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Abstract

An unorthodox insight into the structure of the geometrical Chou-Yang model
explains the experimentally observed paradox of elastic diffraction of high energy
hadrons without multiple dips. It is pointed out that the shadow scattering, away
from the forward peak, is governed by small values of the coupling strength.
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The behaviour of elastic differential cross-section in high energy hadron scat-
tering does not agree with standard ideas about collision of hadrons. In particular, it does
not agree with the geometrical models [1,2] of scattering that were supposedly patented
to function at high energies. High energy hadron-hadron scattering is strongly absorptive
which means that the available energy goes mainly into the production of a very rich set
of inelastic final states while the direct two-body channels are suppressed. Yet, as a con-
sequence of unitarity, substantial elastic scattering still takes place through a feed-back
from the inelastic channels. This feed-back processis referred to, by analogy to the sup-
pression of theamplitude of light waves by opague or semi- transparent obj ects, as shadow
or diffraction scattering. According to this optical analogy, diffraction should be associ-
ated with multiple dipsin elastic differential cross-section. But experiments have, o far,
seen no multipledips. Thereishardly any dip inthe p— p elastic differential cross-section
at Tevatron [3] ( 1/s=1800 GeV) and SPS collider [4] (1/s=546,630 GeV) energieswhile
elastic p — p and p — p cross-sections at ISR [5] energies (20 < /s <60 GeV) have only
one dip. When critically examined, the elastic differential cross-sections of lightest nu-
clei [6,7] reveal at most one unambigous dip. Taken together, the experimental data con-
stitute a puzzling problem, that is of a diffractive phenomenon which does not have the
supposedly well established characteristcs of diffraction, familiar from optics and wave
mechanics.

The puzzle would be resolved if there could be diffraction in the sense of unitarity-
driven shadow scattering, which is not necessarily accompanied by multipledips. Thisis
what the experimental data seem unambigoudly to be suggesting. We claim in this note
that thisisindeed the case also theoretically. It will be shown that structuresin differen-
tial cross-sections depend crucially on the effective strength of the interaction governing
the scattering process and, correspondingly, on the characteristic length scales involved.
Optical-like diffraction with its characteristic forward peak and multiple dip structure is
governed by long distance dynamics and large values of the effective coupling strength.
Shadow scattering in hadron-hadron collisions at medium and large momentum transfers,
on the other hand, isgoverned by short distance dynamics and small values of the coupling
strength.

We reached these conclusions by re-examining geometrical models and studying
them as exact mathematical formulations. With this purpose in mind the model param-
eters are to be free to vary in al possible ways and not only within the bounds allowed
by a reasonable fitting to the experimental data. The basic ingredient of the geometrical
modelsisthereal, dimensionlessopacity function €2(b) which depends on arel ativeimpact



parameter b of interacting hadrons and appears in the eilkonalized scattering amplitude:
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q= \ﬂ t| being the momentum transfer in the centre-of-mass system. This amplitude can
be reduced, under an implicit assumption of the rotational symmetry of the opacity €2(b),
to the one-dimensional Bessal transforms of integer order [8]:
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The second form of (2), valid for 7'(b) vanishing at b — oo faster than b='/2, makes it
clear that in the geometrical models elastic diffraction takes place mainly at the edge of
the absorbing profile 7'(b).

The optimistic dynamical conjecture was that the opacity can be expressed in terms
of hadronic shapes known from other experiments, e.g. in the Chou-Yang model [2] it is
assumed that the Fourier transformof €2(b) isproportional to the product of the el ectromag-
netic form factorsof thecolliding hadrons Fi, (|t|) Fr, (]¢]). Rather than from experiment,
for simplicity of illustration, we take these form factors as the extrapolationsto all values
of |¢| of the asymptotic quark model behaviour:

Fr(t) = (1+ =) (3)

where vy isthe number of valence quarksin the hadron H, m being a mass scale param-
eter. For apion (vy = 2) thisgivesasingle pole form factor and for aproton (v = 3), a
dipole. The opacity function then reads

() 2, o(mb) @

Q(b) = gh,(mb), h,(mb) = = 3)( 5

where ¢ = Q(0) isadimensionless coupling parameter, v = v4 + vg and K, (mb) isthe
modified Bessel function [8]. For simplicity, the mass scale m in the two hadronic form
factors was taken the same.

The predictions of the Chou-Yang model with the opacity (4) are far richer than it
had been usually recognised. Initsstandard phenomenol ogical application[9], the propor-
tionality constant ¢(s) between the opacity of the hadron and the Fourier transform of the
sguare of itsform factor, was simply adjusted to the experimental value of thetotal cross-
section o,,,(s) = 87*ImT(s,t = 0). But when this experimental constraint is relaxed,
onefindsthat the model can accomodate asurprisingly widerange of behaviour of theelas-
tic differential cross-section do (s, t)/dt. Depending on the value of the coupling constant
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Figure 1: Plots of the elastic differential cross-section for various values of the coupling
constant ¢: 0.50, 0.90, 0.95 (dotted lines), 0.96, 1.50 (dashed lines), 1.20, 2.0 (solid lines).
For description - see the text.



g,thedo(s,t)/dt may manifest multipledips, just onedip (or asingleminimum) or no dips
(or minima) at al. Thisisillustrated in Fig.1 where the proton-proton (v = 6) differential
cross-sections are plotted for various values of ¢ and the fixed value of m?=0.71GeV 2.
The coupling constant ¢ acts effectively as a control (or order) parameter. There exists a
critical value g. = 0.96 independent of m for which one hasjust one dip. For small values
of the coupling 0 < ¢ < 0.50, the differential cross-section has neither dips nor maxima
and minima. A shoulder-like structure that can mimic aminimum appearsfor some values
< g. (9. g = 0.90). As g increasestowards g., the scattering amplitude develops amin-
imum (e.g. a g = 0.95) which gets deeper and deeper becoming a zero of the amplitude.
In fact, thiszero isadouble one. As ¢ increases away from g., at once two zeroes appear.
The left zero, withincreasing ¢, aways movestowardslower valuesof |¢| . Theright zero,
instead, first goesin the opposite direction but when ¢ exceedsthevalue g = 1.50, it turns
back and further the two zeroes follow the same way. At another critical value g = 3.20
the third zero (also double) appearsin the differential cross-section.

Itisimportant to understand how the structuresintheelastic differential cross-section
arise when the coupling ¢ increases. Qualitatively, it followsfrom thefirst form of (2) that
since exp[—€(b)] falls off exponentially with g, then large values of ¢ allow for more os-
cillations of the Bessdl function Jy(¢b) in theinterval 0 < b < oo. The many oscillations
(growing with the momentum transfer ¢) in the integrand determine the multipledip struc-
ture of the differential cross-section. This dip structure slowly disappears as the effective
number of the oscillations is reduced when ¢ decreases. A more quantitative insight into
the geometry of elastic diffraction can be gained from studying the derivative of the scat-
tering profile which appears in the second form of (2). We have from (4):
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These derivative scattering profiles are plotted for various values of ¢ in Fig.2. One ob-
serves that the stronger coupling ¢ the closer is the profile T'(g, mb) to a sharp-edged ab-
sorbing disc. Although the tail of the opacity €2(b) at large b is controlled by the mass
parameter m, the disc radius and the sharpness of its edge are determined by the coupling
g. Infact, the exponential factor in (5) cuts off the low b part of the Q(b) distribution, do-
ing this more effectively the greater is the value of g. At the same time, the large value
of ¢ induces an increase of the heigth of 2(4). Inthelimit g — oo the scattering profile
T'(g, mb) would approach a step function ©( R — b) which corresponds to scattering by a
sharp, black disc of radius E. This can aso be seen in momentum space upon taking the



limit g — oo directly in thefirst form of the scattering amplitude (2)
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u(h) being the function inverse to the function h(u) = h,(mb). Theleading term of the

right-hand-side for ¢ — oo may be estimated by observing that then 1 — ¢=9" ~ 1 for all
h >1/g. Thus
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whereu(1/g) isthe value of v« satisfying h[u(1/g)] = 1/g. ThIS means that for large but
finite g, T'(¢) becomesthe Airy-like scattering amplitude R.J; (¢ R) /¢ from asharp absorb-
ing disc of radius R(g) = u(1/g)/m.

The number of dips appearinginthedifferential cross-section dependsthuscrucially
on the strength of the coupling ¢g. Another way of uderstanding thisfollowsfrom observa-
tionthat itisthe coupling parameter ¢ that governsthe decomposition of the scattering am-
plitude into aseries of multiple collisions. In fact, expanding the exponential exp[—Q(b)]
in Eg. (1) one obtainsupon integration over the impact plane the following expression for
the S-matrix (S = 1 + ¢T") of elastic scattering [10]:

S(q) = e 3 (=1)"P.6P(G— 7.) (8)

n=0
Thisformuladescribesthe distribution of all possible partitions of the momentum transfer
q. Itis governed by the Poissonian P, = ¢~ (n)" /n! with the mean value < n >=
g. Theterms of the multiple scattering series (8) alternate in sign. Only for very small
values of the coupling constant ¢ < 1 the scattering amplitudeisapositive function of the
momentum transfer. But for valuesof ¢ closeto unity and larger, thisamplitude necessarily
has zeroes which give rise to the dipsin the differential cross-section.

The coupling ¢ is not the only variable parameter in the Chou-Yang model. There
is also the mass scale parameter m in the form factor (3). Having relaxed the condition
which fixed ¢(s) to the experimental value of thetotal cross-section o,,,(s) onecan, inthe
same spirit, let m to be a free parameter. Strict commitment to the fact that £7(¢) should
be the electromagnetic form factor extracted from experimentsisthen not required. There
is ambiguity enough, concerning the question which form factor or combination of form
factors [11] isto be used in (3), that justifies our attitude. It turns out that the shape of
the elastic differential cross-section is independent of the mass scale parameter m. That
is, variationsin m at fixed ¢ do not change the behaviour of do(s,)/dt e.g. from having
no dips to one with multiple dips or vice versa. The positions of the dips, of the max-
ima and minimaare, on the other hand, very sensitive to the value of m. Asm increases,
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Figure 2: Plotsof the derivative of the scattering profile 7'(mb; ¢) for various values of the
coupling g=0.2, 0.5, 0.9, 1.2, 1.5 (dotted lines), 2.0, 3.0, 4.0, 6.0, 10.0, 20.0 (solid lines).
The greater values of ¢ correspond to larger heigths of the maxima.
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these positions move towardsthe origin (¢ = 0) with a corresponding decrease not only in
the value of do (s, t)/dt but asoin the overall value of the integrated elastic cross-section
() and the total cross-section o,¢(s). Thesetotal cross-sections scale with m(s)™>. A
value of m(s) = mg(s) can therefore be found to match the position of the minimum in
do(s,t)/dt with the single dip-like structure in the experimental cross-section. The total
cross-section o,,4(s), the integrated elastic cross-section o,(s) and the slope parameter
((s) of the elastic differential cross-section at ¢t = 0, areincreasing functions of ¢ but de-
creasing functionsof m. Values of o,,; in the range of the experimental ones(e.g. inp —p
and p — p at ISR and SPS energies) correspond to values of g(s) > ¢. and, therefore, to
multiple dipsin do(s,t)/dt. They correspond too to values of m(s) < mq(s) and hence
to positions of the single dip-like structurein do (s, t)/dt far away from the experimental
one. It is, therefore, not possible to reconcile the experimental values of oy.(s), o (s)
and 3(s) with the absence of mitipledipsin do (s, t)/dt and with the position of itssingle
dip-like structurein themodel. Adjusting ¢(s) around g. to get the experimental shape of
do(s,t)/dt andm(s) aroundm(s) to get the position of the singledip producesavalue of
do(s,t) many orders of magnitude smaller than the experimental one. The experimental
valuesof o,.4(s) ,0.(s), 3(s), ontheone hand, and the shape and structure of do (s, t)/dt,
on the other, constitute thereforerather severe constraints, particularly because getting the
one tends to ruin the other.

Degspite of the failurein fitting experimental data the Chou-Yang model has, as we
have seen earlier, other and profounder merits. The model does not predict only multiple
dips, characteristic of familiar optical diffraction. It has an astonishing virtue of accomo-
dating al kinds of behaviour of the elastic differential cross-section. The coupling con-
stant ¢ of the model is much more than just a fit parameter. |If the appearance of dipsis
interpreted as a classical-like phenomenon, then ¢ operates as a kind of geometrical size
parameter in away remarkably similar to the inverse of Planck’s constant /. Thisisrem-
iniscent of the role of 7 in semiclassical approximations to quantum scattering on which
geometrical models are essentially based. Thus ¢ — oc corresponds to large distances in
much the same way as — 0 corresponds to a classical macroscopic regime.

We would like to point out that geometrical models have been used, so far, only in
this’ macroscopic’ limit giving riseto optical-like diffraction with its characteristic multi-
ple dip structure. In fact, the basic assumption of these modelsisthat the incident particle
isway out of the target before the effects which it induces in the latter take place. This
means that the projectile hadron sees the target, essentially , as a geometrical obstacle of
given finite size. In other words, the geometrical models, as usually applied, include an
implicit assumption of asymptotic sharp-edged disc (black or grey) scattering at large dis-
tances.



On the other hand, alot was gained ssimply by the knowledge how the limit ¢ — 0
operates in the Chou-Yang model. This limit correspondsto 2 — oo , which means a
regime where quantum effectsare not at all negligible. More than just classical wave-like
properties could emergein such alimit. In this’submicroscopic’ limit the absorbing disc
scattering, operative at large distances, will be replaced by point-like scattering at short
distances, i.e. inside the geometrical obstacle. It appears clearly from our previous dis-
cussion that diffraction in high energy hadron-hadron collisions, understood as a unitarity
driven shadow scattering, would rather be influenced (away from the forward peak) by
short distance dynamics connected to small values of the coupling strength. This prompt
usauseful distinction between two sources of elastic diffraction: the geometrical diffrac-
tion on an absorbing hadronic bulk, considered as a shadow of non-diffractivetransitions,
and the short-range dynamical diffraction, appearing as the unitarity effect from interme-
diate diffractive transitions. Such a two-component model was constructed by one of us
in a recent publication [12] and applied succsessfully to elastic scattering and inclusive
inelastic diffraction of high energy hadrons.

This communication resulted from our collaboration with Dr. E. Etim. His contri-
bution is gratefully acknowledged. Thiswork was partially supported by the Polish Com-
mittee for Scientific Research (K B N) and the Italian Institute for Nuclear Physics (I N F
N).

References

[1] R.J. Glauber, in Lecturesin Theoretical Physics, ed. by W. E. Brittinand L. G.
Dunham (Interscience, New York, 1959), vol.1, p.315; R. J. Glauber and J. Velasco,
Phys.Lett. B 147 (1984) 380.

[2] T.T.ChouandC. N. Yang, Phys.Rev. 170(1968)1591, Phys.Rev. D 19 (1979) 3268.
[3] E-710 Collab., N.A.Amos et al., Phys. Lett. B 247 (1990) 127.

[4] UA4 Colab., M.Bozzo et al., PhysLett. B 155 (1985) 117; D. Bernard et a.,
Phys.Lett. B 171 (1986) 142.

[5] K.R. Schubert, Tables of nucleon-nucleon scattering, in: Landolt-Bornstein, Nu-
merical data and functional relationship in science and technology, New Series,
Vol.1/9a (1979); A. Breskstone et al., Nucl.Phys. B 171 (1986) 142.

[6] L.Sataetd., Phys.Lett. B 139 (1984) 263.

[7] A.Matecki, Phys.Rev. C 44 (1991) R1273.
8



[8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover
Publications, New York, p. 355.

[9] F. Hayot and U. P. Sukhatme, Phys.Rev. D 10 (1974) 2183.
[10] E. Etim, A. Matecki and M. Pallotta, L NF-94/046 (1994).
[11] E. Leader, U. Maor, PG. Williams and J. Kasman, Phys.Rev. D 14 (1976) 755.

[12] A.Matecki , Phys.Rev. D 54 (1996) 3180.



