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Abstract

We propose a simple method for constructing representations of (super)conformaland non-
linearW -type algebras in terms of their subalgebras and corresponding Nambu-Goldstone
fields. We apply it to N = 2 and N = 1 superconformal algebras and describe in this way
various embeddings of strings and superstrings for which these algebras and their sub-
algebras define world-sheet symmetries. Besides reproducing the known examples, we
present some new ones, in particular an embedding of the bosonic string with additional
U(1) affine symmetry into N = 2 superstring. We also apply our method to the nonlin-
ear W (2)

3 algebra and demonstrate that the linearization procedure worked out for it some
time ago gets a natural interpretation as a kind of string embedding. All these embeddings
include the critical ones as particular cases.
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1 Introduction

For the last years, the study of various embeddings of strings and superstrings received

much attention [1]-[7]. This activity was initiated by the paper of Berkovits and Vafa [1]

who showed that ordinary bosonic strings can be regarded as a special class of vacua of

N = 1 superstrings. Later it was found that this is a general phenomenon: a (super)string

with N extended world-sheet supersymmetry can be embedded into a superstring with

N + 1 extended supersymmetry as a particular vacuum state of the latter. Analogous em-

beddings were constructed for strings associated with nonlinearW type algebras and their

linearizing algebras [8]-[11]. It was suggested that all the known strings and superstrings

present different vacua of some hypothetical universal string theory.

An essential step towards clarifying the group-theoretical grounds of the embedding

procedure was made in refs. [12,13]. On the example of the bosonic string embedded into

the N = 1 superstring Kunitomo [12] showed that the larger symmetry (N = 1 supercon-

formal) is realized with the help of Nambu-Goldstone fields, typical for the spontaneously

broken supersymmetry. The vacuum stability subgroup is the Virasoro one, just the world-

sheet symmetry of the bosonic string. The same results have been obtained by McArthur

[13] in the framework of the standard theory of nonlinear realizations [14,15] applied to

the N = 1 superconformal algebra (SCA). These observations support a nice interpre-

tation of the string embeddings as one more manifestation of the universal phenomenon

of spontaneous symmetry breakdown, this time of the infinite-dimensional world-sheet

(super)symmetry of strings [1]. From this point of view, any embedding of the lower-

symmetry string into the larger-symmetry one amounts to the choice of special background

(and hence the vacuum) for the latter, such that it is given by the Nambu-Goldstone fields

realizing the spontaneous breaking of the larger symmetry down to the lower symmetry.

The currents generating the larger symmetry are expressed in terms of those of the lower

symmetry and the Nambu-Goldstone fields. A power of the nonlinear realizations method

manifests itself in that these expressions can be obtained in an algorithmic way, knowing

only the structure relations of the given superconformal algebra. In accord with the gen-

eral concepts of this method, all the basic characteristics of such specific representation

of the larger symmetry (central charges, etc.) should be fully determined by the structure

of representations of the vacuum stability symmetry. In this way, the string theory associ-

ated with the lower symmetry comes out as a spontaneously broken phase of the higher-

symmetry string theory.

In this paper we present simple and universal techniques of calculations for nonlin-

ear realizations of infinite dimensional algebras written in terms of OPEs (SOPEs) for one

dimensional currents (supercurrents). The application of this techniques to N = 1; 2
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superconformal algebras after taking into account quantum corrections leads to the corre-

sponding formulas for the string embeddings.

Besides reproducing the known N = 1 ! N = 2 embedding in terms of N = 1

superfields [7], we get new self-consistent embeddings by choosing different subalgebras

of N = 2 SCA as the vacuum stability symmetries. In particular, we describe embedding

of the string associated with the product of Virasoro and U(1) Kac-Moody algebras into

N = 2 superstring. This extension of the bosonic string was recently discussed [16,17] in

connection with F -theory [18]. As a by-product, we also reproduce the N = 0! N = 1

embeddings within our techniques, discuss how they are related to theN = 2 embeddings

constructed and make comparison with the results of refs. [12,13].

We argue that the linearization procedure for some W algebras worked out some

time ago [20] can also be interpreted in the embedding language, namely as an embed-

ding of the string associated with some linear subalgebra of the given nonlinear W (su-

per)algebra into the string associated with this W (super)algebra itself. The appropriately

modified nonlinear realizations techniques prove to work in this case too. We consider the

simple example of the quasi-conformal algebra W (2)
3 , but the same is apparently true for

a wider class of W algebras.

In Sect. 2 we give a general characterization of our method. In Sect. 3 we apply it

to N = 2 SCA and describe embeddings of strings associated with various subalgebras of

N = 2 SCA into the N = 2 superstring. Sect. 4 is devoted to applications of our method

to nonlinear algebras on the example of the W (2)
3 algebra.

2 Method of nonlinear realizations

As a starting point, let us briefly describe the theory of nonlinear realizations [14,15] with

some refinement related to the case of infinite-dimensional symmetries. This theory is a

set of recipes of how to realize the given group G on the parameters of its coset G=H , H

being some subgroup of G.

After choosing the subgroup H , one represents an arbitrary group element in the

exponential parametrization in the following form

G = KH = ekeh : (2.1)

Here h = �aha and k = �iki belong, respectively, to the algebra of H and to its comple-

ment to the full algebra of G, ha and ki being the appropriate generators. An infinitesimal

group element g = 1 + �, with � = �iki + �aha, has the following action on K

(1 + �)ek = ek+�k(1 + �h) ; (2.2)
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whence

e�k�ek = e�k�ek + �h : (2.3)

Both the left- and right-hand sides of this equation can be written in terms of multiple com-

mutators

e�k ^ � = 1 � e�k

k
^ �k + �h : (2.4)

This is the basic equation for determining �k and �h. The definition of the symbol ^ is as

follows. For the given function f(k) = f0 + f1k + f2k
2 + ::: it reads:

f(k) ^ � = �+ f1[k; �] + f2[k[k; �]] + ::: : (2.5)

For the coefficients of generators in �k = ��iki; �h = ��aha eq. (2.4) implies the follow-

ing general expressions

��l = �iF l
i + �aF l

a ;

��b = �iF b
i + �aF b

a : (2.6)

Here all F ’s are some functions of �k. They are uniquely specified by the structure rela-

tions of the G algebra. Further, one considers a space of functions �(�i) on which some

representation of the subalgebra h is realized (it is reducible in general). In what follows

we will call it the ‘matter’ representation and denote its generators by h(m)
a . Then the gen-

erators of the whole algebra can be realized on this space as [13]:

Ha = �F l
a

@

@�l
+ F b

ah
(m)

b ;

Ki = �F l
i

@

@�l
+ F b

i h
(m)

b : (2.7)

To prevent a possible confusion, we point out that the original generators (those appear-

ing in eqs. (2.1) - (2.6)) are always assumed to be abstract and commuting with all coset

parameters, it is the algebra of their commutators which really enters the game. On the

contrary, the generators (2.7) give a particular realization of the group G on the space of

these parameters and functions of them.

In the case of infinite-dimensional algebras, such as the superconformal ones, it is

more convenient to deal with currents or supercurrents like T (Z) = T (z; �a), and with

OPEs or SOPEs instead of the commutation relations. A finite number of such (super)currents

collects all the infinite set of generators of the given (super)algebra. These generators ap-

pear as coefficients in the � and z expansions of supercurrents (as usual, Laurent series is

assumed for the z expansion). An element of the algebra associated with the given current

is expressed as an integral over the superspace with some parameter depending on z; �a:

T =
1

2�i

I
dZ�(Z)T (Z) : (2.8)
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The coset parameters �m come out now as the coefficients in the expansion of�(Z) overZ .

As before, it is assumed that the original abstract currents (supercurrents) have vanishing

OPEs (SOPEs) with all �(z).

After computing group variations of these parameters-functions, the representations

similar to (2.7) arise. An essentially new point compared to the customary nonlinear real-

izations formalism is the necessity to introduce new (super)currents p(Z) which substitute

the derivatives @

@�l
. These new currents are canonically conjugated to �(Z). This means

that the following OPE

pl(z)�
n(w) � �nl

1

z �w
; (2.9)

or its obvious supersymmetric counterpart are valid. The resulting specific representation

for the currents of the algebra reads

Ha(Z) = �Fm
a pl(Z) + F b

ah
(m)

b (Z) ;

Ki(Z) = �Fm
i pm(Z) + F b

i h
(m)

b (Z) : (2.10)

AllF ’s are now functions of �l(Z) and their derivatives. The indices a; b label the currents

generating some infinite- dimensional subalgebra of the given algebra (the stability sub-

algebra) while the indices i; k; l refer to the remainder of currents (the coset ones). The

‘matter’ currents h(m)

b still have vanishing OPEs with the coset parameters �k and con-

jugated momenta pl. At the same time, OPEs between h
(m)

b form a representation of the

stability subalgebra. The action of (2.10) on the relevant functionals of �(Z) (analogs of

�(�k)) is defined through setting OPEs between these objects. The transformation prop-

erties of these functionals with respect to the whole (super)algebra are fully determined

by their transformation properties with respect to the stability subalgebra, i.e. by fixing

their OPEs with the ‘matter’ (super)currents h(m)

b (these functionals are a sort of primary

(super)fileds of the stability subalgebra).

We emphasize that all the infinite-dimensional nature of the algebra and the stability

subalgebra is hidden in the integrals like (2.8), while the explicitly appearing indices run

over finite ranges like in the case of finite-dimensional symmetries.

One essential remark at this stage is of need. The currents (2.10) realize OPEs of

the initial algebra only if we consider them as classical ones, i.e. when we keep in OPEs

only single contraction. This is equivalent to using the Poisson brackets and implies that

the subalgebras generated by h(m)
a (Z) and Ha(Z) are identical. In particular, they have

the same central charges. Transition to the exact quantum OPEs by keeping all contrac-

tions radically changes the situation. OPEs will not close unless some terms (quantum

corrections) are added to the classical expressions for the currents. It can be shown that

these addings do not include pi’s. In this case central charges in the subalgebras generated
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by h(m)
a and Ha become different and the above formalism gets suitable for description of

embeddings of (super)strings along the lines of refs. [1]-[11].

This method, as it was described above, suits very well the case of linear algebras.

Some additional problems arise when the W type nonlinear algebras are regarded. Nev-

ertheless, it seems to be still applicable at least when some linear subalgebra of given W

algebra is chosen as the vacuum stability subalgebra. In Sec. 4 we demonstrate this on the

example of W (2)
3 algebra.

3 Nonlinear realizations of N = 2 SCA

3.1 Structure relations

We start with some definitions. OPEs for N = 2 SCA in terms of real currents are given

by

T (z)T (w) � c=2

(z � w)4
+

2T (w)

(z � w)2
+
T 0(w)
z � w

; T (z)J(w) � J(w)

(z � w)2
+
J 0(w)
z �w

;

T (z)G1;2(w) � 3=2G1;2(w)

(z � w)2
+
G0

1;2(w)

z �w
; G1;2(z)G1;2(w) �

c=3

(z �w)3
+

T (w)

z � w
;

G1(z)G2(w) � J(w)

(z � w)2
+

1=2J 0(w)
z � w

; J(z)J(w) � � c=3

(z �w)2
;

J(z)G1(w) � � G2(w)

(z � w)
; J(z)G2(w) � G1(w)

(z � w)
: (3.1)

Note that the supercurrents fT;G1g and fT;G2g form two differentN = 1 SCAs embed-

ded as subalgebras into the N = 2 SCA.

In terms of N = 1 supercurrentsT (Z) = 1p
2
G1(z)+�T (z) andG(Z) = �i(J(z)+

�
p
2G2(z)) these OPEs are concisely presented by the following SOPEs

T (Z1)T (Z2) � c=6

Z3
12

+
3=2�12T (Z2)

Z2
12

+
1=2DT (Z2) + �12T

0(Z2)

Z12

;

T (Z1)G(Z2) � �12G(Z2)

Z2
12

+
1=2DG(Z2) + �12G

0(Z2)

Z12

;

G(Z1)G(Z2) � c=3

Z2
12

+
2�12T (Z2)

Z12

; (3.2)

where

�12 = �1 � �2; Z12 = z1 � z2 � �1�2; D =
@

@�
+ �@; T 0 � @T

@z
: (3.3)

In the rest of this Section we apply the general method described in Sect. 2 in order

to construct nonlinear realizations of N = 2 SCA with its different subalgebras as the

vacuum stability subalgebra H . For different choices of H the coset is parametrized by
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different sets of fields, which gives rise to non-equivalent realizations of N = 2 SCA.

The quantum versions of the latter are easy to construct, and they give the formulas for

the corresponding embeddings. We also show that the nonlinear realizations of N = 1

SCA and the associated N = 0! N = 1 embeddings follow from the N = 2 ones upon

appropriate reductions.

3.2 Stability subalgebra H = fT (Z)g = fT (z); G1(z)g

We first choose H to be generated by currents T (z); G1(z), or, in the N = 1 superfield

notation, by the spin 3=2 fermionic supercurrent T (Z). This is just N = 1 SCA.

The general element of the coset is parametrized as

K = e
1

2�i

H
dZ�(Z)G(Z) ; (3.4)

where we have introduced a Nambu-Goldstone fermionicN = 1 superfield �(Z) with the

“spin” �1=2. An infinitesimal element of the N = 2 superconformal group

g = 1 +
1

2�i

I
dZf�(Z)G(Z) + a(Z)T (Z)g ; (3.5)

acts on K according to the following relation (cf. (2.2))

ge
1

2�i

H
dZ�(Z)G(Z) = e

1

2�i

H
dZ(�(Z)+��(Z))G(Z) ~H: (3.6)

Under this left shift the parameter of the coset space �(Z) changes to �(Z)+ ��(Z). The

induced subgroup element ~H is represented by

~H = 1 +
1

2�i

I
dZfb(Z)T (Z) + c(Z))g: (3.7)

The quantities ��(Z), b(Z) and c(Z) are to be expressed in terms of the Nambu-Goldstone

superfield �(Z) and the group parameters a(Z) and �(Z).

While applying the techniques described in the previous Section, one frequently needs

to compute (anti)commutators of the operators like 1
2�i

H
dZ�(Z)G(Z). This can be done

with the help of the following formula:
�

1

2�i

I
dZ1a(Z1)A(Z1);

1

2�i

I
dZ2b(Z2)B(Z2)

�
=

�

�
1

2�i

�2 I
dZ2

I
C
dZ1a(Z1)b(Z2)A(Z1)B(Z2) : (3.8)

The contour of integrationC surrounds z2 and A(Z1)B(Z2) in the right-hand side of (3.8)

stands for SOPE of the supercurrentsA(Z1) andB(Z2). Additional multiplier � is the sign

which depends on the Grassmann parity of A(Z) and B(Z): � = (�1)g(A)(g(B)+1).
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Taking this into account and doing the computations along the line of Sec. 2, we find

the following expressions for ��(Z), b(Z) and c(Z)

�a� =
1

2
a0�� a�0 � 1

2
DaD� ;

��� = �

(
D� cothD�+

��0

(D�)2
 
1� 2D� cothD� +

(D�)2
sinh2D�

!)

+
D��
D� (1 �D� cothD�) ;

b(Z) = a+ �
2�

D� tanh

 D�
2

!
;

c(Z) = ��cm
6

(
D�0 +

 
2��0D�0
(D�)3 � ��00

(D�)2
! 

D�� 2 tanh

 D�
2

!!)
: (3.9)

These expressions lead to the following form of the generators:

T = ��0� � 1

2
��0 +

1

2
D�D� + Tm ;

G = � +
2��0

(D�)2 (1 �D� cothD�) � � �

D� (1 �D� cothD�)D�

�cm
6

(
D�0 +

 
2��0D�0
(D�)3 � ��00

(D�)2
! 

D� � 2 tanh

 D�
2

!!)

+
2�

D� tanh

 D�
2

!
Tm ; (3.10)

where the newly introduced spin 1 bosonic superfield � is canonically conjugated to �

�(Z1)�(Z2) �
�12

z12
: (3.11)

Thus we have obtained the realization of the N = 2 SCA in terms of the conjugated pair

of N = 1 Nambu-Goldstone superfields �, � and N = 1 SCA supercurrent Tm(Z)

Tm(Z1)Tm(Z2) � cm=6

Z3
12

+
3=2�12Tm(Z2)

Z2
12

+
1=2DTm(Z2) + �12T

0
m(Z2)

Z12

;

Tm(Z1)�(Z2) � 0 ; Tm(Z1)�(Z2) � 0 :

At the considered classical level the central charge of N = 2 SCA in such a realization

can be checked to coincide with the central charge of N = 1 SCA

cN=2 = cm :

As was already mentioned in Introduction, the main motive for working out this ap-

proach to nonlinear realizations of (super)conformal (and W ) algebras was the desire to
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gain a systematic method for deriving the relations which describe different embeddings of

strings. According to the reasoning of refs. [12,13], the linearly realized subgroup always

corresponds to the embedded string and defines the world-sheet symmetry of the latter.

Thus in the present case we should get an embedding of N = 1 superstring into N = 2

superstring. This embedding in terms of N = 1 superfields was firstly given by Berkovits

and Ohta [7] by means of guesswork. Now we show that their formulas naturally follow

from the above ones obtained within a systematic procedure, with taking account of quan-

tum corrections.

To make a comparison with the Berkovits-Ohta paper [7], we perform the canonical

transformation from the superfields �; � to the superfields C; B

C =
2�

D� tanh(
D�
2

) ;

B =
1

2
(1 + coshD�)� +

cosh2(D�
2
)

(D�)2
 
2�D� coth

 D�
2

!!
��0�

+
�

2D�

 
D� coth

 D�
2

!
� coshD� � 1

!
D� : (3.12)

The generators of N = 2 SCA in terms of these new superfields take the form:

T = �C 0B � 1

2
CB0 +

1

2
DCDB + Tm ;

G = B � 1

4
(DC)2B +

1

2
BC 0C +

1

2
DCCDB + CTm

�cm
6

 
4DC 0

4� (DC)2
� 2CC 0DC 0(DC)2

(4� (DC)2)2
� CC 00DC

4� (DC)2

!
; (3.13)

and almost coincide with those of [7]. The only difference is the presence of some addi-

tional B-independent terms in the realization of ref. [7]. The origin of this difference lies

in the following. SOPEs for the supercurrents (3.13) are closed on the classical level, when

only one contraction is taken into account. Besides, the values of the central charge for Tm
and T on the classical level are the same. The extra terms found in ref. [7] can be easily

restored in our formulation by demanding the closure of the quantum SOPEs, when all

contractions are taken into account. The final expressions for the quantum supercurrents

are [7]:

T q = T +

 
CDC 0

4� (DC)2

!0
;

Gq = G +
CC 0DC 0

4� (DC)2
: (3.14)
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As was stated in [7], these expressions describe both the cases of critical and non-critical

embeddings. It is a matter of direct computation to see that the central charge cN=2 in this

quantum realization is related to the central charge cm inherent to Tm as

cN=2 = cm � 9 : (3.15)

The critical value of cm = 15 yields just the critical value cN=2 = 6 for the central charge

of N = 2 SCA.

3.3 Stability subalgebra H = fT (z)g

In our second example we take as the linearly realized subalgebra the Virasoro subalge-

bra. So it should give, after passing to the quantum case, the description of embedding

of bosonic string into the N = 2 superstring. As distinct from the previous example, all

supersymmetries are nonlinearly realized in the case under consideration. As a result, no

superfield formalism exists, and one should deal with the component currents rather than

supercurrents.

We are led to introduce three Nambu-Goldstone fields associated with the currents

G(z) =
1p
2
(G1(z)� iG2(z)) ; G(z) = � 1p

2
(G1(z) + iG2(z)) and

�
J (z) = �iJ(z) :

We can parametrize the coset in two different ways, each leading to different representa-

tions of the algebra in terms of Tm(z), Nambu-Goldstone fields �(z); �(z); �(z) and their

conjugated momenta �(z); �(z); �(z) with the following OPEs:

�(z)�(w) � 1

z � w
; �(z)�(w) � 1

z �w
; �(z)�(w) � 1

z �w
: (3.16)

So far as the classical case is concerned, these different parametrizations are obviously re-

lated by an equivalence transformation (it can still be rather complicated), but in the quan-

tum case they can yield non-equivalent realizations. This is the reason why we quote the

latter for both parametrizations.

Let us first consider the ‘symmetric’ parametrization

K = e
1

2�i

H
dzf�(z)G(z)+�(z)G(z)ge

1

2�i

H
dz�(z)

�

J (z) : (3.17)

A straightforward computation leads to the following expressions for the supercurrents:

T = Tm +
3

2
�0� +

3

2
�
0
� +

1

2
��0 +

1

2
��0 + �0� ;

�
J = ��� �� + �� � cm

6
�0 ;
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G = �� +
2

3
��

0
� +

1

3
�0�� +

1

3
���0 � 1

9
��0�

0
�� +

2

3
��0�

+
1

2
(� +

1

6
��0�)Tm +

1

4
f(2�0 + 1

6
���00 +

2

3
��

0
�0 + 2��0 +

1

3
��0��0)�

+(� +
1

3
���0)�0g+ cm

12
f�00 + 1

12
(2��

0
�00 + �0��00 + ���000 + 2��0�

00
)

+
1

24
��0��

0
�00 + (�0 +

1

12
���00 +

1

3
��

0
�0)�0 +

1

2
(� +

1

3
���0)�00g ;

G = �� +
2

3
��0� +

1

3
�
0
�� +

1

3
���0 � 1

9
��

0
�0�� +

2

3
��

0
�

+
1

2
(� +

1

6
��

0
�)Tm � 1

4
f(2�0 + 1

6
���

00
+

2

3
��0�

0 � 2��0 � 1

3
��

0
��0)�

+(� +
1

3
���

0
)�0g+ cm

12
f�00 + 1

12
(2��0�

00
+ �

0
��

00
+ ���

000
+ 2��

0
�00)

+
1

24
��

0
��0�

00 � (�
0
+

1

12
���

00
+

1

3
��0�

0
)�0 � 1

2
(� +

1

3
���

0
)�00g : (3.18)

In the case of the ‘non-symmetric’ parametrization,

K = e
1

2�i

H
dz�(z)G(z)e

1

2�i

H
dz�(z)G(z)e

1

2�i

H
dz�(z)

�

J (z) ; (3.19)

the expressions for the currents of the algebra are much simpler:

T = Tm +
3

2
�0� +

3

2
�
0
� +

1

2
��0 +

1

2
��0 + �0� ;

�
J = ��� �� + �� � cm

6
�0 ;

G = �� ;
G = �� + 2��0� + �

0
�� + ���0 + ��

0
�

+�Tm � �
0
�� 1

2
��0 + ��0� +

cm

12
(2�

00 � 2�
0
�0 � ��00) : (3.20)

Once again, OPEs for the currents (3.18) and (3.20) are closed only on the classical

level and with the same values of the central charge for Tm and T . The corresponding

quantum expressions are

T q = T +
1

6
(�
00
�0 + �00�

0
+ �

000
� + �000�) +

1

9
�
00
�00��

� 1

18
(�
0
�0��00 + �0�

0
��

00
+ �

0
���000 + �0���

000
) ;

~J q = ~J +
13

3
�0 � 2

3
�
0
�0 � 1

3
(�
00
� � �00�) ;

Gq = G� 5

3
�00 � 3

8
��0�

00
+

7

24
��00�

0 � 1

72
�0��00 +

23

108
��000� +

49

432
�
0
�0���00

+
13

18
�0��0�

0
+

13

72
�0��00� +

13

36
�00��0� � 13

6
�0�0 � 13

12
�00� ;

11



G
q

= G� 5

3
�
00 � 3

8
��

0
�00 +

7

24
��

00
�0 � 1

72
�
0
��

00
+

23

108
��

000
� +

49

432
�0�

0
���

00

�13

18
�0��

0
�0 � 13

72
�0��

00
� � 13

36
�00��

0
� +

13

6
�0�

0
+

13

12
�00� (3.21)

for the symmetric case and

T q = T ; ~J q = ~J +
13

3
�0 ;

Gq = G ; G
q
= G� 10

3
�
00
+

13

3
�0�

0
+

13

6
�00� (3.22)

for the non-symmetric one. Expressions (3.18), (3.21) and (3.20), (3.22) describe two pos-

sible embeddings of bosonic string into N = 2 string. To our knowledge, they were not

given before in literature. In both cases one readily checks the following relation between

the central charges cN=2 and cm

cN=2 = cm � 20 : (3.23)

Once again, the critical value of the Virasoro central charge cm = 26 yields the critical

value cN=2 = 6 for the central charge ofN = 2 SCA (it corresponds to the bosonic critical

dimension dN=2 = 4).

For completeness and for the sake of comparison with other options given below, let

us remind the well-known form of BRST operator for the Virasoro algebra H = fT q
mg

Q =
1

2�i

I
dz c(T q

m +
1

2
Tgh) (3.24)

with

Tgh = cb0 + 2c0b : (3.25)

Condition for the nilpotency of the BRST operator (3.24) is just cm = 26.

Note that the constructed embedding of N = 0 string into the N = 2 superstring

simultaneously defines a chain of embeddings N = 0 ! N = 1 and N = 1 ! N = 2.

As is clear from the relation (3.23), both these intermediate embeddings do not include the

corresponding critical ones as particular cases, in contrast to the resulting N = 0! N =

2 embedding.

Besides two cases already considered, there exist three other subalgebras of N = 2

SCA which include Virasoro stress tensor T :

H1 = fT; ~Jg ; H2 = fT;Gg ; H3 = fT;G; ~Jg : (3.26)

They all can be equally chosen as the linearly realized subalgebras. The corresponding ex-

pressions for the currents, both on the classical and quantum level, as well as the relations

12



between central charges, are presented in the next Subsections. In all cases we observe a

remarkable matching between the critical central charges of N = 2 SCA and its linearly

realized subalgebras. So, once again, these cases admit a nice interpretation as embeddings

of some strings into the N = 2 superstring.

3.4 Stability subalgebra H = fTm; ~Jmg

This case corresponds to the embedding of the bosonic string with additional local U(1)

symmetry into the N = 2 superstring.

A coset element reads

g = e
1

2�i

H
dz�(z)G(z)e

1

2�i

H
dz�(z)G(z) : (3.27)

The currents are given by the following expressions

T =
3

2
�
0
� +

1

2
��0 +

3

2
�0� +

1

2
��0 + Tm ;

~J = ��� + �� + ~Jm ;

G = �� ;
G = �� + ��

0
� + �

0
�� + 2��0� + ���0 + �Tm + �

0
Jm +

1

2
�J

0

m +
cm

6
�
00
: (3.28)

In order to derive quantum version we have to redefine the central charge in the OPEs

of the subalgebra H = fT q
m;

~J q
mg

T q
m(z)T

q
m(w) � cm=2

(z � w)4
+

2T q
m(w)

(z �w)2
+
T q
m
0(w)

z � w
;

T q
m(z)

~J q
m(w) �

~J q
m(w)

(z � w)2
+

~J q
m
0(w)

z � w
;

~J q
m(z)

~J q
m(w) � (cm � 28)=3

(z � w)2
: (3.29)

The quantum correction arises only for the current G:

G
q
= G � 11

3
�
00
: (3.30)

Now one can check that the currents

T q =
3

2
�
0
� +

1

2
��0 +

3

2
�0� +

1

2
��0 + T q

m ;

~J q = ��� + �� + ~J q
m ;

Gq = �� ;
G
q

= �� + ��
0
� + �

0
�� + 2��0� + ���0 + �T q

m + �
0 ~J q
m +

1

2
� ~J q

m
0 +

+
cm � 22

6
�
00

(3.31)

13



form closed quantum N = 2 SCA (3.1) with

cN=2 = cm � 22: (3.32)

To find the critical dimension for the bosonic string with additional U(1) symmetry,

let us construct the BRST operator for the algebra (3.29). It can be written in the form

Q =
1

2�i

I
dz [c(T q

m +
1

2
Tgh) + a( ~J q

m +
1

2
~Jgh)]; (3.33)

where

Tgh = cb0 + 2c0b+ a0s ; ~Jgh = cs0 + c0s ; (3.34)

and the ghosts-anti-ghost pairs (c; b), (a; s) correspond to the fT q
m; J

q
mg currents. Condi-

tion for the nilpotency of the BRST operator (3.33) is cm = 28 which gives the correct

value for the critical central charge of N = 2 superstring cN=2 = 6.

It is interesting to note that the extended bosonic algebra H = fTm; ~Jmg with the

critical cm = 28 naturally comes out as the algebra of constraints of the interacting system

of string and massless particle moving in the space with two timelike dimensions [16]. It

was also discussed in [17] in the context of ‘universal string theory’ and F -theory [18].

The embedding of the string associated with H into the N = 1 superstring possessing

some extra symmetry (N = 1 extension of U(1) symmetry) was constructed. The above

relations yield an alternative critical embedding of the same bosonic string, this time into

the N = 2 superstring.

3.5 Stability subalgebra H = fTm; Gmg

This case describes the embedding of some string which has, besides the Virasoro sym-

metry, an additional local supersymmetry generated by the Grassmann-odd current Gm.

The coset element is

g = e
1

2�i

H
dz�(z)G(z)e

1

2�i

H
dz�(z) ~J (z) : (3.35)

The expressions for currents read

T =
3

2
�
0
� +

1

2
��0 + �0�+ Tm ;

J = ��� �� � cm

6
�0 ;

G = �� ;
G = ��

0
� + ��0� � �

0
�� 1

2
��0 + �Tm + e�Gm +

cm

12
(2�

00 � 2�
0
�0 � ��00) :(3.36)

14



The corresponding quantum expressions are as follows:

T q = T � �00 ;

J q = J + 2�0 ;

Gq = G ;

G
q

= G � 3

2
�
00
+ 2�

0
�0 : (3.37)

The currents (3.37) form quantum N = 2 SCA with

cN=2 = cm � 9 : (3.38)

BRST operator for the subalgebra H = fT q
m; G

q

mg,

T q
m(z)T

q
m(w) � cm=2

(z � w)4
+

2T q
m(w)

(z �w)2
+
T q
m
0(w)

z � w
;

T q
m(z)G

q

m(w) � 3=2G
q

m(w)

(z �w)2
+
G
q

m
0(w)

z � w
; (3.39)

has the following form

Q =
1

2�i

I
dz [c(T q

m +
1

2
Tgh) + �(G

q

m +
1

2
Ggh)] ; (3.40)

with

Tgh = cb0 + 2c0b� 1

2
��0 � 3

2
�0� ;

Ggh = �0c+
3

2
�c0 : (3.41)

Condition for the nilpotency of the BRST operator (3.40) is cm = 15, which again

gives rise through (3.38) to the critical central charge of the N = 2 superstring, cN=2 =

6. A natural 2D field theory realization of the fermionic string associated with H of the

present example is on 10 bosonic and 10 fermionic fields, thus implying the bosonic critical

dimension dm = 10.

3.6 Stability subalgebra H = fTm; Gm; ~Jmg

This case corresponds to an embedding of some string with Grassmann-odd current Gm

and additional local U(1) symmetry into the N = 2 superstring. The embedded string is a

‘hybrid’ of the strings associated with the stability subalgebras of two previous examples.
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The OPEs of the stability subalgebra read

Tm(z)Tm(w) � cm=2

(z �w)4
+

2Tm(w)

(z � w)2
+
T 0
m(w)

z � w
; Tm(z) ~Jm(w) �

~Jm(w)

(z � w)2
+

~J 0m(w)
z � w

;

Tm(z)Gm(w) � 3=2Gm(w)

(z � w)2
+
G
0
m(w)

z �w
; ~Jm(z)Gm(w) � �Gm(w)

(z � w)
;

~Jm(z) ~Jm(w) � cm=3

(z �w)2
: (3.42)

The relevant coset element is defined by

g = e
1

2�i

H
dz�(z)G(z) : (3.43)

The currents are given by the expressions

T =
3

2
�
0
� +

1

2
��0 + Tm ;

~J = ��� + ~Jm ;

G = �� ;
G = ��

0
� + �Tm + �

0 ~Jm +
1

2
� ~J

0

m +Gm +
cm

6
�
00
: (3.44)

After redefining OPEs in the subalgebra (3.42) as follows

T q
m(z)T

q
m(w) � cm=2

(z � w)4
+

2T q
m(w)

(z � w)2
+
T q
m
0(w)

z �w
;

T q
m(z)

~J q
m(w) � �2

(z � w)3
+

~J q
m(w)

(z � w)2
+

~J q
m
0(w)

z � w
;

T q
m(z)G

q

m(w) � 3=2G
q

m(w)

(z � w)2
+
G
q

m
0(w)

z � w
; ~J q

m(z)G
q

m(w) � �
G
q

m(w)

(z �w)
;

~J q
m(z)

~J q
m(w) � +

(cm � 14)=3

(z � w)2
; (3.45)

we obtain the quantum correction again only for G:

Gq = G � 11

6
�
00
: (3.46)

One can check that the currents

T q =
3

2
�
0
� +

1

2
��0 + T q

m ;

~J q = ��� + ~J q
m ;

Gq = �� ;
G
q

= ��
0
� + �T q

m + �
0 ~J q
m +

1

2
� ~J 0m +G

q

m +
cm � 11

6
�
00

(3.47)
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span a quantum N = 2 SCA with

cN=2 = cm � 11 : (3.48)

The BRST operator for the subalgebra (3.45) is

Q =
1

2�i

I
dz [c(T q

m +
1

2
Tgh) + a( ~J q

m +
1

2
~Jgh) + �(G

q

m +
1

2
Ggh)] ; (3.49)

where

Tgh = cb0 + 2c0b+ a0s � 1

2
��0 � 3

2
�0� ;

�
Jgh = cs0 + c0s� �� ;

Ggh = �0c+
3

2
�c0 � �a (3.50)

and the ghost-anti-ghost pairs (c; b), (a; s), (�; �) correspond to the fT q
m;

~J q
m; G

q

mg cur-

rents.

The nilpotency of the BRST operator (3.49) is achieved with cm = 17, that again

yields, via eq. (3.48), just the critical value for the central charge of N = 2 string cN=2 =

6. In accord with the reasoning at the end of previous Subsection, the critical bosonic di-

mension of the string associated with the given choice of H is expected to be dm = 12.

So this string might bear a tight relation to the hypothetical F -theory.

3.7 Stability subalgebra H = fTm; G2g and N = 0! N = 1 embeddings

In order to show the universality of our method and reveal a correspondence with the em-

beddings of N = 0 string into the N = 1 superstring in the approach of refs. [12,13], in

this last Subsection we consider an embedding of the N = 1 superstring into the N = 2

one in the component formalism. We use the real fermionic currentsG1 and G2 satisfying

the algebra (3.1), and place them, respectively, into the coset and the stability subalgebra.

We start from the coset element

g = e
1

2�i

H
dz�(z)G1(z)e

1

2�i

H
dz�(z)J(z) ; (3.51)

and find the following expressions for the N = 2 SCA currents

T =
3

2
�0� +

1

2
��0 + �0�+ Tm ;

J = ��� �� tan �� 1

2
��0�� � sec�G2m +

cm

12
(2�0 + ��0�0 + ��00 tan �) ;

G1 = �� � 1

2
��0� � 1

2
��0� � 1

2
�Tm �

cm

12
(�00 � 1

8
��0�00) ;
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G2 = (1 � 1

2
��0)� tan �+ �0�+

1

2
��0 � 1

2
��0� tan �� 1

2
� tan �Tm

+(1� 1

4
��0) sec�G2m �

cm

12
(2�0�0 + ��00 + �00 tan�� 3

8
��0�00 tan �)(3.52)

in terms of the real Nambu-Goldstone currents �(z); �(z) and their conjugates �(z); �(z):

�(z)�(w) � 1

z � w
; �(z)�(w) � 1

z � w
: (3.53)

The corresponding quantum expressions are

T q = T � 1

4
(�00�0 + �000�)� (�0 tan �)0 ;

J q = J +
1

4
�0�0� +

5

8
�00� tan �+

1

2
(tan2 �� 3)�0 ;

G
q
1 = G1 +

3

4
�00 +

1

4
�00�0� � 3

4
�0�0 tan�+

1

8
�(�0 tan �)0 ;

Gq
2 = G2 +

1

16
�00(12 + 5�0�) tan �+

1

4
�0�0(5� sec2 �)

+
1

8
�
�
�00 + �00 sec2 �+ 3�0�0 tan � sec2 �

�
: (3.54)

Let us now consider the embedding of N = 0 string into N = 1 string within our

approach and its relationship with the N = 1! N = 2 embedding just presented.

We choose the N = 1 SCA formed by the currents T;G1. Taking as a stability sub-

algebra H = fTmg and parametrizing the coset space as

g = e
1

2�i

H
dz�(z)G1(z) ; (3.55)

we find the following expressions for the classical currents

T =
3

2
�0� +

1

2
��0 + Tm ;

G1 = �� � 1

2
��0� � 1

2
�Tm �

cm

12
(�00 � 1

8
��0�00) : (3.56)

After the redefinitions

G1 =
1p
2
~G ; � = �

p
2~� ; � = �

p
2~� ; (3.57)

the currents T and ~G precisely coincide with those deduced by McArthur [13]. Coinci-

dence with the result of Kunitomo [12] at the classical level can be further achieved by

decoupling the matter and putting the central charge equal to zero 1.

1In ref. [12] the classical versions of N = 1 SCA and Virasoro algebra were assumed to have a zero
central charge. Actually, it is not necessary to require this: central charges can be switched on already at the
classical level through, e.g., Feigin-Fuks terms.
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Total expressions for the currents contain quantum corrections:

T̂ q = Tm +
3

2
�0� +

1

2
��0 � 1

4
(�00�0 + �000�) ;

Ĝ
q
1 = �� � 1

2
��0� � 1

2
�Tm �

cm � 11

12
�00 +

cm � 26

96
��0�00 :

(3.58)

The redefinitions (3.57) bring these expressions into those given by Berkovits and Vafa [1]

and Berkovits and Ohta [7].

Let us compare T̂ q, Ĝq
1 with the currents T q, Gq

1 from the N = 2 set (3.54). They

also form N = 1 SCA as a subalgebra of N = 2 SCA and so are expected to admit a

truncation to the expressions (3.58).

Despite the fact that the coset space (3.55) formally can be derived from the coset

space (3.51) in the limit � = 0, the relation between the corresponding quantum currents

of N = 1 SCA is not so simple due to the presence of conjugate variable �(z)

�(z)�(w) � 1

z � w

in the expressions (3.52). The currents T q and Gq
1 can be brought into the following form

T q = (Tm + �0� � (�0 tan �)0) +
3

2
�0� +

1

2
��0 � 1

4
(�00�0 + �000�) ;

Gq
1 = �� � 1

2
��0� � 1

2
�(Tm + �0�� (�0 tan �)0)� cm � 9

12
�00 +

cm � 24

96
��0�00

�3

4
�0�0 tan �� 3

8
�(�0 tan�)0 : (3.59)

We observe that after passing to ~Tm = Tm + �0� � (�0 tan�)0, the currents T q and G
q
1

coincide with those given by eqs. (3.58), up to the change Tm ! ~Tm and the presence of

two extra terms in Gq
1:

T q = T̂ q ; Gq
1 = Ĝq

1 + �Gq
1 ;

�G
q
1 = �3

4
�0�0 tan �� 3

8
�(�0 tan �)0 : (3.60)

It is easy to check that the addition �Gq
1 possesses the following OPEs

T q �Gq
1 � 0; Gq

1 �G
q
1 + �Gq

1 G
q
1 � 0; �Gq

1 �G
q
1 � 0 : (3.61)

Though the presence of this term in Gq
1 is absolutely necessary for the closure of N = 2

superconformal algebra at the quantum level, it is unessential from the standpoint of its

N = 1 subalgebra formed by T q and G
q
1 (as follows from (3.61), it is a ‘null field’ with
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respect to this N = 1 SCA). If one does not care about the whole N = 2 SCA, then, as a

consequence of the relations (3.61), there is a one-parameter freedom in the definition of

G
q
1:

G
q
1(a) = Ĝ

q
1 + a�G

q
1: (3.62)

It means that the last term can be consistently omitted from G
q
1. Then the resulting ex-

pressions for the N = 1 SCA currents coincide with the expressions (3.58) in which Tm
is replaced by ~Tm. The presence of extra terms in ~Tm also leads to the shift of its central

charge to ~cm = cm +2. Thus, the final expressions for the currents T q; G
q
1 reduced in this

way coincide with the expressions (3.58) in which Tm; cm are replaced by ~Tm; ~cm.

We end this Section with the following comment. At any value of a in (3.62) the

currentsT q, Gq
1(a) generateN = 1 SCA with the standard relation between theN = 1 and

N = 0 central charges cN=1 = ~cm � 11. But only at a = 0 one gets a minimal realization

solely in terms of �, � and ~Tm that can be interpreted in the language of embedding of

N = 0 string into the N = 1 superstring.

4 Linearization of W (2)
3 as a string embedding

In this part of the article we demonstrate how the described techniques work in the case of

nonlinear algebras. As an example we take a W (2)
3 algebra. The spin content of currents

of this algebra 2; 3
2
; 3
2
; 1 is the same as in N = 2 SCA. The basic difference between these

two algebras is the Grassmann parity of the spin 3
2

currents. In the case of W (2)
3 they are

bosonic and this fact leads to the appearance of nonlinear terms in the OPEs of the algebra

T (z)T (w) � c=2

(z � w)4
+

2T (w)

(z � w)2
+
T 0(w)
z �w

;

T (z)J(w) � J(w)

(z � w)2
+
J 0(w)
z � w

; T (z)G�(w) � 3=2 G�(w)
(z � w)2

+
G0�(w)
z � w

;

J(z)J(w) � � c=9

(z � w)2
; J(z)G�(w) � � G�(w)

(z � w)
; G�(z)G�(w) � 0 ;

G+(z)G�(w) � �c=3
(z � w)3

+
3J(w)

(z � w)2
� T (w) + 18=c J2(w) � 3=2 J 0(w)

z �w
: (4.1)

The algebra (4.1) is nonlinear because there is a quadratic (in J ) term on the right-

hand side of the OPEG+G�. One way to construct a coset realization of this algebra along

the lines of the previous Sections is to convert it into an infinite-dimensional linear algebra

using the trick proposed in [19]. It consists in treating all the composite currents (including

J2) as some new independent currents. We use here another, more economic version of

this approach which will allow us to deal only with the original finite set of W (2)
3 currents

at each step of calculations.
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We choose as the stability subalgebra the maximal linear subalgebra of W (2)
3 , that is

the set

H = fG+; J; T; cg; (4.2)

as well as all the composite currents constructed out of it, like J2, JT , cJ , cT , ... . For

consistency, we need to treat the central charge of the whole algebra also as an independent

current and to include it from the beginning into the set (4.2) on equal footing with other

currents.

The remaining current G� is placed into the coset. Respectively, we will interpret

the quantity

K = e
1

2�i

H
dz�(z)G�(z) (4.3)

as a representative of this coset. We will try to realize the whole W (2)
3 as left shifts of the

coset current �(z) making use of the general formalism described in Sect. 2. An essentially

new feature compared to the case of linear algebras will be the appearance of composite

currents in the induced elements h on the right hand side of the general relation (2.3) spe-

cialized to the present case. We will give a self-consistent explicit prescription of how to

treat such objects with preserving the original algebraic structure.

Calculating as above the left action of the infinitesimal element

� =
1

2�i

I
dzf�+(z)G

+(z) + ��(z)G�(z) + �(z)J(z) + a(z)T (z)g ; (4.4)

on (4.3), we find the variation of �(x)

�� = �� + �+��
0 � �0+�

2 � �� +
1

2
a0� � a�0 ; (4.5)

and induced infinitesimal element of the subalgebra to the right of K

�h =
1

2�i

I
dzf�J + aT + �+G

+ � c

6
�+�

00 � 3�+�
0J

� 3

2
�+�J

0 � �+�T �
18

c
�+�J

2 +
18

c
�+�

2JG� � 6

c
�+�

3G�G�g : (4.6)

Since the currents J , T and G� form a linear subalgebra inW (2)
3 , no problems occur

while obtaining the expressions for them within the coset realizations approach. Just like

in the cases considered in the previous Section, one should replace, in the relevant terms in

(4.6), the involved stability subalgebra generators J , T , c by their ‘matter’ representation

Jm, Tm, cm (cm is assumed to be a constant, and this is why we are allowed to divide by c

in (4.6)). Also, one introduces the current p(z) canonically conjugated to �(z)

p(z)�(w) � 1

z � w
: (4.7)

21



As a result, the following expressions for J , T and G� can be extracted from eqs. (4.5)

and (4.6)

J = �p + Jm ; T =
3

2
�0p +

1

2
�p0 + Tm ; G� = �p : (4.8)

A new characteristic feature of (4.6) is the appearance of the composite currents J2,

JG�, G�G� in the expression for the induced element of the subalgebra corresponding

to the left shift by the generator G+ (the coefficient before the parameter �+ in the r.h.s

of (4.6)). This comes about just due to the presence of nonlinear term in the last of OPEs

(4.1), so one can expect that such a phenomenon is typical for nonlinear algebras. This is a

crucial difference compared to the previously considered linear case, and one should give a

recipe of how to treat such composite currents within the nonlinear realizations formalism.

Once again, in accord with the general prescriptions of Sect. 2, we should replace the

stability subalgebra generators by their ‘matter’ representation fG+
m; Jm; Tm; cmg wher-

ever they appear, on their own or as building blocks of composite currents. What concerns

the composite currents containingG�, namely JG� andG�G�, a natural idea is to replace

the current G� in them by its already found coset expression (4.8). In this way we get

G+ = G+
m � 3��0p � �2p0 � c

6
�00 � 3�0Jm �

3

2
�J 0m � �Tm �

18

c
�J2

m

� 18

c
�2Jmp �

6

c
�3p2 : (4.9)

It is straightforward to verify that the currents (4.8), (4.9) satisfy just the OPEs (4.1) with

c = cm.

A consistency check of our procedure of deriving the coset representation for the

W
(2)
3 currents goes as follows. We act on the coset element (4.3) from the left by compos-

ite currents constructed out of the original abstract currents J , T , G� and find their coset

realization by pulling them through (4.3) with the use of OPEs (4.1) and finally making the

changes fJ; T;G+; cg ! fJm; Tm; G+
m; cmg and G� ! �p. We explicitly found such a

realization for the composite currents J2, G�G�, JG+. In all cases, the resulting expres-

sions are given by the appropriate products of the currents (4.8) and (4.9).

Note that this modified nonlinear (coset) realizations scheme seems to work, with

minor further modifications, in the case of other nonlinear algebras too.

Similarly to the N = 2 SCA realizations constructed in Sect. 3, the formulas (4.8),

(4.9) give a realization of theW (2)
3 generators in terms of Nambu-Goldstone fields �, p and

a closed set of ‘matter’ currents Jm; Tm; G+
m. It can be checked that these expressions coin-

cide with the classical limit of the expressions for the W (2)
3 currents obtained in [20] within

the procedure of conformal linearization of W (2)
3 . The currents Jm; Tm; G+

m together with
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the ‘ghost-antighost’ pair �; p form just the classical version of the linearizing algebra for

W
(2)
3 . Thus at the classical level the ‘linearization’ of W (2)

3 amounts to constructing its

above coset realization, with the Nambu-Goldstone field � (and its conjugate momenta p)

playing the role of additional currents which allow to linearize W (2)
3 in the spirit of ref.

[20]. One encounters here a surprising situation when two nonlinearities (the intrinsic non-

linearity ofW (2)
3 algebra and the nonlinearity of the coset realization procedure) ‘interfere’

to yield a linearity in the end. It would be interesting to apply the same techniques to con-

struct linearizing algebras for thoseW algebras for which this construction is still lacking,

e.g., SO(N) Knizhnik-Bershadsky algebra.

It is tempting to make a step further and to wonder whether this linearization pro-

cedure through a nonlinear realization of W (2)
3 admits an interpretation in terms of string

embeddings, like nonlinear realizations of N = 2 SCA constructed in the previous Sec-

tion. It does! To see this, one needs, first of all, to pass [20] to the quantum counterparts

of eqs. (4.8), (4.9)

J q = J; T q = T +
9

9 � c
J q0; G�q = G� ;

G+q = G+
m � �T q +

18

9� c
�J qJ q +

3(21 � c)

2(9 � c)
�J q0 � 18

9� c
�2pJ q

+
6

9� c
�3p2 + 3��0p +

9 + c

9� c
�2p0 � 3

�
�J q � 9� c

18
�0
�0

: (4.10)

An essential peculiarity of this case originating from the nonlinear nature ofW (2)
3 and hav-

ing no analog in the case of N = 2 SCA (and other linear conformal algebras) is that not

only the central charges of W (2)
3 and the subalgebra fTm; Jm; G+

mg become different af-

ter passing to the quantum case, but also the structure relations of the latter algebra are

modified. Namely, its quantum OPEs are as follows

Tm(z1)Tm(z2) � 9 + 4c � c2

2(9 � c)

1

z412
+

2Tm

z212
+
T 0
m

z12
;

Tm(z1)G
+
m(z2) �

�
3

2
+

9

9 � c

�
G+
m

z212
+
G+
m
0

z12
; Tm(z1)Jm(z2) �

Jm

z212
+
J 0m
z12

;

Jm(z1)Jm(z2) � 9� c

9z212
; Jm(z1)G

+
m(z2) �

G+
m

z12
; (4.11)

and they differ from the classical ones in that the currentG+
m acquires an anomalous confor-

mal dimension 3
2
+ 9

9�c . Actually, this is none other than the algebraW lin
3 which linearizes

another kind of nonlinear algebra, Zamolodchikov’s W3 algebra [20]. Now, we wish to

interpret eqs. (4.10) as describing an embedding of some string with the symmetry alge-

bra W lin
3 in the matter sector into a string associated with W (2)

3 . A consistency check for
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such an interpretation is to inquire whether the critical central charges of these two alge-

bras match with each other. They can be parametrized in terms of a single parameter c as

follows [20]

c(TT ) =
(7 + c)c

c� 9
; cm =

9 + 4c� c2

9� c
: (4.12)

The BRST operator for W lin
3 was constructed in [8], it is nilpotent at c = 18 and, accord-

ingly, cm = 27. On the other hand, as noted in the same paper [8], the nilpotency condition

for the BRST charge operator for W (2)
3 [21] requires c(TT ) = 50. But this is just the value

that arises upon substitution, into cTT in (4.12), of c = 18 which simultaneously produces

the critical value for the central charge cm. Thus the remarkable matching between crit-

ical central charges which is a characteristic feature of embeddings in the case of linear

superconformal algebras extends to this nonlinear case as well. This is a strong indication

that in the present case we indeed deal with an embedding of string associated with the

linear algebra W lin
3 into the W (2)

3 string 2. Note that an analogous relation between criti-

cal central charges was found in [8] while considering an embedding of the bosonic string

(associated with the Virasoro subalgebra Tm) into the W (2)
3 string. It would be interesting

to check whether such an embedding can be reproduced within our nonlinear realization

approach.

5 Conclusions

In this paper we presented a modified nonlinear realization method directly applicable to

superconformal and some W type algebras in the formulation based on OPEs or SOPEs

of the relevant currents or supercurrents. This provides a systematic way of deducing the

relations describing various embeddings of bosonic and fermionic strings. The embed-

ded string or superstring (its matter sector, to be precise) always corresponds to the vac-

uum stability subalgebra of the given nonlinear realization while for the (super)currents of

the embracing algebra one algorithmically gets the expressions in terms of the appropriate

coset (super)fields, their conjugate momenta and the generators of the stability subalgebra.

The method as it stands is limited to the classical algebras (although with non-zero cen-

tral charges, as distinct from the approach of [12], say). Nonetheless, it is straightforward

to explicitly find the quantum corrections and to get the genuine relations describing the

string embeddings. We reproduced in this way some known examples (N = 0! N = 1

[1], N = 1 ! N = 2 [7]) and constructed new embeddings of the bosonic string and

some of its extensions into the N = 2 string. It would be interesting to reveal possible

2In order to rigorously prove this conjecture, one should show that the cohomology of the BRST operator
forW (2)

3 in this specific realization coincides with that of the BRST operator forW lin
3 .
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physical implications of such extended strings and to identify their place in the modern

string realm. All the embeddings constructed include as a particular case the correspond-

ing critical embedding.

We also applied our method to an example of nonlinear W type algebras, W (2)
3 al-

gebra, choosing as the stability subalgebra the maximal linear subalgebra of W (2)
3 . It co-

incides with the algebra W lin
3 introduced in [20] as the linearizing algebra for Zamolod-

chikov’s W3. Surprisingly, our approach immediately leads to the relations of ref. [20]

describing the linearization of W (2)
3 . Thus the linearization procedure for this particular

W algebra can be as well understood as the embedding of the W lin
3 string into the W (2)

3

string. The critical central charges in this case nicely match with each other, similarly to

other examples considered. An interesting problem is to treat a wider class ofW type alge-

bras from the point of view presented here and to see whether the linearization procedure

for them [22]-[24] always admits an interpretation in terms of proper string embeddings.

As a prospect for further developments we mention possible applications of our method

to other superconformal algebras, e.g. ‘small’ and ‘large’ N = 4 SCAs. Some string em-

beddings related to these algebras were described in [7,25]. Our method will hopefully al-

low to list all possible such embeddings by choosing various subalgebras of N = 4 SCAs

as the vacuum stability ones. It would be extremely interesting to generalize our method

to more complicated extended objects like p-branes, i.e. to learn how to construct nonlin-

ear realizations of the relevant infinite-dimensional world-volume gauge symmetries and

to describe embeddings of such objects in this universal language 3.

Finally, let us remind that nonlinear realizations of 1D superconformal algebras and

W algebras were previously considered from various points of view in a number of works,

e.g. in [26,19], [27]-[29]. It is of interest to understand how these approaches are related

with the one presented here.
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