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Abstract

The problem of many holes in a coaxia beam pipe is studied by means of the modified
Bethe's theory. The eectromagnetic fields propagating in the coaxid region couple to the
equivalent dipole moments of the holes. The effect of the coupling on the longitudinal
impedance and on the loss factor is investigated, showing that the interference phenomena are
significant for such geometries.

PACS.: 41.75.-i, 41.20.-q



1 - INTRODUCTION

In this paper we study the coupling impedance and the loss factor of coaxia structures
with multiple pumping holes.

The analytica solution of a many-holes problem has been given in the case of a circular
beam pipe with thick walls), the method being based on Bethe's diffraction theory. The
longitudinal impedance is calculated from the coherent sum of the fields generated by each hole.

The impedance of asingle holein acoaxial structure has been calculated numerically?) and
anayticaly applying Bethe's modified theory3) and by variationd methods?, The results
obtained with these different procedures show a good agreement.
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FIG. 1 - Relevant geometry.

In this paper we extend Bethe's modified theory to the genera case of N holes in an
infinitely long perfectly conducting coaxia pipe (Fig. 1). The reaction fields have to be
considered in order to fulfill the energy conservation law. We evduate the effect of the
interference of the fields generated by the equivalent dipoles taking into account also the
coupling among the dipoles. The self-consistent solution shows that the coupling between holes
can affect significantly the radiated energy spectrum and the coupling impedance. The reaction
fieldsintroduce indeed a coupling between the equivalent dipole moments of different holes.

In section 2 we outline Bethe's modified theory applied to the cdculaion of the
longitudinal impedance. Impedance and loss factor are treated in section 3, Finaly, in section 4,
we compare our results to those obtained with the MAFIA simulation code.

2- GENERAL THEORY

The genera theory adopted in our caculation is described in Ref.(3,5). For sake of
convenience, we summarize its important features a frequencies below the beam pipe cutoff
considering only scattered TEM-type fields.

Bethe' s diffraction theory states that each hole is equivalent to an eectric and a magnetic
dipole whose moments are given by

M (2i) = am|Hog (i) = Hgy ()|, Pr(zi) = €0 [Eqr (2i) — Es(z))] 1)

where a, and a. are the hole polarizabilities and Hgy and Eg are the scattered fields calculated a
the hole centre. The primary magnetic and dectric fields generated by a point charge q,
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travelling with velocity ¢ along the axis of a perfectly conducting pipe, are:

Hop (21) = Hog (0%, Eq, () = Eq,(0)e 0% )
with
Eor(0) = ZQH0¢ (0) = ZO% (3)

In generd the scattered fields can be expressed as a superposition of modes. The
coefficients of the modal expansion are determined through the Lorentz reciprocity principled);
they are linear functions of the equivalent dipole moments of the apertures which can be
obtained by solving a 2Nx2N sized linear system.

Once the equivaent dipole moments have been determined, using the definition of the
longitudinal impedanced)

Z(e) = -+ J'+°°Ez(r = 0)el*o%dz (4)
gl

it is straightforward to derive a genera expression of the longitudina impedance for N holes
centered in z=z;,

wZ
Z(w)=1—%

Ay} O_jkoz;
2 izzlg—:'\/'q)(zi)"":’r(zi)ae )

3 - HOLES IN A COAXIAL PIPE

Each dipole moment radiates a forward and a backward wave along the coaxia pipe.
While the waves produced by the dectric and magnetic dipole have the same phase aong the
beam direction, they have the opposite one along the other (Figs. 2).

F

FIG. 2a- TEM field generated by an equivalent magnetic dipole moment My,



FIG. 2b - TEM field generated by an equivalent electric dipole moment Py.

Using the expressions of the fields generated by the dipoles (Appendix A), we can
therefore write egs. (1) as

O © N - -
M¢(Z|):am%-loq)(zl)_JEph(Z)(pZM¢(Zh)e JkO‘Zh ZI‘
h=1

6
LW N . . —-ik ‘Z _Z"D ()
+]=hogeor Y Pr(z)sign(h —i)e o4 5
2 h=1 B
O ) N _ —
P(zi) = saeior(zi)_lge%r > Pi(zp)e Jeolen-z|
B h=1
(7
LW N . o —ik ‘Z —Z-‘D
+ ] Hhogeor Y My (z)sign(h-i)e Folen™4l g
2 h=1 B
indicating with ey and hg; the normalized modal function for the TEM mode.
Egs. (6) and (7) can be summarized as
O | 0
ap 1 Ombip Z Ho (7
o - : ______ ¢( |)D: (D O¢( |)§ (i,h=1,2...N) (8)
Shin | i P (z) OeEor(z)
C !

where Hop=(Ho¢(Z1),....Hop(2n)), Eor=(Eor(21),.-.,Eor(2n)), similarly for M and Py, and
& = j%amuh%cbe_jko‘zi ey,
biy = Sgn(i = )] 3 Nogegre o ©
Cih = jo_;aese%re_jko‘zi 2l +0jp,

Oin being the Kronecker symbol.
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System (8) can be solved directly by inverting the coefficents matrix or by some iterative
procedure. Since we are interested in the low frequency behaviour of the impedance below the
cut-off of the TE; ; mode, we can limit ourselvesto the first step of the iterative procedure, that
is replacing the el ectric and magnetic dipole moments in the right hand side of (6) and (7) with
their approximated values

My (2) = aHog (2) and Py (2) = eaEq, (2) (10)
from which we derive the low frequency approximation for the longitudinal impedance
— Ko
Z(w) = jZq W[N(Gm +0g)
Ko N-1N-h

w il
_4T[bzln(d_/ b) +0le)? z > S'ngzkotzlfmt%

=1 w=1

k3 [N? > N o "
16n3b4|n(d/b)["_( m ¥ Ue)”+ 2 (Um = de) (11)

N-1 N-h

+(ap, —o(e)2 D cos%'ZkoZEhH%

=1 w=1

with /n=2zn-2h.1.
For N equally spaced holes eqg.(11) yields

_ k§ 2 _2sin®(Nko) O
ZRE((*)) - 32T[3b4| (d/ b) DN (CX e) +(am ae) sinz(koﬁ) E (12)
and
ZIM((‘)):ZO T[z 2((1 +ae) (13)

neglecting the frequency higher order term in the imaginary impedance. It is worth noting that
the imaginary impedance of N holes is, in a first approximation, independently from the
position of the holes, equal to N times the impedance of a single hole. The red part oscillates
between

2
N2 and (@m +0¢)” N?2 (14)
2(af, +ag)

times the impedance of a single hole. It is worth noting that the real impedance of N holes
around the pipe at the same z, is N2 times the impedance of asingle hole.

From eq.(11) the loss factor for a gaussian bunch of length o is

Zoc\‘sﬁ
128m*b*In(d / b)o?

k(og) =

[ 2(C(m +ae)2 + N(am _ae)2

2
7h2

~2(a - 0te)? z(N h)e ° gz 2h

(15)

meEm
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The above expression isvalid for bunch lengths o>(b+d)/2. For shorter bunches, higher
order modes have to be included in the theory.

3.1 - Single hole

For asingle hole, choosing the hole centre as the origin of the logitudina axis, system (8)
becomes

LW 0
A+ i anhngg 0 200 mHop (O) "
@ 0 1+ jgaeee%r PI’ (O) E %GEEO[’(O)E
2
Therea part of the longitudinal impedanceis
2
Zre 2ok (af +az) (17)

~ 16rbIn(d/ b)

Replacing in (16) the polarizability for a round hole, one finds an impedance vaue five
times larger than that previously presented in3 which was affected by an oversight in the
calculations. More recent results obtained by different methods® agree with eq. (17).

From eg. (15) the lossfactor is

Z,c\Tt
641*b* In(d / b)o

k(o) = (@, +ad) (18)

3.2 - Two holes

Here we discuss the case of two holes, to better understand the interference and coupling
effects. Chosing z;=0 and z,=/, the linear system for two holes becomes

E 1+j%amuh(2)¢ j%amphgq)e—jkoz 0 _jgamhoq)eme—jkoeg

0 J'%O( mihgae ko’ 1+ j%amuhgq, j%amhoq,eme'jko” 0 E

E 0 - kg‘ze hop€or€ 0 1+ j%aeeegr j%aesegre‘jk"” é

% k;ie hogeore 0 J%Gesegre_jk"/ 1+ 20 g6}, %
(19)

My (0)0 mHee (0)O
O O
XEMq,(f)D: Eb‘mHOcp (f)D
0Py 0O)o rcea eEor (0)g

HP (0 H BeacEor (0
The real impedance, due to the interference between the propagating reaction fields, has
the following approximate expression:
_ Zok§
16m°b* In(d / b)

Zge {26am +ae)? +(am -ag[1+cos2kon)]}  (20)
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FIG. 3a - Zgg for two round holes (b=20 mm, d=24 mm, R=6 mm, /=300 mm).

In Fig. 3awe show atypical plot of Zrg for circular holes, as afunction of the frequency.
According to eg. (14), the real part of the impedance oscillates between 4 and .4 times the single
hole value. Because of interference effects between the scattered fields in the coaxia pipe,
maxima and minima occur a frequencies depending on the distance between the holes (Fig.
3b).
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FIG. 3b - Zgg for two round holes at different ¢, Gaussian bunch spectrum for =50 mm.

The loss factor, applying eg. (15), is



ZooVT

641*b*In(d / b)o? 2ty +0te)” + (A =)’
zZ

k(og) =

52

[

20 2
_(am_ae)ze PR
%205
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FIG. 4 - Two holes loss factor (b=20 mm, d=24 mm, R=6 mm, =50 mm).

In Fig. 4 (solid line) we show the loss factor for a 0=5 cm gaussian bunch, for the same
geometry of Figs. 3. The behaviour of the loss factor is quite general, as we will see for the
case of N holes. It reaches a minimum vaue when /=g, while it saturates for ¢>3c. The
minimum is originated by the destructive interference between fields, which surprisingly occurs
only for one distance between the holes. For larger distances, the impedance has more maxima
peaks under the bunch spectrum. However, since their amplitude decreases, the tota area
covered by the power spectrum remains almost constant.

3.3 - Random spaced holes

It is interesting to compare the coupling impedance and the loss factor of N holes
uniformly and random spaced. To caculate the impedance of N random spaced holes, we can
assume in eg. (11) ¢,=(+dy, where &y, is arandom variable. Again the imaginary part of the
longitudinal impedance is N times the imaginary impedance of asingle hole. Thereal part is

Zok3 (N2 » N )
}— +d +—(0,—-0a
161°b* In(d / b) (G +dle) 2( m ~0e)

N-1N-h []
+(0 —O(e)2 Z cosEEkoHN£+26h+t%

h=1 w=1

Zpe(w) =

(22)

Conseguently we can calculate the loss factor, which turns out to be
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k(o,) =
(02) 128m*b*In(d / b)o?3

{NZ(Gm +ae)2 + N(am _ae)2

(W/,‘+sN_h’W)2 U (23)
N-1h - W 2

Ay ye Tl
h

=1w=1 O-Z %
N-h+w

EN-hw = Z 6t (24)
t=N-h+1

where we have defined

As an example, we compare the real part of the longitudina impedance for 15 round holes
with /=30 cm and &y uniformly distributed between +0.2/. We notice that the introduction of
the positioning randomization clearly lowers the values of the peaks (Figs. 5) while it does not
affect the level of the minima. The loss factor, nevertheless, is almost unchanged (Fig. 6).
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4 - COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

To check the validity of the expressions found, we performed smulations with the
numericad code MAFIA7) in the case of two holes®. To this end, it has been necessary to
dightly modify the equations to account for the wall thickness which changes the problem

geometry and introduces an attenuation on the fieldsin the holes.
Calling by, and b, respectively the inner and the outer radius of the beam pipe, one can see

that the factor b4 in the denominator of egs. (12) and (15) has to be replaced by the product
bfb%. Furthermore the polarizabilities must be corrected; for a round hole of radius R we use
the expressions in Ref.(8)

Og = ae?e_zo,l\NIR
(25)
& =qa ée_zll,lva
m m o

where W is the wall thickness (in our case W=by-b;) and &,, and &}, are the zeros of the
Bessel function J, and J; repectively.
We can thus rewrite eg. (20) as

b — Zok(z)
RE " 16m302b2In(d / b,)
As aresult, the loss factor becomes

Zoem 5 E 2. A2
200,+0a,) +(a,—a
4n4b§b§|n(d/b2)o§[ (O * 0e)™+ (A = )

{26 +86)? +@m -de) 1+ costko)]}  (26)

k(og) = 5

0? 0 27
+ (27)

R A X
—(O(m—(Xe)Ze Oz 5
F o2

In Fig. 4 the dependence of the loss factor on the hole distance ¢ is presented for a 0=5



cm gaussian bunch. The numerica results (black diamonds) are in good agreement with the
anaytica expression (solid line). The difference between theory and smulations tends to
become larger for very short distances between the holes, when the coupling effect of the
vanishing modes begins to be non negligible.

5 - CONCLUSIONS

The effect of the coupling between the equivalent dipoles seems to be important for a
correct evauation of the coupling impedance and the loss factor of N holes in a coaxia
structure.

At low frequency, the real part of the longitudinal impedance grows as w2, as in the case
of asingle hole, being related to the TEM mode propagating in the coaxia region. Moreover,
because of interference effects between the scattered fields, the rea impedance and the loss
factor are proportional to N2.

A randomization in the hole position can decrease significantly the pesk value of the
impedance while the minima and the loss factor are amost unchanged.
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APPENDIX A

A TEM fidd radiated by a hole centered in z=z can be written as

E/(2.2)) = Cigpre ¥0¥TH0(2 - 2) + dgieg @ 0B~z + 7)),

ik (77 v (A1)
Hy(2.21) = Coihog€ 0 770(2 - ) = dihgy € 0 #)0(~2 + 2;)
where kg=w/c, 8(z) isthe Heaviside function and

Zs 1 1 1
———> ,hyy =—8¢€ A2
T\ 2min(d/b)r 0 T 7z, o (A2)

are the normalized modal function for a TEM wave.
The coefficients cgi and dg; are given by

Coi = %[Hhoq;Mq)(Zi) +eq P (z )]

(A3)

doi = ‘ij[Hho¢M¢(Zi) ~CorPr(z )]

When there are N holes radiating, the scattered fields on a generic hole centre appearing in
eg. (1) arethus

i1 D
ES’(ZI) = eoréc ke ]kO(Z| Zk) + 2dOI + Zd ejko(ZI Zk)5
=1 k=i+1 (Ad)

= & -iko(zi-z¢) 4 Coi ~ dOI elko(zi zk) O
HS¢(Zi) = ho¢ ) Cok€ + = = - Zd
=1 k=i+1 E

Replacing eg. (A3) in eg. (A4) one obtains egs. (6) and (7).
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