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Abstract

The problem of many holes in a coaxial beam pipe is studied by means of the modified
Bethe’s theory. The electromagnetic fields propagating in the coaxial region couple to the
equivalent dipole moments of the holes. The effect of the coupling on the longitudinal
impedance and on the loss factor is investigated, showing that the interference phenomena are
significant for such geometries.
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1 - INTRODUCTION
In this paper we study the coupling impedance and the loss factor of coaxial structures

with multiple pumping holes.
The analytical solution of a many-holes problem has been given in the case of a circular

beam pipe with thick walls1), the method being based on Bethe’s diffraction theory. The
longitudinal impedance is calculated from the coherent sum of the fields generated by each hole.

The impedance of a single hole in a coaxial structure has been calculated numerically2) and
analytically applying Bethe’s modified theory3) and by variational methods4), The results
obtained with these different procedures show a good agreement.

FIG. 1 - Relevant geometry.

In this paper we extend Bethe’s modified theory to the general case of N holes in an
infinitely long perfectly conducting coaxial pipe (Fig. 1). The reaction fields have to be
considered in order to fulfill the energy conservation law. We evaluate the effect of the
interference of the fields generated by the equivalent dipoles taking into account also the
coupling among the dipoles. The self-consistent solution shows that the coupling between holes
can affect significantly the radiated energy spectrum and the coupling impedance. The reaction
fields introduce indeed a coupling between the equivalent dipole moments of different holes.

In section 2 we outline Bethe’s modified theory applied to the calculation of the
longitudinal impedance. Impedance and loss factor are treated in section 3, Finally, in section 4,
we compare our results to those obtained with the MAFIA simulation code.

2 - GENERAL THEORY
The general theory adopted in our calculation is described in Ref.(3,5). For sake of

convenience, we summarize its important features at frequencies below the beam pipe cutoff
considering only scattered TEM-type fields.

Bethe’s diffraction theory states that each hole is equivalent to an electric and a magnetic
dipole whose moments are given by

Mϕ (zi ) = αm H0ϕ (zi ) − Hsϕ (zi )[ ],  Pr (zi ) = εαe E0r (zi ) − Esr (zi )[ ] (1)

where am and ae are the hole polarizabilities and Hsϕ and Esr are the scattered fields calculated at
the hole centre. The primary magnetic and electric fields generated by a point charge q,
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travelling with velocity c along the axis of a perfectly conducting pipe, are:

H0ϕ (zi ) = H0ϕ (0)e− jk0zi ,  E0r (zi ) = E0r (0)e− jk0zi (2)

with

E0r (0) = Z0H0ϕ (0) = Z0
q

2πb
(3)

In general the scattered fields can be expressed as a superposition of modes. The
coefficients of the modal expansion are determined through the Lorentz reciprocity principle5);
they are linear functions of the equivalent dipole moments of the apertures which can be
obtained by solving a 2N×2N sized linear system.

Once the equivalent dipole moments have been determined, using the definition of the
longitudinal impedance6)

Z(ω) = − 1

q
Ez(r = 0)e jk0zdz

−∞

+∞
∫ (4)

it is straightforward to derive a general expression of the longitudinal impedance for N holes
centered in z=zi,

Z(ω) = j
ωZ0

2πqb

1

c
Mϕ (zi ) + Pr (zi )







 
i=1

N

∑ ejk0zi (5)

3 - HOLES IN A COAXIAL PIPE
Each dipole moment radiates a forward and a backward wave along the coaxial pipe.

While the waves produced by the electric and magnetic dipole have the same phase along the
beam direction, they have the opposite one along the other (Figs. 2).

FIG. 2a - TEM field generated by an equivalent magnetic dipole moment Mϕ.
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FIG. 2b - TEM field generated by an equivalent  electric dipole moment Pr.

Using the expressions of the fields generated by the dipoles (Appendix A), we can
therefore write eqs. (1) as

Mϕ (zi ) = αm Hoϕ (zi ) − j
ω
2

µh0ϕ
2 Mϕ (zh )

h=1

N

∑ e− jk0 zh −zi






                  + j
ω
2

h0ϕe0r Pr (zi )
h=1

N

∑ sign(h − i)e− jk0 zh −zi






(6)

Pr (zi ) = εαe Eor (zi ) − j
ω
2

e0r
2 Pr (zh )

h=1

N

∑ e− jk0 zh −zi






                  + j
ω
2

µh0ϕe0r Mϕ (zi )
h=1

N

∑ sign(h − i)e− jk0 zh −zi






(7)

indicating with e0r and h0j the normalized modal function for the TEM mode.
Eqs. (6) and (7) can be summarized as

aih αmbih

αe

c2 bih cih

















Mϕ (zi )

Pr (zi )






=
αmH0ϕ (zi )

εαeE0r (zi )






    (i,h=1,2...N) (8)

where H0ϕ=(H0ϕ(z1),...,H0ϕ(zN)), E0r=(E0r(z1),...,E0r(zN)), similarly for Mϕ and Pr, and

aih = j
ω
2

αmµh0ϕ
2 e− jk0 zi −zh + δih

bih = sign(i − h)j
ω
2

h0ϕe0re
− jk0 zi −zh

cih = j
ω
2

αeεe0r
2 e− jk0 zi −zh + δih

(9)

δih being the Kronecker symbol.
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System (8) can be solved directly by inverting the coefficents matrix or by some iterative
procedure. Since we are interested in the low frequency behaviour of the impedance below the
cut-off of the TE1,1 mode, we can limit ourselves to the first step of the iterative procedure, that
is replacing the electric and magnetic dipole moments in the right hand side of (6) and (7) with
their approximated values

Mϕ (z) = αmH0ϕ (z) and Pr (z) = εαeE0r (z) (10)

from which we derive the low frequency approximation for the longitudinal impedance

  

Z(ω) = jZ0
k0

4π2b2 N(αm + αe )[

                  − k0

4πb2 ln(d / b)
(αm + αe )2  sin 2k0 lh+ t

t=1

w

∑





w=1

N−h

∑
h=1

N−1

∑






           + Z0
k0

2

16π3b4 ln(d / b)

N2

2
(αm + αe )2 + N

2
(αm − αe )2




                  + (αm − αe )2  cos 2k0 lh+ t
t=1

w

∑





w=1

N−h

∑
h=1

N−1

∑






(11)

with lh=zh-zh-1.

For N equally spaced holes eq.(11) yields

  
ZRE(ω) = Z0

k0
2

32π3b4 ln(d / b)
N2(αm + αe )2 + (αm − αe )2 sin2(Nk0l)

sin2(k0l)









 (12)

and

ZIM(ω) ≈ Z0
Nk0

4π2b2 (αm + αe ) (13)

neglecting the frequency higher order term in the imaginary impedance. It is worth noting that
the imaginary impedance of N holes is, in a first approximation, independently from the
position of the holes, equal to N times the impedance of a single hole. The real part oscillates
between

N2  and  
(αm + αe )2

2(αm
2 + αe

2 )
N2 (14)

times the impedance of a single hole. It is worth noting that the real impedance of N holes
around the pipe at the same z, is N2 times the impedance of a single hole.

From eq.(11) the loss factor for a gaussian bunch of length σz is

  

k(σz ) = Z0c π
128π4b4 ln(d / b)σz

3 N2(αm + αe )2 + N(αm − αe )2[

                           −2(αm − αe )2 (N − h)e
−

l2

σz
2

h2

2
l2

σz
2 h2 −1





h=1

N−1

∑








(15)
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The above expression is valid for bunch lengths σ>(b+d)/2. For shorter bunches, higher
order modes have to be included in the theory.

3.1 - Single hole

For a single hole, choosing the hole centre as the origin of the logitudinal axis, system (8)
becomes

1 + j
ω
2

αmµh0ϕ
2 0

0 1 + j
ω
2

αeεe0r
2















Mϕ (0)

Pr (0)






=
αmH0ϕ (0)

εαeE0r (0)






(16)

The real part of the longitudinal impedance is

ZRE = Z0k0
2

16π3b4 ln(d / b)
(αm

2 + αe
2 ) (17)

Replacing in (16) the polarizability for a round hole, one finds an impedance value five
times larger than that previously presented in3) which was affected by an oversight in the
calculations. More recent results obtained by different methods4) agree with eq. (17).

From eq. (15) the loss factor is

k(σz ) = Z0c π
64π4b4 ln(d / b)σz

3 (αm
2 + αe

2 ) (18)

3.2 - Two holes

Here we discuss the case of two holes, to better understand the interference and coupling
effects. Chosing z1=0 and z2=l, the linear system for two holes becomes

  

1 + j
ω
2

αmµh0ϕ
2 j

ω
2

αmµh0ϕ
2 e− jk0l 0 − j

ω
2

αmh0ϕe0re
− jk0l

j
ω
2

αmµh0ϕ
2 e− jk0l 1 + j

ω
2

αmµh0ϕ
2 j

ω
2

αmh0ϕe0re
− jk0l 0

0 − j
k0αe

2c
h0ϕe0re

− jk0l 1 + j
ω
2

αeεe0r
2 j

ω
2

αeεe0r
2 e− jk0l

j
k0αe

2c
h0ϕe0re

− jk0l 0 j
ω
2

αeεe0r
2 e− jk0l 1 + j

ω
2

αeεe0r
2

























×

Mϕ (0)

Mϕ (l)

Pr (0)

Pr (l)



















=

αmH0ϕ (0)

αmH0ϕ (l)

εαeE0r (0)

εαeE0r (l)



















(19)

The real impedance, due to the interference between the propagating reaction fields, has
the following approximate expression:

  
ZRE = Z0k0

2

16π3b4 ln(d / b)
2(αm + αe )2 + (αm − αe )2 1 + cos(2k0l)[ ]{ } (20)



— 7 —

FIG. 3a - ZRE for two round holes (b=20 mm, d=24 mm, R=6 mm, l=300 mm).

In Fig. 3a we show a typical plot of ZRE for circular holes, as a function of the frequency.

According to eq. (14), the real part of the impedance oscillates between 4 and .4 times the single
hole value. Because of interference effects between the scattered fields in the coaxial pipe,
maxima and minima occur at frequencies depending on the  distance between the holes (Fig.
3b).

FIG. 3b - ZRE for two round holes at different l, Gaussian bunch spectrum for σ=50 mm.

The loss factor, applying eq. (15), is
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k(σz ) = Z0c π
64π4b4 ln(d / b)σz

3 2(αm + αe )2 + (αm − αe )2[

                                             −(αm − αe )2 e
−

l2

σz
2

2
l2

σz
2 −1















(21)

FIG. 4 - Two holes loss factor (b=20 mm, d=24 mm, R=6 mm, σ=50 mm).

In Fig. 4 (solid line) we show the loss factor for a σ=5 cm gaussian bunch, for the same

geometry of Figs. 3. The behaviour of the loss factor is quite general, as we will see for the
case of N holes. It reaches a minimum value when l≈σ, while it saturates for l>3σ. The

minimum is originated by the destructive interference between fields, which surprisingly occurs
only for one distance between the holes. For larger distances, the impedance has more maxima
peaks under the bunch spectrum. However, since their amplitude decreases, the total area
covered by the power spectrum remains almost constant.

3.3 - Random spaced holes
It is interesting to compare the coupling impedance and the loss factor of N holes

uniformly and random spaced. To calculate the impedance of N random spaced holes, we can
assume in eq. (11) lh=l+δh, where δh is a random variable. Again the imaginary part of the

longitudinal impedance is N times the imaginary impedance of a single hole. The real part is

  

ZRE(ω) = Z0k0
2

16π3b4 ln(d / b)

N2

2
(αm + αe )2 + N

2
(αm − αe )2




                                        + (αm − αe )2  cos 2k0 wl + δh+ t
t=1

w

∑
















w=1

N−h

∑
h=1

N−1

∑






(22)

Consequently we can calculate the loss factor, which turns out to be
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k(σz ) = Z0c π
128π4b4 ln(d / b)σz

3 N2(αm + αe )2 + N(αm − αe )2{

                −2(αm − αe )2 e
−

wl+εN−h,w( )2

σz
2

2
(wl + εN−h,w )2

σz
2 −1











w=1

h

∑
h=1

N−1

∑









(23)

where we have defined

εN−h,w = δt
t=N−h+1

N−h+w

∑ (24)

As an example, we compare the real part of the longitudinal impedance for 15 round holes
with l=30 cm and δk uniformly distributed between ±0.2l. We notice that the introduction of

the positioning randomization clearly lowers the values of the peaks (Figs. 5) while it does not
affect the level of the minima. The loss factor, nevertheless, is almost unchanged (Fig. 6).

FIG. 5a - ZRE for 15 round
holes (b=20 mm, d=24 mm, R=6
mm, l=300 mm).

FIG. 5b - ZRE for 15 round
holes random spaced with
uniform distribution -
0.2l≤δk≤0.2l (b=20 mm, d=24
mm, R=6 mm, l=300 mm).
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FIG. 6 - Loss factor for 15 round
holes random spaced with uniform
distribution -0.2l≤δk≤0.2l (b=20
mm, d=24 mm, R=6 mm, l=300
mm).

4 - COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

To check the validity of the expressions found, we performed simulations with the
numerical code MAFIA7) in the case of two holes3). To this end, it has been necessary to
slightly modify the equations to account for the wall thickness which changes the problem
geometry and introduces an attenuation on the fields in the holes.

Calling b1 and b2 respectively the inner and the outer radius of the beam pipe, one can see

that the factor b4 in the denominator of eqs. (12) and (15) has to be replaced by the product

b1
2b2

2 . Furthermore the polarizabilities must be corrected; for a round hole of radius R we use

the expressions in Ref.(8)

α̃e = αe
3.3

4
e−ξ0,1W/R

α̃m = αm
21

25
e− ′ξ1,1W/R

(25)

where W is the wall thickness (in our case W=b2-b1) and ξ0,1 and ′ξ1,1 are the zeros of the
Bessel function J0 and ′J1 repectively.

We can thus rewrite eq. (20) as

  
ZRE = Z0k0

2

16π3b1
2b2

2 ln(d / b2 )
2(α̃m + α̃e )2 + (α̃m − α̃e )2 1 + cos(k0l)[ ]{ } (26)

As a result, the loss factor becomes

  

k(σz ) = Z0c π
64π4b1

2b2
2 ln(d / b2 )σz

3 2(α̃m + α̃e )2 + (α̃m − α̃e )2[

                                                  −(α̃m − α̃e )2 e
−

l2

σz
2

2
l2

σz
2 −1















(27)

In Fig. 4 the dependence of the loss factor on the hole distance l is presented for a σ=5
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cm gaussian bunch. The numerical results (black diamonds) are in good agreement with the
analytical expression (solid line). The difference between theory and simulations tends to
become larger for very short distances between the holes, when the coupling effect of the
vanishing modes begins to be non negligible.

5 - CONCLUSIONS
The effect of the coupling between the equivalent dipoles seems to be important for a

correct evaluation of the coupling impedance and the loss factor of N holes in a coaxial
structure.

At low frequency, the real part of the longitudinal impedance grows as ω2, as in the case

of a single hole, being related to the TEM mode propagating in the coaxial region. Moreover,
because of interference effects between the scattered fields, the real impedance and the loss
factor are proportional to N2.

A randomization in the hole position can decrease significantly the peak value of the
impedance while the minima and the loss factor are almost unchanged.
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APPENDIX A

A TEM field radiated by a hole centered in z=zi can be written as

Er (z,zi ) = c0ie0re
− jk0 (z−zi )θ(z − zi ) + d0ie0re

jk0 (z−zi )θ(−z + zi ),

Hϕ (z,zi ) = c0ih0ϕe− jk0 (z−zi )θ(z − zi ) − d0ih0ϕejk0 (z−zi )θ(−z + zi )
(A1)

where k0=ω/c, θ(z) is the Heaviside function and

e0r = Z0

2π
1

ln(d / b)

1

r
  ,  h0ϕ = 1

Z0
e0r (A2)

are the normalized modal function for a TEM wave.
The coefficients c0i and d0i are given by

c0i = jω
2 µh0ϕMϕ (zi ) + e0rPr (zi )[ ]

d0i = − jω
2 µh0ϕMϕ (zi ) − e0rPr (zi )[ ]

(A3)

When there are N holes radiating, the scattered fields on a generic hole centre appearing in
eq. (1) are thus

Esr (zi ) = e0r c0ke− jk0 (zi −zk ) + c0i + d0i

2
+

k=1

i−1

∑ d0ke jk0 (zi −zk )

k=i+1

N

∑












Hsϕ (zi ) = h0ϕ c0ke− jk0 (zi −zk ) + c0i − d0i

2
−

k=1

i−1

∑ d0ke jk0 (zi −zk )

k=i+1

N

∑












(A4)

Replacing eq. (A3) in eq. (A4) one obtains eqs. (6) and (7).
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