distance contribution dominates in B ! Xs��� .

Using the relation h0j�c
�cj	i = m	f	�
� and the coupling of the �c
�c current with the

electroweak fields

L = �e�c
�c
�
2

3
A� +

1

4 sin �w cos �w

�
1 � 8

3
sin2 �w

�
Z�

�
; (37)

we obtain

R� =
jA(	! ���)j
jA(	! e+e�)j =

�
M	

MZ

�2 3 � 8 sin2 �w

16
p
2 cos2 �w sin

2 �w
' 3:3 � 10�4 : (38)

Then, using the theoretical result Bs:d:(B ! Xs���) = (4:0 � 1:0) � 10�5 [5] and the

experimental values of B(B! Xs	) and B(	! e+e�) [30], we find

B(B ! Xs	(���))

Bs:d:(B ! Xs���)
= 3R2

�

B(B ! Xs	)B(	! e+e�)

Bs:d:(B ! Xs���)
' 5 � 10�6 : (39)

Unfortunately we cannot reliably estimate the interference terms between short– and long–

distance contributions, since we have no useful information about the strong phases in

B ! Xs	. However, the result (39) indicates that the long–distance corrections to the am-

plitude are at the level of 10�3 at most. This is by far enough to conclude that B ! Xs���

is an extraordinarily clean channel [5] and, therefore, a very interesting probe of the Stan-

dard Model and its extensions [9].

6 Summary

In this paper we have calculated long–distance corrections ofO(�2
QCD=m

2
c) to the dilepton

invariant mass (q2) spectrum and to the forward–backward asymmetry in B ! Xse
+e�.

For low q2=m2
b �< 0:1 these corrections can be expected to give a fairly accurate descrip-

tion of long–distance effects due to intermediate (far off–shell) c�c pairs. Contributions

from higher–dimensional operators, formally suppressed by powers of mb�QCD=m
2
c rel-

ative to the �2
QCD=m

2
c effect, involve unknown hadronic matrix elements and have been

neglected. Despite the fact that mb�QCD=m
2
c � 0:6, this is justified for small q2 due to

small numerical coefficients accompanying these additional contributions. They could be

more important for larger q2. Close to the resonance region q2=m2
b � 4m2

c=m
2
b � 0:34

the assumptions on which the calculation is based clearly break down. On the other hand,

simple order–of–magnitude estimates suggest that even for q2=m2
b � 0:26 the calculable

leading O(�2
QCD=m

2
c) effect should give a reasonable account of the approximate size of
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the corrections within, say, a factor of two. Above the resonance region q2=m2
b �> 0:7

the calculated effect is again reliable. In spite of the various uncertainties we believe that

the 1=mc expansion approach is still preferable to model dependent estimates relying on

off–shell c�c resonances.

Numerically the corrections we find are small (at the one to two percent level) in the

phenomenologically interesting region of q2 away from the resonances. For comparison

one may recall that uncertainties from QCD perturbation theory are at the level of �6% at

next–to–leading order. This indicates that long–distance corrections related to intermedi-

ate c�c should not be a serious problem in the analysis of B ! Xse
+e� decay, unless the

neglected effects of higher order in �2
QCD=m

2
c or mb�QCD=m

2
c turned out to be substan-

tially larger than anticipated.

We have pointed out that the O(�2
QCD=m

2
c) effect is calculable in both magnitude

and sign, which is to be contrasted with the situation in hadronic model calculations. The

O(�2
QCD=m

2
c) correction to B(B ! Xs
), considered in previous work, can be obtained

as a special application of our analysis and is found to be � +3%.

The decays B ! Xs
 and B ! Xse
+e� may be contrasted with the mode B !

Xs��� , where the corresponding nonperturbative effects due to intermediate c�c are still

much stronger suppressed, down to a level of � 10�3 in the amplitude.

Long–distance effects are in general a notoriously difficult problem. However, they

have to be controlled sufficiently well to address fundamental questions in flavor physics.

The existence of a realistic limit in which such effects can in fact be computed from first

principles is therefore of considerable theoretical interest in its own right, as well as of

interest for phenomenology. It is particularly gratifying that for the important processes

B ! Xs
 andB ! Xse
+e� a calculation of this type is possible and a class of potentially

large long–distance corrections is indeed found to be rather small and well under control.

Note added: After this paper was finished, we have received a preprint [31] in which

the O(�2
QCD=m

2
c) correction to the differential decay rate of b! se+e� has been calcu-

lated. We disagree with their result in sign.
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