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Abstract

An unorthodox insight into the structure of the geometrical Chou-Yang model
explains the experimentally observed paradox of elastic diffraction of high energy
hadrons without multiple dips. It is pointed out that the shadow scattering, away
from the forward peak, is governed by small values of the coupling strength.
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The behaviour of elastic differential cross-section in high energy hadron scat-

tering does not agree with standard ideas about collision of hadrons. In particular, it does

not agree with the geometrical models [1,2] of scattering that were supposedly patented

to function at high energies. High energy hadron-hadron scattering is strongly absorptive

which means that the available energy goes mainly into the production of a very rich set

of inelastic final states while the direct two-body channels are suppressed. Yet, as a con-

sequence of unitarity, substantial elastic scattering still takes place through a feed-back

from the inelastic channels. This feed-back process is referred to, by analogy to the sup-

pression of the amplitude of light waves by opaque or semi- transparent objects, as shadow

or diffraction scattering. According to this optical analogy, diffraction should be associ-

ated with multiple dips in elastic differential cross-section. But experiments have, so far,

seen no multiple dips. There is hardly any dip in the p� �p elastic differential cross -section

at Tevatron [3] (
p
s=1800 GeV) and SPS collider [4] (

p
s=546,630 GeV) energies while

elastic p� p and p� �p cross-sections at ISR [5] energies (20 � ps �60 GeV) have only

one dip. When critically examined, the elastic differential cross-sections of lightest nu-

clei [6,7] reveal at most one unambigous dip. Taken together, the experimental data con-

stitute a puzzling problem, that is of a diffractive phenomenon which does not have the

supposedly well established characteristcs of diffraction, familiar from optics and wave

mechanics.

The puzzle would be resolved if there could be diffraction in the sense of unitarity-

driven shadow scattering, which is not necessarily accompanied by multiple dips. This is

what the experimental data seem unambigously to be suggesting. We claim in this note

that this is indeed the case also theoretically. It will be shown that structures in differen-

tial cross-sections depend crucially on the effective strength of the interaction governing

the scattering process and, correspondingly, on the characteristic length scales involved.

Optical-like diffraction with its characteristic forward peak and multiple dip structure is

governed by long distance dynamics and large values of the effective coupling strength.

Shadow scattering in hadron-hadron collisions at medium and large momentum transfers,

on the other hand, is governed by short distance dynamics and small values of the coupling

strength.

We reached these conclusions by re-examining geometrical models and studying

them as exact mathematical formulations. With this purpose in mind the model param-

eters are to be free to vary in all possible ways and not only within the bounds allowed

by a reasonable fitting to the experimental data. The basic ingredient of the geometrical

models is the real, dimensionless opacity function
(b)which depends on a relative impact
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parameter b of interacting hadrons and appears in the eikonalized scattering amplitude:

T (q) =
i

(2�)
2

Z
d2bei~q�

~bT (b);T (b) = 1 � exp[�
(b)]; (1)

q =
q
jtj being the momentum transfer in the centre-of-mass system. This amplitude can

be reduced, under an implicit assumption of the rotational symmetry of the opacity 
(b),

to the one-dimensional Bessel transforms of integer order [8]:

T (q) =
i

2�

Z 1

0

dbbJ0(qb)T (b) = �
i

2�

Z 1

0

dbb2
J1(qb)

qb

dT (b)

db
: (2)

The second form of (2), valid for T (b) vanishing at b ! 1 faster than b�1=2, makes it

clear that in the geometrical models elastic diffraction takes place mainly at the edge of

the absorbing profile T (b).

The optimistic dynamical conjecture was that the opacity can be expressed in terms

of hadronic shapes known from other experiments, e.g. in the Chou-Yang model [2] it is

assumed that the Fourier transform of
(b) is proportional to the product of the electromag-

netic form factors of the colliding hadrons FH1
(jtj)FH2

(jtj). Rather than from experiment,

for simplicity of illustration, we take these form factors as the extrapolations to all values

of jtj of the asymptotic quark model behaviour:

FH(t) = (1 +
jtj
m2

)
1��H

(3)

where �H is the number of valence quarks in the hadron H, m being a mass scale param-

eter. For a pion (�H = 2) this gives a single pole form factor and for a proton (�H = 3), a

dipole. The opacity function then reads


(b) = gh�(mb); h�(mb) =
2

�(� � 3)
(
mb

2
) nu�3K��3(mb) (4)

where g � 
(0) is a dimensionless coupling parameter, � � �A + �B and K�(mb) is the

modified Bessel function [8]. For simplicity, the mass scale m in the two hadronic form

factors was taken the same.

The predictions of the Chou-Yang model with the opacity (4) are far richer than it

had been usually recognised. In its standard phenomenological application [9], the propor-

tionality constant g(s) between the opacity of the hadron and the Fourier transform of the

square of its form factor, was simply adjusted to the experimental value of the total cross-

section �tot(s) = 8�2ImT (s; t = 0). But when this experimental constraint is relaxed,

one finds that the model can accomodate a surprisingly wide range of behaviour of the elas-

tic differential cross-section d�(s; t)=dt. Depending on the value of the coupling constant

2



Figure 1: Plots of the elastic differential cross-section for various values of the coupling
constant g: 0.50, 0.90, 0.95 (dotted lines), 0.96, 1.50 (dashed lines), 1.20, 2.0 (solid lines).
For description - see the text.
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g, the d�(s; t)=dtmay manifest multiple dips, just one dip (or a single minimum) or no dips

(or minima) at all. This is illustrated in Fig.1 where the proton-proton (� = 6) differential

cross-sections are plotted for various values of g and the fixed value of m2=0.71GeV 2.

The coupling constant g acts effectively as a control (or order) parameter. There exists a

critical value gc = 0:96 independent of m for which one has just one dip. For small values

of the coupling 0 < g � 0:50, the differential cross-section has neither dips nor maxima

and minima. A shoulder-like structure that can mimic a minimum appears for some values

< gc (e.g. g = 0:90). As g increases towards gc, the scattering amplitude develops a min-

imum (e.g. at g = 0:95) which gets deeper and deeper becoming a zero of the amplitude.

In fact, this zero is a double one. As g increases away from gc, at once two zeroes appear.

The left zero, with increasing g, always moves towards lower values of jtj . The right zero,

instead, first goes in the opposite direction but when g exceeds the value g = 1:50, it turns

back and further the two zeroes follow the same way. At another critical value g = 3:20

the third zero (also double) appears in the differential cross-section.

It is important to understand how the structures in the elastic differential cross-section

arise when the coupling g increases. Qualitatively, it follows from the first form of (2) that

since exp[�
(b)] falls off exponentially with g, then large values of g allow for more os-

cillations of the Bessel function J0(qb) in the interval 0 � b <1. The many oscillations

(growing with the momentum transfer q) in the integrand determine the multiple dip struc-

ture of the differential cross-section. This dip structure slowly disappears as the effective

number of the oscillations is reduced when g decreases. A more quantitative insight into

the geometry of elastic diffraction can be gained from studying the derivative of the scat-

tering profile which appears in the second form of (2). We have from (4):

dT (mb)

d(mb)
= �exp[�
(mb)]
(mb)

K��4(mb)

K nu�3(mb)
: (5)

These derivative scattering profiles are plotted for various values of g in Fig.2. One ob-

serves that the stronger coupling g the closer is the profile T (g;mb) to a sharp-edged ab-

sorbing disc. Although the tail of the opacity 
(b) at large b is controlled by the mass

parameter m, the disc radius and the sharpness of its edge are determined by the coupling

g. In fact, the exponential factor in (5) cuts off the low b part of the 
(b) distribution, do-

ing this more effectively the greater is the value of g. At the same time, the large value

of g induces an increase of the heigth of 
(b). In the limit g ! 1 the scattering profile

T (g;mb) would approach a step function �(R� b) which corresponds to scattering by a

sharp, black disc of radius R. This can also be seen in momentum space upon taking the
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limit g !1 directly in the first form of the scattering amplitude (2)

T (t; g;m) = � i

(2�)m2

Z 1

0

dh
du(h)

dh
u(h)J0[

q
jtj
m

u(h)]�(h(0)� h)[1� e�gh(u)]; (6)

u(h) being the function inverse to the function h(u) � h�(mb). The leading term of the

right-hand-side for g !1 may be estimated by observing that then 1� e�gh � 1 for all

h � 1=g. Thus

T (t; g;m)g!1 �
i

m2

Z u(1=g)

0

duuJ0(

q
jtj
m

u) (7)

where u(1=g) is the value of u satisfying h[u(1=g)] = 1=g. This means that for large but

finite g, T (t) becomes the Airy-like scattering amplitudeRJ1(qR)=q from a sharp absorb-

ing disc of radius R(g) = u(1=g)=m.

The number of dips appearing in the differential cross-section depends thus crucially

on the strength of the coupling g. Another way of uderstanding this follows from observa-

tion that it is the coupling parameter g that governs the decomposition of the scattering am-

plitude into a series of multiple collisions. In fact, expanding the exponential exp[�
(b)]
in Eq. (1) one obtains upon integration over the impact plane the following expression for

the S-matrix (S = 1 + iT ) of elastic scattering [10]:

S(q) = ehni
1X
n=0

(�1)nPn�
(2)(~q � ~qn) (8)

This formula describes the distribution of all possible partitions of the momentum transfer

~q. It is governed by the Poissonian Pn = e�hnihnin=n! with the mean value < n >=

g. The terms of the multiple scattering series (8) alternate in sign. Only for very small

values of the coupling constant g � 1 the scattering amplitude is a positive function of the

momentum transfer. But for values of g close to unity and larger, this amplitude necessarily

has zeroes which give rise to the dips in the differential cross-section.

The coupling g is not the only variable parameter in the Chou-Yang model. There

is also the mass scale parameter m in the form factor (3). Having relaxed the condition

which fixed g(s) to the experimental value of the total cross-section �tot(s) one can, in the

same spirit, let m to be a free parameter. Strict commitment to the fact that FH(t) should

be the electromagnetic form factor extracted from experiments is then not required. There

is ambiguity enough, concerning the question which form factor or combination of form

factors [11] is to be used in (3), that justifies our attitude. It turns out that the shape of

the elastic differential cross-section is independent of the mass scale parameter m. That

is, variations in m at fixed g do not change the behaviour of d�(s; t)=dt e.g. from having

no dips to one with multiple dips or vice versa. The positions of the dips, of the max-

ima and minima are, on the other hand, very sensitive to the value of m. As m increases,
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Figure 2: Plots of the derivative of the scattering profile T (mb; g) for various values of the
coupling g= 0.2, 0.5, 0.9, 1.2, 1.5 (dotted lines), 2.0, 3.0, 4.0, 6.0, 10.0, 20.0 (solid lines).
The greater values of g correspond to larger heigths of the maxima.
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these positions move towards the origin (t = 0) with a corresponding decrease not only in

the value of d�(s; t)=dt but also in the overall value of the integrated elastic cross-section

�el(s) and the total cross-section �tot(s). These total cross-sections scale with m(s)
�2. A

value of m(s) = m0(s) can therefore be found to match the position of the minimum in

d�(s; t)=dt with the single dip-like structure in the experimental cross-section. The total

cross-section �tot(s), the integrated elastic cross-section �el(s) and the slope parameter

�(s) of the elastic differential cross-section at t = 0, are increasing functions of g but de-

creasing functions of m. Values of �tot in the range of the experimental ones (e.g. in p�p

and p � �p at ISR and SPS energies) correspond to values of g(s) > gc and, therefore, to

multiple dips in d�(s; t)=dt. They correspond too to values of m(s) < m0(s) and hence

to positions of the single dip-like structure in d�(s; t)=dt far away from the experimental

one. It is, therefore, not possible to reconcile the experimental values of �tot(s), �el(s)

and �(s) with the absence of mltiple dips in d�(s; t)=dt and with the position of its single

dip-like structure in the model. Adjusting g(s) around gc to get the experimental shape of

d�(s; t)=dt andm(s) aroundm0(s) to get the position of the single dip produces a value of

d�(s; t) many orders of magnitude smaller than the experimental one. The experimental

values of �tot(s) ,�el(s), �(s), on the one hand, and the shape and structure of d�(s; t)=dt,

on the other, constitute therefore rather severe constraints, particularly because getting the

one tends to ruin the other.

Despite of the failure in fitting experimental data the Chou-Yang model has, as we

have seen earlier, other and profounder merits. The model does not predict only multiple

dips, characteristic of familiar optical diffraction. It has an astonishing virtue of accomo-

dating all kinds of behaviour of the elastic differential cross-section. The coupling con-

stant g of the model is much more than just a fit parameter. If the appearance of dips is

interpreted as a classical-like phenomenon, then g operates as a kind of geometrical size

parameter in a way remarkably similar to the inverse of Planck’s constant �h. This is rem-

iniscent of the rôle of �h in semiclassical approximations to quantum scattering on which

geometrical models are essentially based. Thus g !1 corresponds to large distances in

much the same way as �h! 0 corresponds to a classical macroscopic regime.

We would like to point out that geometrical models have been used, so far, only in

this ’macroscopic’ limit giving rise to optical-like diffraction with its characteristic multi-

ple dip structure. In fact, the basic assumption of these models is that the incident particle

is way out of the target before the effects which it induces in the latter take place. This

means that the projectile hadron sees the target, essentially , as a geometrical obstacle of

given finite size. In other words, the geometrical models, as usually applied, include an

implicit assumption of asymptotic sharp-edged disc (black or grey) scattering at large dis-

tances.
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On the other hand, a lot was gained simply by the knowledge how the limit g ! 0

operates in the Chou-Yang model. This limit corresponds to �h ! 1 , which means a

regime where quantum effects are not at all negligible. More than just classical wave-like

properties could emerge in such a limit. In this ’submicroscopic’ limit the absorbing disc

scattering, operative at large distances, will be replaced by point-like scattering at short

distances, i.e. inside the geometrical obstacle. It appears clearly from our previous dis-

cussion that diffraction in high energy hadron-hadron collisions, understood as a unitarity

driven shadow scattering, would rather be influenced (away from the forward peak) by

short distance dynamics connected to small values of the coupling strength. This prompt

us a useful distinction between two sources of elastic diffraction: the geometrical diffrac-

tion on an absorbing hadronic bulk, considered as a shadow of non-diffractive transitions,

and the short-range dynamical diffraction, appearing as the unitarity effect from interme-

diate diffractive transitions. Such a two-component model was constructed by one of us

in a recent publication [12] and applied succsessfully to elastic scattering and inclusive

inelastic diffraction of high energy hadrons.

This communication resulted from our collaboration with Dr. E. Etim. His contri-

bution is gratefully acknowledged. This work was partially supported by the Polish Com-

mittee for Scientific Research (K B N) and the Italian Institute for Nuclear Physics (I N F

N).
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