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Abstract

We proposeasimplemethod for constructing representationsof (super)conformal and non-
linear W -typeagebrasin termsof their subalgebras and corresponding Nambu-Gol dstone
fields. Weapply itto V. = 2 and N = 1 superconformal algebras and describein thisway
various embeddings of strings and superstrings for which these algebras and their sub-
algebras define world-sheet symmetries. Besides reproducing the known examples, we
present some new ones, in particular an embedding of the bosonic string with additional
U(1) affine symmetry into N = 2 superstring. We also apply our method to the nonlin-
ear W§2) algebra and demonstrate that the linearization procedure worked out for it some

time ago gets anatural interpretation as akind of string embedding. All these embeddings
include the critical ones as particular cases.
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1 Introduction

For the last years, the study of various embeddings of strings and superstrings received
much attention [1]-[7]. This activity was initiated by the paper of Berkovits and Vafa[1]
who showed that ordinary bosonic strings can be regarded as a special class of vacua of
N = 1 superstrings. Later it was found that thisis ageneral phenomenon: a(super)string
with NV extended world-sheet supersymmetry can be embedded into a superstring with
N + 1 extended supersymmetry as a particular vacuum state of the latter. Analogous em-
beddings were constructed for strings associated with nonlinear W type algebrasand their
linearizing algebras[8]-[11]. It was suggested that all the known strings and superstrings
present different vacua of some hypothetical universal string theory.

An essential step towardsclarifying the group-theoretical grounds of the embedding
procedure was madeinrefs. [12,13]. On the example of the bosonic string embedded into
the N = 1 superstring Kunitomo [12] showed that the larger symmetry (N = 1 supercon-
formal) isrealized with the help of Nambu-Goldstonefields, typical for the spontaneously
broken supersymmetry. The vacuum stability subgroupistheVirasoro one, just theworld-
sheet symmetry of the bosonic string. The same results have been obtained by McArthur
[13] in the framework of the standard theory of nonlinear realizations [14,15] applied to
the N = 1 superconformal algebra (SCA). These observations support a nice interpre-
tation of the string embeddings as one more manifestation of the universal phenomenon
of spontaneous symmetry breakdown, this time of the infinite-dimensional world-sheet
(super)symmetry of strings [1]. From this point of view, any embedding of the lower-
symmetry string into thelarger-symmetry one amountsto the choiceof specia background
(and hence the vacuum) for the latter, such that it is given by the Nambu-Goldstone fields
realizing the spontaneous breaking of the larger symmetry down to the lower symmetry.
The currents generating the larger symmetry are expressed in terms of those of the lower
symmetry and the Nambu-Goldstonefields. A power of the nonlinear realizations method
manifestsitsalf in that these expressions can be obtained in an algorithmic way, knowing
only the structure relations of the given superconformal algebra. 1n accord with the gen-
eral concepts of this method, al the basic characteristics of such specific representation
of the larger symmetry (central charges, etc.) should be fully determined by the structure
of representations of the vacuum stability symmetry. In thisway, the string theory associ-
ated with the lower symmetry comes out as a spontaneously broken phase of the higher-
symmetry string theory.

In this paper we present smple and universal techniques of calculations for nonlin-
ear redizations of infinite dimensional algebraswritten in terms of OPES (SOPES) for one
dimensional currents (supercurrents). The application of this techniquesto N = 1, 2



superconformal algebras after taking into account quantum corrections leads to the corre-
sponding formulas for the string embeddings.

Besides reproducing theknown N = 1 — N = 2 embeddingintermsof N = 1
superfields [ 7], we get new self-cons stent embeddings by choosing different subalgebras
of N = 2 SCA asthe vacuum stability symmetries. In particular, we describe embedding
of the string associated with the product of Virasoro and U (1) Kac-Moody algebrasinto
N = 2 superstring. This extension of the bosonic string was recently discussed [16,17] in
connection with F'-theory [18]. Asaby-product, we also reproducethe N =0 — N =1
embeddings within our techniques, discuss how they arerelated tothe V = 2 embeddings
constructed and make comparison with the results of refs. [12,13].

We argue that the linearization procedure for some W algebras worked out some
time ago [20] can also be interpreted in the embedding language, namely as an embed-
ding of the string associated with some linear subalgebra of the given nonlinear W (su-
per)algebrainto the string associated with this W (super)agebraitself. The appropriately
modified nonlinear realizations techniques proveto work in this case too. We consider the
simple example of the quasi-conformal algebra W§2) , but the same is apparently true for
awider class of W algebras.

In Sect. 2 we give ageneral characterization of our method. In Sect. 3 we apply it
to N = 2 SCA and describe embeddings of strings associated with various subal gebras of
N =2 SCA intothe N = 2 superstring. Sect. 4 is devoted to applications of our method
to nonlinear algebras on the example of the Wf) algebra

2 Method of nonlinear realizations

Asasdtarting point, let us briefly describe the theory of nonlinear realizations [14,15] with
some refinement related to the case of infinite-dimensional symmetries. Thistheory isa
set of recipes of how to realize the given group G on the parameters of itscoset G/ H, H
being some subgroup of G'.

After choosing the subgroup H, one represents an arbitrary group element in the
exponential parametrization in the following form

G=KH = ¢ere. (2.1)

Hereh = £°h, and k = ¢'k; belong, respectively, to the algebraof A and to its comple-
ment to the full algebraof G, h, and k; being the appropriate generators. An infinitesmal
group element g = 1 + ¢, with e = ¢'k; + ¢*h,,, has the following action on &

(1+ e)ek = ek+5k(1 + 6h) , (2.2)



whence
e Feek = e7Fgef + 6h . (2.3
Both theleft- and right-hand sides of this equation can be writtenintermsof multiple com-

mutators

— NSk + 6h. (2.4)

Thisisthe basic equation for determining & and 6. The definition of the symbol A isas
follows. For the given function f(k) = fo + fik + fok* + ... it reads:

f(E)Ne=e+ filk, €]+ f2lklk, €]+ ... (2.5

For the coefficients of generatorsin 6k = d¢'k;, 5h = 66%h, eq. (2.4) impliesthefollow-
ing general expressions

e FANe=

§¢' = F 4 F
5 = R4 R (2.6)

Here all /"'s are some functions of ¢*. They are uniquely specified by the structure rela-
tions of the (¢ algebra. Further, one considers a space of functions ®(¢') on which some
representation of the subalgebra i isredlized (it isreducible in genera). In what follows
wewill call it the matter’ representation and denote its generatorsby ~(™). Then the gen-
erators of the whole agebra can be realized on this space as [13]:

0

_ ! by (m)

H, = _Faw + Ry,
. ;0 by (m)

To prevent a possible confusion, we point out that the original generators (those appear-
inginegs. (2.1) - (2.6)) are aways assumed to be abstract and commuting with all coset
parameters, it is the algebra of their commutators which really enters the game. On the
contrary, the generators (2.7) give a particular realization of the group ¢ on the space of
these parameters and functions of them.

In the case of infinite-dimensional algebras, such as the superconformal ones, it is
more convenient to deal with currents or supercurrentslike 7'(Z) = T'(z,6*), and with
OPEsor SOPEsinstead of thecommutationrelations. A finitenumber of such (super)currents
collectsall the infinite set of generators of the given (super)algebra. These generators ap-
pear as coefficientsin the § and = expansions of supercurrents (asusual, Laurent seriesis
assumed for the = expansion). An element of the algebra associated with the given current
is expressed as an integral over the superspace with some parameter depending on z, 6*:

1
T=5 ?{ dZS(2)T(Z) . (2.8)
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The coset parameters ¢™ come out now asthe coefficientsin theexpansion of ¢( 7 ) over 7.
Asbefore, it is assumed that the original abstract currents (supercurrents) have vanishing
OPEs (SOPES) with all ¢(z).

After computing group variations of these parameters-functions, the representations
similar to (2.7) arise. An essentially new point compared to the customary nonlinear real-
izationsformalismisthe necessity tointroduce new (super)currentsp( ) which substitute
the derivatives 8%. These new currents are canonically conjugated to ¢(Z). This means
that the following OPE '

Pi(2)" (w) ~ 8 —— . (29)
or its obvious supersymmetric counterpart are valid. The resulting specific representation
for the currents of the algebrareads

HA(Z) = —F'p(Z)+ Fh"(7)
Ki(Z) = =F'pa(2)+ 0™ (2) . (2.10)

All F’sarenow functionsof ¢'(Z) and their derivatives. Theindicesa, b label the currents
generating some infinite- dimensional subalgebra of the given agebra (the stability sub-
algebra) while the indices i, &, [ refer to the remainder of currents (the coset ones). The
‘matter’ currents hém) still have vanishing OPES with the coset parameters ¢, and con-
jugated momenta p;. At the same time, OPEs between hém) form a representation of the
stability subalgebra. The action of (2.10) on the relevant functionals of ¢(~7) (analogs of
®(4")) is defined through setting OPES between these objects. The transformation prop-
erties of these functionals with respect to the whole (super)agebra are fully determined
by their transformation properties with respect to the stability subalgebra, i.e. by fixing
their OPEs with the ‘matter’ (super)currents hém) (these functionals are a sort of primary
(super)fileds of the stability subalgebra).

We emphasize that al theinfinite-dimensional nature of the algebraand the stability
subalgebrais hidden in the integrals like (2.8), while the explicitly appearing indices run
over finite ranges likein the case of finite-dimensional symmetries.

One essential remark at this stage is of need. The currents (2.10) realize OPEs of
theinitial algebraonly if we consider them as classical ones, i.e. when we keep in OPES
only single contraction. Thisis equivalent to using the Poisson brackets and implies that
the subalgebras generated by A{™)(Z) and H,(7) are identical. In particular, they have
the same central charges. Trangition to the exact quantum OPEs by keeping all contrac-
tions radically changes the situation. OPEs will not close unless some terms (quantum
corrections) are added to the classical expressions for the currents. It can be shown that
these addings do not include p;’s. Inthis case central chargesin the subalgebras generated



by ~(™) and H, become different and the above formalism gets suitable for description of
embeddings of (super)strings along the lines of refs. [1]-[11].

This method, as it was described above, suits very well the case of linear algebras.
Some additional problems arise when the W type nonlinear algebras are regarded. Nev-
ertheless, it seems to be still applicable at least when some linear subalgebra of given W
algebraischosen asthe vacuum stability subalgebra. In Sec. 4 we demonstrate thisonthe
example of W algebra

3 Nonlinear realizationsof N = 2 SCA

3.1 Structurerédations

We start with some definitions. OPEsfor N = 2 SCA interms of real currentsare given
by
c/?2 2T (w) N T'(w)

4 2

Jw) T
c/3 T(w)

(z —w) Z—w (z —w) +
Gi(2)Ga(w) ~ (ZJ_(UZ)Q + Uji (UI)U) s J(z2)(w) ~ TGowe
_ GQ(w) 7 J(Z)GQ(U)) N Gl(w)

(z —w) (z —w)’

c-w) ' (z—w)

3/2GH 2(w) N G o(w)

2

(3.1)

Notethat the supercurrents{7', G, } and {T', G5} formtwo different N = 1 SCAs embed-
ded as subalgebrasinto the N = 2 SCA.

Intermsof N = 1 supercurrents7'(Z) = —=G1(2) +0T(z) and G(Z) = —i(J(2) +
0\/2G4(2)) these OPEs are concisely presented by the following SOPES

T(Z)T(Zy) ~ c/_6 4 3/2012T(25) i 1/2DT(Zy) + 0121 (Z5)

Z?? Z122 Z12 ’
0,.G(Z 1/2DG(Z;y) + 012G (Z

T(Z)G(%) ~ 1225 2) . L2 2; LECZIN

12 12
3 200,T(Z

G2)G(7) ~ L2y 2l B) (32)

21y Z13
where 5 o7
012 = 01 — 02, Z12 =Z1— 22 — 0102, D= % + (98, T/ = E (33)

In therest of this Section we apply the general method described in Sect. 2 in order
to construct nonlinear redlizations of N = 2 SCA with its different subalgebras as the
vacuum stability subalgebra H. For different choices of H the coset is parametrized by



different sets of fields, which gives rise to non-equivalent realizations of N = 2 SCA.
The quantum versions of the latter are easy to construct, and they give the formulas for
the corresponding embeddings. We also show that the nonlinear realizationsof N = 1
SCA and the associated N = 0 — N = 1 embeddings follow from the N' = 2 ones upon
appropriate reductions.

32 Stability subalgebra H = {T(2)} = {T(z), G1(2)}

We first choose H to be generated by currents 7'(z), GG1(z), or, inthe N = 1 superfield
notation, by the spin 3/2 fermionic supercurrent 7'( 7). Thisisjust N = 1 SCA.
The general element of the coset is parametrized as

K = e § 420(2)6(2) (3.4)

Y

where we have introduced a Nambu-Goldstonefermionic N' = 1 superfield ¢(Z) with the
“spin” —1/2. Aninfinitesimal element of the N' = 2 superconformal group

1
g=1+ %?{dZ{a(Z)G(Z) L a(Z)T(2)}, (35)
actson K according to the following relation (cf. (2.2))

ge 27rz jg (b = e2m §dZ +5¢ )) (Z)ﬁ (36)

Under thisleft shift the parameter of the coset space ¢(7) changesto ¢(Z) + é¢(~Z). The
induced subgroup element 1 is represented by

H=1+ ﬁ ?{ dZ{b(Z2)T(Z) + e(2))). 3.7)

Thequantitiesdo(Z), b(Z) and ¢(Z) areto be expressed in termsof the Nambu-Gol dstone
superfield ¢(Z) and the group parametersa(7) and o( 7).

While applying the techniques described inthe previous Section, onefrequently needs
to compute (anti)commutators of the operatorslike ;= § dZ¢(Z)G(Z). Thiscan be done
with the help of the following formula:

[ ?{lea (Z0)A(Z0), ?{dzz (7)B(Z,)| =

- (%) ?{de?{Clea(Zl)b(Zz)A(Zl)B(Zz) . 38)

The contour of integration C' surrounds z; and A(Z,) B(Z,) in theright-hand side of (3.8)
standsfor SOPE of the supercurrents A(Z; ) and B(Z,). Additional multiplier o isthesign
which depends on the Grassmann parity of A(Z) and B(Z): o = (—1)sAWe(B)+1),



Taking thisinto account and doing the computations along the line of Sec. 2, wefind
the following expressions for ¢ (Z), b(Z) and ¢(Z)

O, = %a’qb —ad — %Dcﬂ?qﬁ ,

Sut = a{qucotthb—l— i (1—2D¢Cothp¢+ (Do) )}

(Do)? sinh? Do
Dag
b(Z) = a+ a;—fb tanh (%) \

0 = i o () e () o

These expressions |lead to the following form of the generators:

T = g son + DD AT,
0+ éif); (1 — D coth D) 1y — D% (1 — D coth D) Dy
oo (55 - o) (po- 2 (5))}
b 20 tanh (%ﬁ) T, . (3.10)
where the newly introduced spin 1 bosonic superfield 1 is canonically conjugated to
WZ)o(2) ~ 22 (31)

212

Thus we have obtained the realization of the N = 2 SCA in terms of the conjugated pair
of N = 1 Nambu-Goldstone superfields ¢, n and N = 1 SCA supercurrent 7,,,( 7 )

Zf)2 Z122 Z12 ’
To(Z0)d(Z2) ~ 0, Tn(Z1)n(Z2) ~ 0.

To(Z20)T(Z2)

At the considered classical level the central charge of N = 2 SCA in such aredlization
can be checked to coincide with the central chargeof NV = 1 SCA

CN=2 = Cyp .

Aswas already mentioned in Introduction, the main motive for working out this ap-
proach to nonlinear realizations of (super)conformal (and W) algebras was the desire to



gain asystematic method for deriving therelationswhich describe different embeddi ngs of
strings. According to thereasoning of refs. [12,13], the linearly realized subgroup always
corresponds to the embedded string and defines the world-sheet symmetry of the latter.
Thus in the present case we should get an embedding of N = 1 superstringinto N = 2
superstring. Thisembedding intermsof N = 1 superfieldswasfirstly given by Berkovits
and Ohta [ 7] by means of guesswork. Now we show that their formulas naturally follow
from the above ones obtai ned within asystematic procedure, with taking account of quan-
tum corrections.

To make a comparison with the Berkovits-Ohta paper [ 7], we perform the canonical
transformation from the superfields ¢, n to the superfields C', B

¢ = 22
B = %(1 + cosh D)y + % (2 — D¢ coth (%)) bd'n
+% (m coth (%(ﬁ) — cosh D¢ — 1) Dy . (3.12)
The generatorsof N = 2 SCA in terms of these new superfields take the form:
T = —C'B-— %CB’ + %DCDB + T, ,
G = B- i(DC)QB + %BC’C + %DCCDB +CT,,

6

Cm ( A’ 20C'"DC(DCH? coc'po ) (313)

4 —(DC)? (4 — (DC)?)? 4 —(DCY? )’ '
and almost coincide with those of [7]. The only differenceis the presence of some addi-
tional B-independent termsin therealization of ref. [7]. The origin of thisdifferencelies
inthefollowing. SOPEsfor the supercurrents(3.13) are closed ontheclassical level, when
only one contraction istaken into account. Besides, the values of the central chargefor 7,
and 7" on the classical level are the same. The extratermsfound in ref. [7] can be easily
restored in our formulation by demanding the closure of the quantum SOPES, when all

contractions are taken into account. The final expressions for the quantum supercurrents

are[7]:

cpo’ '
q _
= T+(4—<D0>2)’
CC'DC!
¢ = = 14
G G+4—(D(J)2 (3.14)



Aswas stated in [ 7], these expressions describe both the cases of critical and non-critical
embeddings. Itisamatter of direct computation to see that the central charge cy—» inthis
guantum realization is related to the central charge ¢, inherent to 7,,, as

CN=2 = Cm — 9. (3.15)

The critical valueof ¢, = 15 yieldsjust the critical value ¢, = 6 for the central charge
of N =2 SCA.

3.3 Stability subalgebra H = {T'(z)}

In our second example we take as the linearly realized subalgebra the Virasoro subalge-
bra. So it should give, after passing to the quantum case, the description of embedding
of bosonic string into the N = 2 superstring. As distinct from the previous example, all
supersymmetries are nonlinearly realized in the case under consideration. As aresult, no
superfield formalism exists, and one should deal with the component currents rather than
supercurrents.

We are led to introduce three Nambu-Gol dstone fields associated with the currents

1 1
V2 V2

We can parametrize the coset in two different ways, each leading to different representa-

tions of the algebrain terms of 7., (=), Nambu-Goldstone fields £( =), £(=), ¢(z) and their
conjugated momentar(z), n(z), (=) with the following OPEs:

@(Z) (Gi(z) —iGs(2)) , G(2) = (G1(z) 411Gy (2)) and j (z) = —iJ(2).

L m)ew) ~ —— | p(=)d(w) ~ —

’
Z— W Z—w Z—w

(3.16)

n(z)€(w) ~

So far astheclassical caseis concerned, these different parametrizations are obviously re-
lated by an equivalence transformation (it can still be rather complicated), but in the quan-
tum case they can yield non-equivalent realizations. Thisis the reason why we quote the
latter for both parametrizations.

Let usfirst consider the ‘ symmetric’ parametrization

K = oi § EEGEH AT ()} 2k § deb(2)T(5) (3.17)
A straightforward computation leads to the following expressions for the supercurrents:
3 3 1 1-
T — Tm T El= e ~ et - ! /
8 F S8+ 580+ S0 +
~ _ Cm
Jo= =&t - sd
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2 1. 1_, 1 . 2
G = —z+§§f77+§§f77‘1|‘§§§77 —1§§§§§2+§§§77 1
(€ DT+ 126 + S €EE + ST E 4+ 260 + 6T
HE+ SEEEOW} + SHE" + o (EEE + €T+ B+ 26T
1 1 Ef ¢n / 1_// 1_’// 1 1_///
+57ECEEE" + (€ + L + €08 + S(E+ 36680
o2 A el 2,
—n+§§§n+§§§n+§§§n —§§§§§n+§§§n
1 - 11— 1o 1o 20— =, 1—
+5(E+ TEOT, — J{(2F + EE + SET - 286/ - T ed )
- 1— — Cm, 5l 1 — = = = = = —
HE+ EEWY + T + (28T + T+ 8T + 2T )
1 -/ /—// —! 1 — =1 1— /—/ 7 1 ey 1— — "
4o TT — (€ + EE + SET) - 5+ 58D}, (319)

Ql
I

In the case of the * non-symmetric’ parametrization,
K = 6# jg dzE(z)G(z)e;? jg dzf(z)@(z)eﬁ jg dz¢(z)3(z) 7 (319)

the expressions for the currents of the algebra are much simpler:

T = T+ gﬁ’ﬁ + gf’n + %ﬁﬁ’ + %@7’ +
J = —M—§n+§ﬁ—%¢’,
G = -,
G = —+2En+En+87 + &
+ET, —Ep— %Eu’ + &+ j—;(zf” —28'¢' —E¢") . (320)

Once again, OPEs for the currents (3.18) and (3.20) are closed only on the classical
level and with the same values of the central charge for 7),, and 7. The corresponding
guantum expressions are

T o= T (€€ 4T T+ D) + TR

~ (T + CTE T + BT,
g — 7 gl_g_’/_l_”_//_
P et og@een, .
Gfo= G- gf" - gff’f + ﬂff"f - 55’55" + @55"'5 + 053¢ eee”
13 i 13 iy 13 Yy 13 !¢t 13 1"
H QP08 + ST+ 8L — = — 57,

11



T = G- - e LT - T T+ R
DT ST - DT DT+ T (321)
for the symmetric case and
T = T, jqzj+§¢’,
G = G, G =G ?E” + 13_3¢,E, + 16—3¢”E (3.22)

for the non-symmetric one. Expressions (3.18), (3.21) and (3.20), (3.22) describetwo pos-
sible embeddings of bosonic string into N' = 2 string. To our knowledge, they were not
given beforein literature. In both cases one readily checks the following relation between
the central charges cy—, and ¢,

CN=2 = ¢, — 20 . (3.23)

Once again, the critical value of the Virasoro central charge ¢,, = 26 yields the critical
valuecy—, = 6 forthecentral chargeof N = 2 SCA (it correspondsto the bosonic critical
dimension dy—, = 4).

For compl eteness and for the sake of comparison with other options given below, let
us remind the well-known form of BRST operator for the Virasoro algebra H = {772 }

1 1
Q=5 ?{ dz o1 + 5T,n) (3.24)

with
Tyn = cb' + 20 (3.25)
Condition for the nilpotency of the BRST operator (3.24) isjust ¢,, = 26.

Note that the constructed embedding of N = 0 string into the N = 2 superstring
simultaneously defines achain of embeddings N =0 - N =1and N =1 - N = 2,
Asisclear fromtherelation (3.23), both these intermediate embeddings do not include the
corresponding critical ones as particular cases, in contrast to theresulting N =0 — N =
2 embedding.

Besides two cases aready considered, there exist three other subalgebras of N = 2
SCA which include Virasoro stress tensor 7" :

H =A{T,J}, Hy,={T1.G}, Hs;={T.G, J}. (3.26)

They al can be equally chosen asthelinearly realized subalgebras. The corresponding ex-
pressions for the currents, both on the classical and quantum level, aswell astherelations

12



between central charges, are presented in the next Subsections. In all cases we observe a
remarkable matching between the critical central chargesof N = 2 SCA and itslinearly
realized subalgebras. So, onceagain, these casesadmit aniceinterpretation asembeddings
of some stringsinto the N = 2 superstring.

3.4 Stability subalgebra H = {7,,, J,,}

This case corresponds to the embedding of the bosonic string with additional local U(1)
symmetry into the N = 2 superstring.
A coset element reads

g= e § d=E(2)G(z) e § dz£(2)G(2) ‘ (3.27)
The currents are given by the following expressions

3., 1= 3 1
T — e - ! Tl ~ et Tm
2577+2§77+2§77+2577+ ;

J = &+t .,

G = -,

— = =t . i Fe—y | E =t 1— Con =1t

G = —N+&En+Em+28Em+EEy +§Tm+§Jm+§§Jm+F§ . (3.28)

In order to derive quantum version we haveto redefinethe central chargeinthe OPEs
of the subalgebra # = {72, J4}
enf2 20 (w) | T8(w)

()T (w) ~

(z—w)t (2 —w)? z—w
T (Z)jq (w) jfn(w) i jfn'(w)
m m (z —w)? z—w
S (e —28)/3
q g N Il 2
M) ~ S (329)
The quantum correction arises only for the current G-
G =G- %E (3.30)
Now one can check that the currents
3 1- 3 1
Tq — _ - / Tl ~ el Tq
N 2&in+2§77452577+2577+ )
JU = bty
Gq = -1,
— - = = ey = = 5 1— ’
G = T+ E + 2T+ € + T+ E) + 580+
' — 22—y
+ £ —¢ (331)

13



form closed quantum N = 2 SCA (3.1) with
CN=y = Cp — 22. (3.32)

To find the critical dimension for the bosonic string with additional /(1) symmetry,
let us construct the BRST operator for the algebra (3.29). It can be written in the form

1 1 ~
Q = 5 f = T8+ STo) +al T +

27

Jon)l; (3.33)

[N

where

Ty =cb' +2db+d's, Jy, =cs' + s, (3.39)

and the ghosts-anti-ghost pairs (¢, b), («, s) correspond to the {7'¢, .J2 } currents. Condi-
tion for the nilpotency of the BRST operator (3.33) isc¢,, = 28 which gives the correct
value for the critical central charge of N = 2 superstring cy—2 = 6.

It is interesting to note that the extended bosonic algebra H = {77,,, J,,,} with the
critical ¢, = 28 naturally comes out asthe algebraof constraints of the interacting system
of string and masdless particle moving in the space with two timelike dimensions [16]. 1t
was also discussed in [17] in the context of ‘universal string theory’ and F'-theory [18].
The embedding of the string associated with H into the N = 1 superstring possessing
some extrasymmetry (N = 1 extension of I/(1) symmetry) was constructed. The above
relationsyield an aternative critical embedding of the same bosonic string, this timeinto
the N = 2 superstring.

3,5 Stability subalgebra i = {7,,,G,,}

This case describes the embedding of some string which has, besides the Virasoro sym-
metry, an additional local supersymmetry generated by the Grassmann-odd current &,,,.
The coset element is

g = em $AECIGE) oo fd=0()T () (3.35)

The expressions for currents read

3., 1-
T = §£’n+§£n’+¢’u+Tm,
—_ cm
Jo= mn=&n— o

G = /e

= B+ B0~ Ep B 4 T+ T+ TR0E - 26 - E) (330
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The corresponding quantum expressions are as follows:

Tq
Jq
Gq

Gq

— T—qb”
= J+2¢,
= G7

_ 6_ 3—//

SRR

The currents (3.37) form quantum N = 2 SCA with

CN=9 = ¢, — 9.

BRST operator for the subalgebra H = {72, G? 1,

q q
THETHw) ~ R T
— 3/2GY (w) G '(w)
q q m m
T (w) ~ S T
has the following form
1 ;1 ., 1=
Q=g ¢ dz[e(T5 + 5Ton) + (G + 5G]
with
/ / 1 ! 3 /
Ty, = cb +206—§a[3—§a[3,
_ 3 .
Gy = [Fle+ 5[30 .

Cm /2 215, (w) | T3 (w)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

Condition for the nilpotency of the BRST operator (3.40) isc¢,, = 15, which again
gives rise through (3.38) to the critical central charge of the NV = 2 superstring, cy—2 =
6. A natural 2D field theory redlization of the fermionic string associated with H of the
present exampleison 10 bosonic and 10 fermionicfields, thusimplyingthebosonic critical

dimensiond,, = 10.

3.6 Stability subalgebra H = {71,.,,G,., J,.}

This case corresponds to an embedding of some string with Grassmann-odd current G,
and additional local U/ (1) symmetry intothe N = 2 superstring. The embedded stringisa
‘hybrid’ of the strings associated with the stability subalgebras of two previous examples.
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The OPEs of the stability subalgebraread

Cm /2 2T (w) T! (w) ~ jm(w) jT’n(w)
(z —w)* (Z—w)2+z—w (Z—w)2+z—w
3/2G . (w) G (w) -
(z —w)? +Z—w (z —w)’

Cm /3
(z —w)?’

The relevant coset element is defined by

L (2)Tn(w)

T(2)Gn(w) ~

in(2)J(w)

g = ez § ARG (3.43)

The currents are given by the expressions

~
I

3., 1,
_ _ Tm7
2§n+2§77+

-,
_ - P -
G = 55’n+§Tm+§’Jm+§§Jm+Gm+%

D
I

=

£ . (3.44)

After redefining OPEs in the subalgebra (3.42) asfollows

1)~ 2y 2l T,

(z—w)t (2 —w)? Z—w

I3y ~ ——2 A T w)

(z—w)®  (z—w)? Z—w

TG 0) ~ )y B g ey ) - 22
Ji ()0 () ~ e (3.45)

(2 —w)?

we obtain the quantum correction again only for G
G, = G- Ff . (3.46)
One can check that the currents

3 1-
T = = &4 Tt
N 560+ g577 + 15,
JT = —577 + an ’
G o= -,

_ ., — - 1., — _
G = S+ T+ T+ S8+ T+ Tt (347)
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gpan aquantum N = 2 SCA with
CN=g = Cm — 11 . (3.48)

The BRST operator for the subalgebra (3.45) is

~ _ 1—
Jo) + (@ + 5G], (349)

[N

1 1 .
Q:%%dZ[C(T%+§ gh) +a(Jf +

where
/ / ! 1 ! 3/
Ty, = cb —|—206+a3—§oz[3—§ozﬁ,
Jgp = ¢es'+ds—aff,

G = B+ gﬁc' — Ba (3.50)

and the ghost-anti-ghost pairs (¢, b), (a, s), (a, 3) correspond to the {72, J2 . G
rents.

The nilpotency of the BRST operator (3.49) is achieved with ¢,, = 17, that again
yields, viaeqg. (3.48), just the critical value for the central chargeof N = 2 string e¢y—2 =
6. In accord with the reasoning at the end of previous Subsection, the critical bosonic di-
mension of the string associated with the given choice of H is expected to be d,,, = 12.
So this string might bear atight relation to the hypothetical F'-theory.

} cur-

q
m

3.7 Stability subalgebra H = {7,,,,G,} and N = 0 — N = 1 embeddings

In order to show the universality of our method and reveal a correspondence with the em-

beddingsof N = 0 stringinto the N = 1 superstring in the approach of refs. [12,13], in

this last Subsection we consider an embedding of the N = 1 superstring intothe N' = 2

one in the component formalism. We use thereal fermionic currents ¢¢; and (&, satisfying

the algebra (3.1), and place them, respectively, into the coset and the stability subalgebra.
We start from the coset element

g= eﬁ jgdzf(z)Gl (2)621? jgdz«b(z)J(z) 7 (351)
and find the following expressions for the V- = 2 SCA currents
3 4 1 ! /
= gt +du+Tn,
1 m
J = —p—fntang — SE€ — Esee iy, + 75 (26 + €Y + ¢ tan @)
1 4 1 / 1 Cm 1" 1 i
= —p— - - — T, — I — = 7
G = 566 — 58 — ¢ (& =)
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Gy = (1 - S€€)mtan &+ €t 60 — E¢utand— Etan o7,
1= €€ 00 9, — 220E 4 £6 + € tan 6 — SE€" tan )(352)

interms of the real Nambu-Goldstone currents (=), £(z) and their conjugates 1(z), ¢(z):

L i) ~ 2

5 .
Z— W Z— W

n(2)€(w) ~

The corresponding quantum expressions are

(3.53)

Tq — T_i(g//é“/_l_g///g)_(¢/tan¢)/7
q _ l !¢l § 1 an l an? _ /
JU = T gt S an g+ S(tan® o~ 3)d
g _ §// l///_%//an l "tan &)
G = Gi €+ €66 = 166 and + 6(¢ tan o)’
G = Gyt €712 4 566 tan 6+ LE9(5— sec? )
+%§ (¢"+¢"sec2¢+3¢’¢’tan¢sec2 ¢) . (3.54)

Let us now consider the embedding of N = 0 string into N = 1 string within our
approach and itsrelationship withthe N = 1 — N = 2 embedding just presented.

We choose the N = 1 SCA formed by the currents 7', G;. Taking as a stability sub-
algebra H = {T,,} and parametrizing the coset space as

g = ez § HGGN(E) (3.55)
we find the following expressions for the classical currents
3 ! 1 !
1 4 1 Cm 1 l ! et
Gr = == €€ — €T, — (€7 — €€ (356)
After the redefinitions
1 - .
= —( £= /9 = —/27 3.57
1 \/5 ” 5 \/_5 » 7 \/_77 ) ( )

the currents 7' and (& precisely coincide with those deduced by McArthur [13]. Coinci-
dence with the result of Kunitomo [12] at the classical level can be further achieved by
decoupling the matter and putting the central charge equal to zero .

YIn ref. [12] the classical versionsof N = 1 SCA and Virasoro algebra were assumed to have a zero
centra charge. Actually, itisnot necessary torequirethis. central charges can be switched on already at the
classical level through, e.g., Feigin-Fuksterms.
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Total expressionsfor the currents contain quantum corrections:

. 3 1 1

Tq — Tm—I'_f/n—l'_fn/__(fllfl‘l‘f”/f)7
2 2 4
1

A 1 Cm — 11 c
G = —p— =€y — =€T, — = " e
[ = oyt — 5t et

— 26

96 55/5// .

(3.58)

The redefinitions(3.57) bring these expressions into those given by Berkovitsand Vafa[ 1]
and Berkovits and Ohta [7].

Let us compare 79, G with the currents 7%, (¢ fromthe N = 2 set (3.54). They
asoform N = 1 SCA asasubagebraof N = 2 SCA and so are expected to admit a
truncation to the expressions (3.58).

Despite the fact that the coset space (3.55) formally can be derived from the coset
space (3.51) inthelimit ¢ = 0, the relation between the corresponding quantum currents
of N =1 SCA isnot so smple due to the presence of conjugate variable (=)

1

Z— W

p(z)(w) ~
in the expressions (3.52). The currents 7'? and (7] can be brought into the following form
T = (Tt ¢l (6 tan 6)) + 56+ 60’ — (€€ +€70),
G = —n— g€ — €T+~ (¢ tan o)) — g = Fggrer
—Zf’qb’ tan & — gf(qb' tan @)’ . (3.59)

We observe that after passing to 7,,, = T, + ¢’ — (¢ tan ¢)’, the currents 7% and G*
coincide with those given by egs. (3.58), up to the change 7,,, — 7,,, and the presence of
two extratermsin G71:

o= T, G =G+ ea
3 3
0GY = —Zflqb'tanqb — gf(qb'tan o). (3.60)
It is easy to check that the addition 5G| possesses the following OPEs
T 6GT ~ 0, G G+ 0G| G] ~ 0, 6G] 6G| ~ 0. (3.61)

Though the presence of thistermin ¢ is absolutely necessary for the closure of N = 2
superconformal algebra at the quantum level, it is unessential from the standpoint of its
N = 1 subalgebraformed by 7% and G (as follows from (3.61), itisa‘null field" with
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respect to this N = 1 SCA). If one does not care about thewhole N = 2 SCA, then, asa
consequence of the relations (3.61), there is a one-parameter freedom in the definition of
Gy

Gl(a) = G + abGH. (3.62)
It means that the last term can be consistently omitted from . Then the resulting ex-
pressions for the N = 1 SCA currents coincide with the expressions (3.58) in which 77,
is replaced by 7),,. The presence of extratermsin 7, also |eads to the shift of its central
chargeto¢,, = ¢,, + 2. Thus, thefinal expressionsfor the currents 77, G{ reduced in this
way coincide with the expressions (3.58) in which 7,,., ¢,, arereplaced by 7),.. ¢,..

We end this Section with the following comment. At any value of « in (3.62) the
currents 7, G («) generate N = 1 SCA withthe standard relation betweenthe N = 1 and
N = 0 central chargescy-; = ¢,, — 11. But only at « = 0 one gets aminimal realization
solely in terms of 5, ¢ and 7', that can be interpreted in the language of embedding of
N = 0 string into the N = 1 superstring.

4 Linearization of W* asa string embedding

In thispart of the article we demonstrate how the described techniques work in the case of
nonlinear algebras. As an example we take a Wf) algebra. The spin content of currents

of thisalgebra2, 2, 2, 1 isthesameasin N = 2 SCA. The basic difference between these

two algebras is the Grassmann parity of the spin 2 currents. In the case of W§2) they are

bosonic and thisfact |eads to the appearance of nonlinear termsin the OPESs of the algebra
c/?2 N 2T (w) T'(w)
(z—w)* (z—w)? z—-w’
! + ==
T(Z)J(w) ~ ‘](w) + J (w) 7 T(Z)Gi(w) ~ 3/2 G (w) T G (w) 7
(z—w)? z-—w (z —w)? Z—w
c/9 n G (w)

GH)G () ~ —c/3 N 3J(w) _T(w)+18/cJ2(w)—3/2J’(w)‘ @1)

Gwp ' (z-w) p—

T(z)T(w) ~

GE(2)GE(w) ~ 0,

The algebra (4.1) is nonlinear because there is a quadratic (in /) term on the right-
hand side of the OPE G+ G~. Oneway to construct a coset realization of thisalgebraalong
thelinesof the previous Sectionsisto convert it into an infinite-dimensional linear algebra
using thetrick proposedin[19]. It consistsintreating all the composite currents(including
J*?) as some new independent currents. We use here another, more economic version of
this approach which will allow usto deal only with the original finite set of W.* currents
at each step of calculations.
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We choose as the stability subal gebrathe maximal linear subalgebra of W§2) ,that is
the set
H = {G+7 J? T7 c}? (42)

as well as all the composite currents constructed out of it, like J2, JT', ¢/, cT', ... . For
consistency, we need to treat the central charge of the whol e algebraal so as an independent
current and to include it from the beginning into the set (4.2) on equal footing with other
currents.
The remaining current ¢~ is placed into the coset. Respectively, we will interpret
the quantity
K = emm § 4()67() (4.3)

as arepresentative of this coset. We will try to realize the whole Wf) as |eft shifts of the
coset current £(z) making use of thegeneral formalism describedin Sect. 2. Anessentially
new feature compared to the case of linear algebras will be the appearance of composite
currentsin the induced elements / on the right hand side of the general relation (2.3) spe-
cialized to the present case. We will give a self-consistent explicit prescription of how to
treat such objects with preserving the original algebraic structure.

Calculating as above the left action of the infinitesmal element

0= o= {0y ()G )+ (67 () 4 B FalT(E) (44)

on (4.3), wefind the variation of £(x)

5 = o+ o €€ — & — fE+ St —af (49

and induced infinitesimal element of the subalgebrato the right of A’

oh = QL ?{ dz{BJ + aT + a, G — %oq_f" —3ayf'J
i

18 18

— goz+§]/ — Oé_|_§T — —Oé_|_§J2 —|— Oé+§2JG_ — §Oé+§3G_G_} . (46)
C C

&
Sincethecurrents./, T"and G~ form alinear subalgebrain Wf), no problemsoccur
while obtaining the expressions for them within the coset realizations approach. Just like
in the cases considered in the previous Section, one should replace, in therelevant termsin
(4.6), the involved stability subalgebragenerators./, 7', ¢ by their ‘matter’ representation
Iy Ty e (¢, iS@SSUMed to be a constant, and thisiswhy we are allowed to divide by ¢
in (4.6)). Also, oneintroduces the current p(z) canonically conjugated to &(z)

1

Z— W

p(z)¢(w) ~ (4.7)
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As aresult, the following expressions for .J, T" and G~ can be extracted from egs. (4.5)
and (4.6)

3 1
J=&tdn, T=3p+50 +Tn, G =-p. (4.8)

A new characteristic feature of (4.6) isthe appearance of the composite currents./?,
JG~, G=G inthe expression for the induced element of the subalgebra corresponding
to the left shift by the generator GG* (the coefficient before the parameter o, in ther.h.s
of (4.6)). This comes about just due to the presence of nonlinear term in the last of OPES
(4.1), so one can expect that such aphenomenonistypical for nonlinear algebras. Thisisa
crucial difference compared to the previously considered linear case, and oneshould givea
recipe of how to treat such composite currentswithin the nonlinear realizationsformalism.

Onceagain, in accord withthe general prescriptionsof Sect. 2, we should replacethe
stability subalgebra generators by their ‘matter’ representation {G . J,.., T, ¢, } wher-
ever they appear, on their own or as building blocks of composite currents. What concerns
the composite currentscontaining G—, namely /G~ and G~ G~ , anatural ideaistoreplace
the current G~ inthem by its already found coset expression (4.8). In thisway we get

3 1
G* = G 36— € — S =3 — ST, — €T — ot
C
18 6
~ - te @9
C C

It is straightforward to verify that the currents (4.8), (4.9) satisfy just the OPEs (4.1) with
C = Cp,.

A consistency check of our procedure of deriving the coset representation for the
Wf) currents goes as follows. We act on the coset element (4.3) from the left by compos-
ite currents constructed out of the original abstract currents./, 7', G* and find their coset
realization by pulling them through (4.3) with the use of OPEs (4.1) and finally making the
changes {J, T, G*,c} = {Jn, T, G} ¢} and G- — —p. We explicitly found such a
realization for the composite currents /2, G- G~, JG™T. Inal cases, the resulting expres-
sions are given by the appropriate products of the currents (4.8) and (4.9).

Note that this modified nonlinear (coset) realizations scheme seems to work, with
minor further modifications, in the case of other nonlinear algebras too.

Similarly tothe NV = 2 SCA realizations constructed in Sect. 3, the formulas (4.8),
(4.9) givearedlization of the Wf) generatorsintermsof Nambu-Goldstonefields¢, p and
aclosed set of ‘matter’ currents./,,, 7)., G . It can be checked that these expressions coin-
cidewiththeclassical limit of the expressionsfor the Wf) currentsobtained in[20] within
the procedure of conformal linearization of WS(Q). The currents J,,,, T.,,, G+ together with
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the* ghosi antighost’ pair ¢, p form just the classical version of the linearizing algebrafor
W3 Thus at the classical level the ‘linearization’ of W3 amounts to constructing its
above coset realization, with the Nambu-Goldstonefield ¢ (and its conj ugate momentap)
playing the role of additional currents which allow to linearize W3 in the spirit of ref.
[20]. One encounters here a surprising situation when two nonlinearities(theintrinsic non-
linearity of W3 algebraand the nonlinearity of the coset realization procedure) ‘interfere
toyield alinearity inthe end. It would be interesting to apply the same techniquesto con-
struct linearizing algebrasfor those W agebrasfor which this constructionis till lacking,
e.g., SO(N) Knizhnik-Bershadsky algebra

It is tempting to make a step further and to wonder whether this linearization pro-
cedure through a nonlinear realization of W3 admits an interpretation in terms of string
embeddings, like nonlinear realizationsof N = 2 SCA constructed in the previous Sec-
tion. 1t does! To see this, one needs, first of al, to pass [20] to the quantum counterparts
of egs. (4.8), (4.9)

9
JU= g T =T Y G =G
— C

18 3(21 — ¢) 18
Gte = Gt _ ¢ = gJe e Sl [ L L
m A TS ST )5 gt P
6 , 94 c ., 9—c\
b e+ ey =3 (- 25) @
—c 9—c¢ 18

Anessentia peculiarity of this case originating fromthe nonlinear nature of W§2) and hav-
ing no analog in the case of N = 2 SCA (and other linear conformal algebras) is that not
only the central charges of W.*) and the subalgebra {T, Jm, G} become different af-
ter passing to the quantum case, but aso the structure relations of the latter algebra are
modified. Namely, its quantum OPEs are as follows

94+4e—c* 1 27, T

T, T, _t —+
(2)Tn(22) 209 —¢) 21y + 23, + 212
3 9 Grt  GH J. J!
Tm + ~ |:_ :| Tm m ~ — —
(21)G7(22) 5T 9. 2, 2 (21)Jm(22) 3 o
9 —¢ GT
In(en) ()~ S ()G )~ @1

and they differ fromtheclassical onesinthat thecurrent G, acquiresan anomal ousconfor-
mal dimension 2 4 -2-. Actually, thisisnone other than the algebral¥;"* which linearizes
another kind of nonlinear algebra, Zamolodchikov’'s W5 algebra[20]. Now, we wish to
interpret egs. (4.10) as describing an embedding of some string with the symmetry alge-
bra W1 in the matter sector into a string associated with W§2). A consistency check for
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such an interpretation is to inquire whether the critical central charges of these two alge-
bras match with each other. They can be parametrized in terms of asingle parameter ¢ as
follows[20]
(7T+ ¢)c . 9+ 4c—c?
c—9 =" 9—c
The BRST operator for . was constructed in [8], it is nilpotent at ¢ = 18 and, accord-
ingly, ¢,, = 27. Onthe other hand, as noted in the same paper [8], the nilpotency condition
for the BRST charge operator for W§2) [21] requires crry = 50. But thisisjust the value
that arises upon substitution, into ¢y in (4.12), of ¢ = 18 which simultaneously produces
the critical value for the central charge ¢,,,. Thus the remarkable matching between crit-
ical central charges which is a characteristic feature of embeddings in the case of linear
superconformal agebras extendsto this nonlinear case aswell. Thisisastrong indication
that in the present case we indeed deal with an embedding of string associated with the
linear algebra Wiin into the W.{* string 2. Note that an analogous relation between criti-
cal central chargeswas found in [8] while considering an embedding of the bosonic string
(associated with the Virasoro subalgebra7;,) into the W§2) string. 1t would be interesting
to check whether such an embedding can be reproduced within our nonlinear realization
approach.

oTT) = (4.12)

5 Conclusions

In this paper we presented a modified nonlinear realization method directly applicable to
superconformal and some W type algebras in the formulation based on OPEs or SOPEs
of the relevant currents or supercurrents. This provides a systematic way of deducing the
relations describing various embeddings of bosonic and fermionic strings. The embed-
ded string or superstring (its matter sector, to be precise) always corresponds to the vac-
uum stability subalgebraof the given nonlinear realization whilefor the (super)currentsof
the embracing algebra one algorithmically getsthe expressionsin terms of the appropriate
coset (super)fields, their conjugate momentaand the generatorsof the stability subalgebra.
The method as it stands is limited to the classical algebras (although with non-zero cen-
tral charges, as distinct from the approach of [12], say). Nonetheless, it is straightforward
to explicitly find the quantum corrections and to get the genuine relations describing the
string embeddings. We reproduced in thisway some known examples(N =0 —- N =1
[1], N = 1 — N = 2 [7]) and constructed new embeddings of the bosonic string and
some of its extensions into the N = 2 string. It would be interesting to reveal possible

ZIn order torigorously provethis conjecture, one should show that the cohomol ogy of the BRST operator
for W{? in this specific realization coincides with that of the BRST operator for Wi
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physical implications of such extended strings and to identify their place in the modern
string realm. All the embeddings constructed include as a particular case the correspond-
ing critical embedding.

We aso applied our method to an example of nonlinear W type algebras, W§2) a-
gebra, choosing as the stability subalgebra the maximal linear subalgebra of Wf). It co-
incides with the algebra W™ introduced in [20] as the linearizing algebra for Zamolod-
chikov’'s Ws. Surprisingly, our approach immediately leads to the relations of ref. [20]
describing the linearization of W.?. Thus the linearization procedure for this particular
W algebra can be as well understood as the embedding of the 1" string into the 1.
string. The critical central chargesin this case nicely match with each other, smilarly to
other examplesconsidered. Aninteresting problemistotreat awider classof W typealge-
bras from the point of view presented here and to see whether the linearization procedure
for them [22]-[24] always admits an interpretation in terms of proper string embeddings.

Asaprospect for further devel opmentswe mention possi ble applications of our method
to other superconformal algebras, e.g. ‘small’ and ‘large’ N = 4 SCAs. Some string em-
beddingsrelated to these algebraswere described in [ 7,25]. Our method will hopefully al-
low to list all possible such embeddings by choosing various subalgebrasof N = 4 SCAs
as the vacuum stability ones. 1t would be extremely interesting to generalize our method
to more complicated extended objects like p-branes, i.e. to learn how to construct nonlin-
ear redlizations of the relevant infinite-dimensional world-volume gauge symmetries and
to describe embeddings of such objectsin this universal language °.

Finally, let usremind that nonlinear realizationsof 1 D superconformal algebrasand
W agebraswere previously considered from various points of view in anumber of works,
e.g. in[26,19], [27]-[29]. It isof interest to understand how these approaches are related
with the one presented here.
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