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1 Introduction

The present experimental status of K — 37~y decays is rather meager. So far, only the two
channels with a charged kaon in the initial state have been detected experimentally with
very low statistics [1, 2, 3]. None of the decay modes of a neutral kaon have been seen.

This unsatisfa,ctory experimental situation will change soon, especially after the comple-
tion of the ete™ collider DA®NE in Frascati. In this ®—factory one expects [4] a total yield
of 7.5 - 10° K; K5 pairs and 1.1 - 10%° K+K- palrs per year. For up—to—date information on
the future prospects of kaon physics we refer to Ref. [5].

With a sufficient number of events, what can one learn from a study of those decays? The
appropriate framework for such an investigation is chiral perturbation theory [6] (CHPT).
To lowest order in an expansion in momenta and meson masses, the radiative decays are
completely determined [7] by the non-radiative amplitudes for K — 37. At next-to-leading
order, a full-fledged CHPT calculation of nonleptonic weak amplitudes of O(p*) is required
(cf., e.g., Ref. [8]). Among other ingredients to be discussed in Sec. 2, important components
are the one—lo 0p 2 amplitudes with a single vertex from the lowest—order nonleptonic weak
Lagrangian E =1 and tree-level amplitudes due to the corresponding Lagrangian £|ASI :

of O(p*).

There are three main issues we want to address:

i. Bremsstrahlung completely determines the lowest-order amplitude, but it also con-
tributes at next—-to—leading order (and at higher orders as well). Is there a unique pro-
cedure to use all the available information on the non-radiative amplitudes to O(p*),
either from experiment or from theory? The answer is positive as shown previously for
a general radiative four-meson process [7]. Here, we put the concept of “generalized
bremsstrahlung” [7| to a practical test.

i1. The nonleptonic weak Lagrangian of O(p*) contains a number of low—energy constants
19, 10| that are little known at present. Can we expect to extract relevant information
on those constants from K — 37~y data?

111. More generally, can one make definite predictions for these radiative kaon decays within

the Standard Model?

The outline of the paper is as follows. In Sec. 2, we set up the kinematics and discuss
the low—energy expansion of K — 37 and K — 37y amplitudes up to O(p*). We discuss the
concept of generalized bremsstrahlung that takes full advantage of the available experimental
information on the non-radiative amplitude in the form of a fourth—order polynomial in the
momenta. In Sec. 3, we calculate the electric tree—level amplitude of O(p*) in terms of the
appropriate low—energy constants. We give a fairly complete list of experimentally accessible
radiative kaon decays that depend on those weak constants of O(p*). The calculation of the
electric loop amplitude 1s deferred to an Appendix. To the same order in the chiral expansion,
the magnetic amplitude is a pure tree-level amplitude that receives both direct (local) and
reducible (nonlocal) contributions. These are put together in Sec. 4. Numerical results for
rates and spectra of the four transitions occurring at O(p*) are collected in Sec. 5. Some



conclusions are presented i Sec. 6. All relevant formulas for the one-loop amplitudes are
contained in an Appendix, recapitulating and applying the results of Ref. [7].

2 Low—energy expansion

The kinematics of the decay K(—ps) — mi(p1)ma(p2)73(ps)y(k) is specified by five scalar
variables which we choose as |

s=(@m+p), v=ppi-p), ti=kp (1=1,...,4) (2.1)
with

4
Zpi+k:0, Ztt-:O.
=1

=1
Any three of the t; together with s and v form a set of independent variables.

The transition amplitude can be decomposed into an electric and a magnetic part:
A(K — 3ry) = ee®(k)(E, + €00 M7P°) (2.2)

with
k“E, =0, Epvpoa kMY =0 .

To lowest order in the chiral expansion, the amplitudes for both radiative and non-
radiative transitions are generated at tree level by the effective chiral Lagrangian of O(p?),

Lo+ LA (2.3)
The strong part has the well-known form [6]
F2
Lr = (D, UD*UY + 2BM(U + UY) (2.4)

where ( ) denotes the trace in three-dimensional flavour space. F' is the pion decay constant
in the chiral limit (F' ~ F,; = 92.4 MeV), M is the quark mass matrix and B is related to
the quark condensate. The unitary 3 x 3 matrix field U incorporates the eight pseudoscalar
meson fields. In the exponential parametrization,

U = exp(ivV2®/F) ,

Mo 77 n
— + —= T KT
v2 V6
— To I N 0
d =o' = 4 NG ! /6 K : (2.5)
K- KO l

with K = KJ = (K°+ K°)/v/2 and Ks = K? = i{(K° — K°)/v/2 in the limit of CP
conservation. kor the processes under consideration, the covariant derivative D, U can be
restricted to

D, U = 8.uU + ieAp[Q:U]
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with the photon field A, and the quark charge matrix Q).

The weak |AS| = 1 Lagrangian in (2.3) can be written in the form (our notation and
conventions are those of Ref. [8]) |

_ 2
£|2ASI_1 p— G3F4<)\LuLu> + G27F4 (angLibl -+ §L“21LT3) -+ h.C. y (26)
1 . -
A = 5(/\6 - ZA7) ] LP» = U DuU .

The coupling constants Gg, G7 in (2.6) measure the strength of the octet and the 27—plet
part, respectively, of the strangeness changing weak interactions. From K — mm decays one

finds
Gl ~9-107° GeV™%,  Gyr/Gg~1/18. (2.7)

At lowest order, the magnetic amplitude M*#? in (2.2) vanishes since there is no ¢ tensor
in the Lagrangian (2.3). The electric amplitude, on the other hand, is completely determined
by the corresponding non-radiative amplitude A(s,v) via Low’s theorem [11]:

E* = A(s,v)¥*

0A(s,v 0A(s,v
y 2280 ) OB pn
+ O(k) (2.8)

with (the meson charges in units of e are denoted ¢;, with _7_, ¢; = 0)

4 "
q4: P,
-
A:; — A?iz(qitj—thg)D%
g
py = —py=P0 % (2.9)
t: ot

Since there are no terms of O(k) at lowest order in the chiral expansion, the leading-order

electric amplitude is completely determined by the explicit terms in (2.8) usually called
“internal bremsstrahlung”.

At next—to-leading order, O(p*), the situation is much more complicated. A nonleptonic
weak amplitude of O(p*) receives in general four types of contributions [8]:

1. Tree-level amplitudes from the eflective chiral Lagrangian ﬁ!{ﬁsl:l of O(p*) with the
proper octet and 27-plet transformation properties.

|AS|=1
2

1i. One-loop amplitudes from diagrams with a single vertex from £ in the loop.

ii1. Reducible tree—-level amplitudes with a single vertex from L'fsl:l and with a single

vertex either from the strong Lagrangian £, or from the anomalous Wess—Zumino—
Witten Lagrangian [12].



iv. Reducible one-loop amplitudes, consisting of a strong loop diagram connected to a
vertex of £|2,53|=1 by a single meson line. A typical diagram of this type contains an
external K — m or K — 5 transition, possibly with an additional photon (generalized
“pole diagrams” ). The calculation of such diagrams is simplified by a rediagonalization

of the kinetic and mass terms of £, + £|2'AS|:1 (“weak rotation” {13}).

For the decays K — 3m~, all four mechanisms are relevant. Most of them also appear
in the non-radiative amplitudes. Via Low’s theorem (2.8), the non-radiative amplitude of
O(p*) will contribute to the electric part of the radiative amplitude. Unlike at lowest order,
this is however not the whole story at O(p*). The question then is how to use in an optimal
way the amplitude A(s,v) of O(p?*), either from theory or from experiment, for calculating
the radiative electric amplitude E# of the same order.

In a recent paper [7], we have presented the general theoretical framework for the treat-
ment of radiative four-meson amplitudes like K — 37~. The essential point is the concept
of “generalized bremsstrahlung”,

E* = Etp + O(k) (2.10)
where E_ is defined in terms of the non-radiative amplitude A(s,v) [7]: .

JA(s, v OA(s,v
By = Alsmr+2200 0 e PR e g

0*A(s, v | 1 0%A(s, v
+2 a(sz (44 + 12)A%, > 6&/2 [ty — £2)(A%, — AB) — totaS¥)
0% A(s,

Referring to Ref. [7] for a more thorough exposition, we concentrate here on the practical
advantages of generalized bremsstrahlung. Many of the terms in the above list of four mech-
anisms appear in both the radiative and the non-radiative amplitudes and are therefore
automatically included in EX%g. This is in particular true for most of the renormalization
parts that are trivially carried over from A(s,v) to E*, but also for many of the so-called
reducible contributions (items iii and iv in the above list). For instance, all the weak low-
energy constants N; [10] contributing to both K — 37 and K — 377y are completely taken
into account by E¥%g. Therefore, only the genuine radiative low-energy constants Ny, ...,
Ny7 will show up in E* — Efp.

In the following we use the experimental K — 37 amplitudes to derive Egp. If we had
limited ourselves to an analysis at the center of the Dalitz plot of K — 37 data [14, 15, 16] or
just to linear slopes {17], there would have been no need to extend (2.8) to (2.11). However,
the quadratic slopes are observed and the K — 3# amplitudes are written as polynomials of
second order in s and v [18, 19, 20] to fit the experimental data. The second derivatives in
(2.11) are thus needed to take advantage of all the experimental information available from
K — 3m. The (electric) direct emission term E* — E%g is then a genuine radiative part of
the amplitude not related to the non-radiative transition.



In the numerical analysis we have used the following parametrization of the K — 37
amplitudes [20, 21]:

A(KT — 707 ™)

ac(l + 100 —iagY) — [b(1 + 180) — by(1 +180)]Y
+co(Y? + X?/3) = (de — da)(Y? — X?/3)

2a.(1 + i + 1agY/2) + [b(1 + i80) + ba(1 + i60)]Y
+2¢(Y? + X?/3) + (de + do)(Y? — X?/3),
an(l + 1200 —tayY) — b(1 4+15,)Y

+en(Y? + X?/3) — d (Y? — X?/3)

AKT = .7r+7r+7r—)

A(Kp = ntr~n?)

A(Ks = mtn~n”) = —2i[by(1 4 t6o) — 24,Y ]| X/3 , (2.12)
with . .
XEQV/M,:.}. , Y:(S—"So)/Mi.f , S():ZM?/:} . (2.13)
| t=1
The numerical values for a., b, etc. (in units of 107®) are given by [19, 21]:
a. = —95.39 £ 0.40 , a, = 84.35 £ 0.57 ,
b. = 24.47 +0.34 | b, = —28.11 £+ 0.49 ,
c. =0.68+0.17 , ¢, = —0.05+0.22 , (2.14)
d. = —1.63+0.34 , d, =127 +0.45 , '
b, = —3.91 £ 0.40 , dy = 0.21 +0.51 .

For the phases associated with the absorptive parts in (2.12) we use the lowest—order CHPT
predictions ag = 0.13, oy = —0.12 and Gy = —4& = 0.047 [20].

The decomposition (2.12) is based on isospin symmetry. Moreover, the numerical values
in (2.14) have been obtained by a fit {19] where for simplicity the imaginary parts were set
to zero. Present data on K — 37 are too poor! (especially in the K channel) both to relax
the assumption of isospin conservation and to be sensitive to the small imaginary parts. As
a consequence, our numerical predictions for the generalized bremsstrahlung amplitudes in
K — 37y are allected by systematic errors and must be considered as preliminary. A new

detailed analysis should be performed when complete and accurate K — 37 data will be
available.

In the next two sections we discuss separately the electric and the magnetic amplitudes
for the various channels. To O(p*), there are four non—vanishing transitions:

KT — 2% %7ty KY = ntrtn=~

K; — ntr 7% Kg — ntnm%y .

We make the following simplifications for the calculation. The 27-plet part of the nonleptonic
weak Lagrangian is not included in the calculation of direct emission amplitudes, i.e. in
(E* — Egg) and M*#?. This is an excellent approximation in view of the Al = 1/2 rule.
Moreover, in the loop diagrams we have only kept the dominant two-pion intermediate
states. Since the loop amplitudes will turn out to be rather small anyway, this restriction is
Justified a posteriori. Finally, CP conservation will be assumed throughout the analysis.

' Note that we have not taken into account the very recent and accurate results of Serpukhov-167. 122] in.
the K+ — 77z * channel.



3 Electric amplitudes

To O(p*), the electric amplitude can be written as

B H H iz
bF = GB + Ecounter - Eloop,subtracted y (31)

Use of the generalized bremsstrahlung amplitude Efg greatly simplifies the calculation of
both the tree—level and the loop part of (3.1). For instance, all the reducible contributions
(items iii and iv in the list of Sec. 2) to the electric amplitude are automatically contained in
E% 5. This can be shown almost without any calculation by going back to the definition (2.11)
of generalized bremsstrahlung. The only exception that needs some (tree-level) calculations
are amplitudes proportional to the strong low-energy constant Lg [6] with an external weak
transition. Although there are strong radiative four-meson amplitudes proportional to Lo,
the explicit calculation shows that they do not contribute to K — 3w~ after a weak rotation.

Another consequence of using generalized bremsstrahlung in (3.1) i1s a much simpler
form of E* .. . All the low—energy constants appearing in both radiative and non-radiative
amplitudes are already contained in Ff 5. Therefore, only the genuine radiative terms in the
octet Lagrangian of O(p*) [10]

LIA5FY = GgF?S T NW; + hee. | . (3.2)

with dimensionless coupling constants NV; and octet operators W;, contribute to E., . ;.-

In particular, going through the Lagrangian (3.2) one finds that only the four low—energy
constants Ny4, ..., N7 can occur in E’, ... The relevant parts of the Lagrangian (3.2) are

listed below.
With F,, = 0,A, — 0, A, the electromagnetic field strength tensor, the explicit coupling
for Kt — 7% %ty is given by
iBGS
F* (

N14 — N15 - N16 — N17)FM,K+7T08“7T08U7F_ . (33)

The corresponding expression for Kt — n¥n 7~ reads

4i6Gg
F2

(N14 — N15 — N16 — N17)FHVK+7F_8“7F+8V;T_ . (34)

The decay K; — n¥n~ 7%y receives a contribution from

ieGg
F'2

<
(N14 — N15 — le; — N17)F“;,KL(6“7TO7T_ 3"' 71'+ — 271'08“7{'4-8“71'—) . (35)

and Ks — n¥n~ 7% from

6G3
F?

[7(N14 — NIG) + 5(N15 -+ Nn)]Fm,Kga”?rO(;r“a”'rr*L -|- 7r+8""'7r") . (36’)

In order to facilitate the comparison with other radiative kaon decays, we list in Table 1
the combinations of low-energy constants N; governing the various experimentally accessible

6



Table 1: Kaon decay modes to which the coupling constants NV; contribute. For the 3n final
states, only the single photon channels are histed. For the neutral modes, the letters L or .5 in
brackets distinguish between Ky and Ks in the limit of CP conservation. v* denotes a lepton
pair in the final state. If a decay mode appears more than once there are different Lorentz
structures in the amplitude. The combinations with N! are scale dependent compensating

the scale dependence of the corresponding loop amplitude. The other combinations are scale
independent.

T 27 R¥is N;
mry” mtaly* | Nig — Nis
WO’Y* (5) momoy* (L) 2NTy + Nis
ntyy Py Nyg — Nis — 2Ny5
ey (5) :
a0y rtrta Ty Nig — Nis — Nig — Ny~
m¥n~y (S5) mtnnOy ”
ntn~ w0 (L) | ?
n¥a=aty (S) | T(Nig — Nig) + 5(Nis + Ni7)
m¥tr=y* (L) Niy — Nis — 3(Nig — Nir)
o= y* (S) N1y — Nis — 3(Nig + Ni7)
7T+7TO'Y* Ny + 2Njg — 3(N{6 — N17)
atn~y (L) | nta~ 7% (5) Nag + N3y
atantay ”
w0y mtaOn 0y 3Nog — N3
7I'+7I'_ﬂ'0’)’ (S) 5N29 — Ngg + 2N31
7r+7r—7r0'y (L) 6N23 T 3N29 — 5N30

channels. This Table is a slightly extended version of the one appearing in Ref. [8]. As one
can see from the Table, the specihic combination of coupling constants N4 — Ni5 — Nig — Ny7
occurs also in the amplitudes for K* — 7t#x% and Ks — wtw~v. On the other hand,
T(N7, — Nig) + 5(Njs + Ny7) is a characteristic combination? for Ks — ntn~ 7%y only.

Both combinations are not yet known phenomenologically. To get a feeling for the typical
size of these couplings one may appeal to the factorization model that predicts [10]

F2

[Nyg — Nis — Nig — N17]FM — _kaMﬂz = —7 - 10"316; , (3.7)
V
F2
[7(N14 — Nig) + 5(Nys + Nl'?)]FM = 4lk; 2M#2 ) (3.8)
v

where k; is a fudge factor which naive factorization sets equal to one. Note the potentially
large counterterm amplitude in Ks — 7t 7~ n%y. Table 1 also indicates that the combination
Nis — Nis — Nig — Ny7 is scale independent while 7(NJ, — Ni;) + 5(Ni; + Ny7) is not.
Consequently, the loop amplitudes are all finite for K+ — #n°2°xrty, Kt — atntr~v and
K; — mtn~n%, but divergent for Ks — n*n~7%y. This divergence is renormalized by the

2We remind the reader that N7 is scale independent [10].

[



Pa Pc

Pb Pd

y

Figure 1: One-loop diagram for a four—-meson transition. For the radiative amplitude, the
photon must be appended to every charged meson line and to every vertex with at least two
charged fields. For the case of K — 37(7y), —pa = —pa 1s the kaon momentum, the other
three being the pion momenta. The weak (strong) vertex V) (V) is defined in Eq. (A.1),
with the appropriate coeflicients for the various diagrams given in Table 6.

counterterm combination 7( N4 — Nyg) + 5(Nys + IVi7). In the limit where (27 is set to zero,
the two—pion loop does not contribute to the Ks decay . Since we have not included the other
loop contributions that are numerically negligible, the amplitude of O(p?*) for the Kg decay
is superficially scale dependent. We shall come back in Sec. 5 to investigate numerically the
effect of this scale dependence. |

Finally, the loop contributions to (3.1) have to be calculated. Once again, many contri-
butions are already contained in ‘E/ 5. The only type of diagram that has to be calculated
explicitly is shown in Fig. 1 where a photon can be appended to all (charged) lines and

vertices. In this diagram, V| is a weak vertex from L‘f‘s':l and V, is a strong vertex from
L,. Of course, such diagrams without a photon contribute also to the K — 37 amplitudes
of O(p*). In accordance with the definition of generalized bremsstrahlung in (2.11), the ap-
propriate part has be subtracted from the radiative loop amplitude to obtain Ej,_ .. 4iracted
in the complete amplitude (3.1). '

The calculation of the loop amplitudes is rather involved in the radiative case. We have
given in Ref. 7] a compact expression for the radiative loop amplitude with general vertices

Vi, Vo of O(p?®). In an Appendix, we reproduce the main steps for arriving at the final
amplitude, together with the relevant vertices for K — 3m.

4 Magnetic amplitudes

The magnetic amplitude in (2.2) receives contributions from direct and reducible diagrams
123, 24| corresponding to type 1 and 111, respectively, in the classification of Sec. 2.

The direct parts (type i) are generated by the operators Wy, ..., W3y in (3.2). Their
contribution to K+ — #%x%r %+ is given by -
cGs (3N39 — N )ﬁ' Ko n~ mon® (4.1
F2 29 30 )4 pv noTT, : )

Ea

where F,, = €,,,0 F? (€0123 = +1). The corresponding expression for KT — atntr

8



()

Figure 2: Reducible diagram contributing to the magnetic amplitude at O(p*). A weak cubic
vertex of O(p?) and an anomalous vertex with three mesons and a photon are connected by
a single meson line.

reads 1]
;28 (Ngg -+ Ngl)ﬁﬂpa“1{+ayﬂ+ﬂ_ﬂ_ . . (42)
The decay K — ntm~n’y receives a contribution from
2eGs . .
a2 (6Nag + 3Nao — 5N30) Fu 0 K19 non ™t (4.3)
and Kg — ntn~ 7% from
21e(Gg ~ &
Z;,z : F.,Ks[(5Nag — Nag + 2Nz, )0 n"n™ 0" 77 — 2(Nae + N ynlo*ntoVn™] . (4.4)

Following the theoretical arguments given in [25], the coupling constants in the anomalous
parity sector of O(p*) can be estimated as

ay a9
Nem = — Nen =
8 8p2’ 2 3272 (4.5
N = 50 Ngp = —2 |
O 1672 ] o 16m2 ]

where the dimensionless coefficients a; are expected to be positive and of order one.

The second class of diagrams contributing to the magnetic amplitude are the reducible
ones (type iii). These amplitudes are due to diagrams with a single meson line between a
weak |AS| = 1 vertex and an anomalous vertex from the Wess—Zumino-Witten (WZW)
functional [12]. For K — 3w, all such diagrams have the structure shown in Fig. 2: a weak
cubic vertex and an anomalous vertex with three mesons and a photon.

In the case of K+ — 7% %rt+, there is only one reducible contribution at O(p*}): the
kaon emits a neutral and a charged pion, where the 71 subsequently makes an anomalous

transition to 7w ¥y,

Vd weak WZW
Kt 238 2%nt == nnty) .

The corresponding amplitude is local because the K+ — 7”7t vertex vanishes on-shell
(remember that we are setting G37 = 0 in direct emission amplitudes). Thus, the complete
magnetic amplitude (adding the direct term generated by (4.1)) takes the form

1(G'g
Sm2 2

M¥P7 (KT — 7% ty) = (3a; — 6asz — 2)k" pip; (4.6)

9



There are two types of reducible diagrams contributing to K™ — 7#¥na+77v: the K* can
make a weak transition into a real 7t and a virtual #° (or 1) which is then transformed into
a w7~ pair and a photon,

Kt 2% 7t (2 =5 ntn™y)
Kt 2% ot (n 225 ntn— ) .

The total magnetic amplitude is now given by

1G
Mvpa.(1(+ - ﬂ.+ﬂ.+ﬂ.—,),) _ sz;zkypg (a2 4 234)?2
M2 MAY(—PL P2 4.7
+( 7] B)(524 . MT? 314 . MT? )] ? ( )

with

st = (p1+pa)’ =v+ts+ (Mg +3M; —5)/2,
= (p2+ps)’ =—vtita+ (Mg +3M; —5)/2.

524

For K1 — ntn~ 7%y one may either contract the anomalous Ky Ksn%y vertex with the
weak Kgmtm™ vertex, or the weak Ky — wtn~ transition with the #t¥7n 7% WZW vertex:

I‘{'L WZwW ’}']"Ofy‘(I{S weak ’n'+ﬂ'_) ’

Kp 2% ot (r~ 25 77 n%)

Kp =% 7= (rt =5 nta%y) .

The last two diagrams give again a local amplitude for a similar reason® as for K+ — a%7r%7++
in (4.6). Together with the contribution from (4.3), we arrive at the magnetic amplitude

1Grs A(Mg —M7) ..,
871'2F2 [24(11 -+ 3a2 — 30(13 — 2 . _ M}Z{ ]k‘ p§p4 . (48)

MY (K, — mtnn0%y) =

Finally, we turn to Ks — m¥7~ 7%y, In this case, the reducible diagrams have the following
structure:

Ks =3 nt(n~ =55 mnl%)
K¢ =3 n(nt =55 7nt7%) |
Ks 2% n%(n° 225 ntny)
Ks 2% 7%n 25 ntn ) .

Combined with (4.4), we obtain

— G v g
M’ (Ks — nta~n’y) = 8#2;21{: {(bay — 6as + 4a4 — 2)(p2 — 1)’ p3 (4.9)
p p
4 M2 L M2 pz pl o
+ ( K 71‘)(814 . Mﬁg So4 — MT% )p3
4(M2 — M?) 4(M?— Mf
+[—2a2 — 4a4 4 ( ) A, K)]prg} ;

2
S34 — M,? S34 — f‘i‘r7

3The on-shell amplitude for K; — nt 7~ vanishes in the limit of CP conservation.

10



where

S34 = (ps—+ P4)2 = s+ 2(t; + t3) .

5 Numerical results

Our numerical results for the various channels are displayed in Tables 2 — 5. The first column
shows the photon energy range. In the second column, the contribution to the decay width
generated by the generalized bremsstrahlung amplitude Egp in (2.11) is listed, together with
the corresponding errors due to the uncertainties of the K — 37 parameters in (2.14). The
next column shows the relative change of the result if only the Low amplitude (2.8) is used
instead of Egp. In the fourth column we see the effect of adding the electric counterterms
(using kf = 1 in (3.7) and (3.8)) and the residual pion-loop contributions Ej,op subtracted 1
(3.1). I'as in the next column denotes the contribution to the decay width from the magnetic
amplitudes (for a; = 1); there is no interference between electric and magnetic amplitudes
as long as the phase space integration i1s performed “symmetrically”.

For the branching ratios in the last column we distinguish between the three channels
where the leading—order amplitude is not suppressed and the decay Ks — ntn~ 7% with a
suppressed bremsstrahlung amplitude. In the first group of transitions, the dominant O(E,)
eftect 1s given by the difference ' — ' ow,- This deviation from Low’s theorem, i.e. from a
pure QED prediction, could possibly be observed in the near future. In the above channels,
the residual pion—loop contribution suflers from relatively large theoretical uncertainties: the
smallness of phase space amplifies isospin—-breaking effects generated by the mass difference
M,o — M,+. However, the effect of Ej,0p subtracted 18 always so small that it can hardly be
detected. The contribution of E ., unrer, €valuated within the factorization model, is of the
same order as Ejoop subtracted- For Kt — 7%n%rt+ there is an almost complete destructive
interference between loops and electric counterterms, while for Kt — wtntn~v we find
Ecounter = Eloop,subtracted~ Finallya in the I(L channe] Eloop,subtracted 18 blggel‘ than Ecounter for
large E.. For small E,, the two amplitudes are comparable. Probably only large deviations
from the naive expectation kf ~ (1) could be observed. Also the magnetic contribution is
very much suppressed in these channels: the ratio Iy /T'gp is typically smaller than 1073,

Interference effects between electric and magnetic amplitudes could in principle be larger.
For instance, observables like det(p,, p2, p3, ps) (for the decays with three different pions in
the final state) or v det(p1, p2, ps, pa) (in the case of two identical particles 7y, 73) are sensitive
to such interferences. To O(p?*), the interference term

eMP(E M, + EZM,,,) (5.1)

vpo

1s proportional to the relatively small absorptive part of the electric amplitude. Thus, the
leading-order piece of I, does not contribute in (5.1). Nevertheless, the possibility of inter-
ference measurements should be kept in mind once sufficiently high statistics will have been
achieved.

For the three channels under consideration, the amplitude is completely dominated by
generalized bremsstrahlung. In the last column of Tables 2 — 4, we therefore list the branching
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Table 2: Numerical results for the decay K+ — n°7°7*+. The photon energy E. and the
decay widths I'gp, I'pr are given in MeV.

Teg = Trow | g =T | |
E, Cep GB . L E . GB Cas BR

10-20 | (1.38+£0.02)-10°1° | 1.4-107° | 2.2-10"° |2.8-107* | (2.60 +0.03) - 107°

20-30 | (4.29 +0.06) - 107%° | 4.5.107° 8.2-107° [ 7.5-107%° | (8.0540.01)-10""

3040 | (1.45 £0.03)-10-2 | 98-10° | 25-10 % |1.1-102% | (2.72+£0.05) - 10~"

40-50 | (4.48 £0.09)-10-2* | 1.8-1072 | 2.2-107* [1.1-107%* | (8.4240.18) - 1073

50-60 | (1.09+£0.03)-10"%* | 29.107% | -1.0-10"°|6.8-107* | (2.05+£0.05)-10°

70-80 | (3.48 £0.12) - 10_?"'1 561072 —~1.9-1072 [ 8.9-10"%" | (6.55 £ 0.23) - 10!

(

6070 | (1.49 £ 0.05)-10"22 | 43-102 | —6.8-1072]2.0-10"% | (2.81 £0.09)-10~°
(
(

}

10-80 | (2.01 £0.03)-10-° | 3.3-10"3 | 4.5-10"° |4.1-102* | (3.78 £0.05) - 10~

ratios based on generalized bremsstrahlung only, corresponding to I'¢p in the second column.
The contributions to the branching ratios from direct emission are completely concealed by
the present experimental uncertainties of the K — 37 parameters.

Within those errors, our predictions are consistent with standard bremsstrahlung and
with the available experimental results. Our theoretical branching ratio for K~ — n%r%nr~~
in Table 2 for E., > 10MeV can be compared directly with the experimental result [1]

BR(K™ — %% ) = (7.4¥33).107%, E,>10MeV. (5.2)
For Kt — ntr*tn~~, Barmin et al. {2] have reported the branching ratio

BR(Kt = rtatn™4) = (1.10+£0.48) - 107* , E, > 5 MeV , (5.3)

to be compared with our theoretical prediction

BR(Kt = nt* 1t 77 Y) ltheor. = (1.26 £0.01) - 107* , E, > 5 MeV, (5.4)

whereas Stamer et al. [3, 26} have found

BR(Kt - ntatr™y) = (1.0£0.4)-107*, E, > 11 MeV . (5.5)

For the decay K¢ — wmtm~n%y the situation is quite different. To lowest chiral order,
the amplitude can only proceed through a Al = 3/2 transition (via bremsstrahlung) and
1s therefore suppressed by the AI = 1/2 rule. Consequently, the next-to—leading order
contributions generated by octet operators are becoming relatively more important*. At the
one-loop level, two-pion intermediate states do not contribute. Therefore, the O(p*) part of
the electric amplitude is essentially determined by the counterterm

Nig(p) := [7(Nis — Nig) + 5(Ni5 + Ni7)] () (5.6)

4A similar phenomenon occurs in the K+ — nt 704 decay [24, 27].
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sponding radiative amplitudes in an optimal way at the level of O(p*). For the numerical
analysis, we have used the factorization hypothesis to estimate the relevant low—energy con-
stants.

Returning to the three issues addressed in the introduction, we may summarize our
findings as follows:

1.

11.

111.

In all three channels where the leading-order amplitudes are not suppressed (Kt —
mOnlnt~y K+t = atntn~y, K — ntn~n"y), generalized bremsstrahlung completely
dominates the amplitudes to O(p*). The differences to the QED prediction (standard
or internal bremsstrahlung) could be expertmentally observed in the forthcoming round
of kaon experiments, at least from the statistical point of view.

For the same channels, it will hardly be possible to extract the appropriate combi-
nations of low—energy constants from experiment in the near future. This conclusion
hinges, of course, on the assumption that the factorization estimates are not oft by
an order-of-magnitude in amplitude. In contrast, the counterterm amplitude is impor-
tant for Kg — mtn~ 7%, especially if the rather large factorization estimate is reliable.
However, for this decay mode the branching ratio is probably too small to be detected
soon.

As a general conclusion, the Standard Model allows for quite definite predictions for
radiative kaon decays into three pions. Especially for K+ — 7%y, Kt —» n#tntn 7y
and K7 — mtn~ %y, the accuracy of these predictions is at the moment only limited
by the precision with which the parameters of the non-radiative decay amplitudes
are known. For Ks — mtn~ 7%y, there is some theoretical uncertainty related to the
relevant low—energy constants.

As soon as more accurate data will lead to better precision for the K — 37 parameters,
the predictions of the radiative amplitudes can be improved accordingly. Although we have
only considered total rates and photon energy spectra in this 4nalysis, the investigation of
more subtle effects like the interference between electric and magnetic amplitudes may then
become feasible.
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Appendix: Loop amplitudes

In this Appendix, we collect the main results of Ref. |7} for the calculation of loop amplitudes
corresponding to the diagram in kig. 1.

First, we calculate the loop amplitude for the non-radiative process K — 37. In our

case, —p, = —p4 1s the kaon momentum and V;, V, are nonleptonic weak and strong vertices,
respectively. The pion momenta are generically denoted py, p., pq. |
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Table 5: Numerical results for the decay Kg — ntn~n%.

E, . Los ""[";1‘3‘“” g [ BR
10-20 | (1.29+£0.34)-107%' | 1.2-107% |1.1-107% | 6.5-10%° | 1.5-1071°
20-30 | (5.154+1.28)-10"2 | 3.8-107% [3.4-1072]1.6-10"% | 4.7.10°!
30-40 | (2.34+0.53)-10"22 | 7.7-107% [9.7-10728 [2.3-10"% [ 1.3.10 1
40-50 | (9.97 £2.12)-10"B | 1.2-107! [2.0-1072 [2.1-107% [2.9.1071
50-60 | (3.34 £0.68)-1072 | 1.6-107% |2.2-107% | 1.2-107% | 4.6-10"13
60-70 | (6.09 £1.22)-107%* | 2.1-107" |23-107% |3.4-10"% [ 7.8-10"4
70-80 | (1.62+0.32)- 102 | 2.4-10"' [1.7-107%[1.2-107% | 4.0-107'®
[10-80 | (2.18 £0.55)- 1072 | 33-10~2 [1.6-10721 [8.2- 1022 [2.2-1071°

magnetic amplitude is again shown for a; = 1. For this channel we list the total branching
ratio BR = (I'g + I'p) /T4t (Ks) for the various photon energy bins. We do not give errors
for these branching ratios because, unlike for the other three channels, the direct emission
amplitude matters with unknown theoretical uncertainties (factorization model).

Remembering the projected DAPNE yield of 7.5 x 10° K Ks pairs per year, the Ks —
ntn 7%y decay rate is still too small for the coming generation of kaon experiments. With
an additional improvement of statistics, some information might be achieved via time-
interference measurements [28] (K s — w77~ 7°y) similar to those recently performed in
the non-radiative case (29, 30]. Then interference effects between electric and magnetic am-
plitudes could in principle be measured since a term like

e*"P(E, M,

vpo

— E:Mppa) (59)

is generated. In contrast to (5.1), this term is proportional to the leading—order piece of
E,. We stress that even fixed—target experiments, through regeneration, can perform time-
interference measurements and 1n this case a larger statistics i1s expected. Thus, the Kg —
mtn~ 7%y decay mode may still turn out to be a valuable probe for kaon physics parameters
that 1s not drowned by bremsstrahlung.

6 Conclusions

Anticipating substantial improvements in the statistics of K — 37y decays in the near fu-
ture, we have performed a comprehensive and complete analysis of these decays to O{p*)
in the low—energy expansion of the Standard Model. To lowest order, O(p?), the decay am-
plitudes are determined by the corresponding non-radiative amplitudes via Low’s theorem
(bremsstrahlung). At next-to-leading order, there are different contributions to both elec-

tric and magnetic parts of the amplitudes: loops and tree-level (counterterm) amplitudes,
reducible and irreducible contributions.

A major aspect of our analysis is the concept of “generalized bremsstrahlung” that trans-
fers the available theoretical or experimental information on K — 37 decays to the corre-
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sponding radiative amplitudes in an optimal way at the level of O(p*). For the numerical
analysis, we have used the factorization hypothesis to estimate the relevant low—energy con-
stants.

Returning to the three issues addressed in the introduction, we may summarize our
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11.
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nations of low—energy constants from experiment in the near future. This conclusion
hinges, of course, on the assumption that the factorization estimates are not oft by
an order-of-magnitude in amplitude. In contrast, the counterterm amplitude is impor-
tant for Kg — mtn~ 7%, especially if the rather large factorization estimate is reliable.
However, for this decay mode the branching ratio is probably too small to be detected
soon.

As a general conclusion, the Standard Model allows for quite definite predictions for
radiative kaon decays into three pions. Especially for K+ — 7%y, Kt —» n#tntn 7y
and K7 — mtn~ %y, the accuracy of these predictions is at the moment only limited
by the precision with which the parameters of the non-radiative decay amplitudes
are known. For Ks — mtn~ 7%y, there is some theoretical uncertainty related to the
relevant low—energy constants.

As soon as more accurate data will lead to better precision for the K — 37 parameters,
the predictions of the radiative amplitudes can be improved accordingly. Although we have
only considered total rates and photon energy spectra in this 4nalysis, the investigation of
more subtle effects like the interference between electric and magnetic amplitudes may then
become feasible.
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Appendix: Loop amplitudes

In this Appendix, we collect the main results of Ref. |7} for the calculation of loop amplitudes
corresponding to the diagram in kig. 1.

First, we calculate the loop amplitude for the non-radiative process K — 37. In our

case, —p, = —p4 1s the kaon momentum and V;, V, are nonleptonic weak and strong vertices,
respectively. The pion momenta are generically denoted py, p., pq. |
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We characterize the vertices Vi, V, in momentum space by constants a;, b;:

Vi = ao+ a1pa-po+ a2pa-t + as(z? — M) + aa(y® — M?) + as(ps — M7) + as(p; — M)
Vo = bo+ bipc-pq + bape-z + 53(372 '"" M:?) T 54(92 — Mi) T bS(Pg - Mf) + bﬁ(Pﬁ — Mdz) -
(A.1)

With P = p. + p4, the non-radiative loop amplitude of Fig. 1 can be represented in the
following form (all external lines are on—shell):

F(P) = A(M;)aibsp.-ps + asbip.-pa + (1454(132 + M_;f — ME) + agby + a4bo]
+ A(My)[alePa'pb + azb3pa'P -+ aablpc'pd + asbzpc'P
+azbs(P? — M7 + M;) + agbs + asb]
+ B(P*, M, M,)[aobo + aob1pc-pa + aybopa-ps + a1bypa-pope-pd)
+ B1(P?*, M, M,)[aghp.- P + asbopa- P + a1baps-pype- P + azb1pe papa - P]
+ asba[pa-peBao( P?, Mz, My) + pa- Pp.- P Baa(P?, My, M,)] . (A.2)

The various functions in (A.2) are as defined conventionally (in d dimensions):

AM) = - / (dd$ !

t J (2m)% 2% — M?
(B, B1Py, ¢, Bso + P.P,By;) = -} f (Czi:;d = A%)‘[”(‘; ':”_“}’;))2 —57 (A.3)
We have chosen to express F'(P) in terms of the scalar products
Pa'Pbs  PePas P, pa-P, pe P, pape (A.4)

instead of using kinematical relations to express all scalar products in terms of the two inde-
pendent scalar variables s, v. Note that the analytically non—trivial part of (A.2), involving
the various B functions, contains only the on—shell couplings ag, a1, aq, bg, b1, b2. The off—shell
couplings as, ay, b3, by appear only together with the divergent constants A(M). Since these
terms are polynomials in the momenta of at most degree two, they will enter in the radiative
amplitude only through internal bremsstrahlung and will therefore eventually be absorbed
in K. p. The on—shell coefficients for the various channels are listed in Table 6.

We now turn to the radiative loop amplitude and decompose it into two parts:
El,, = G* + H". | (A.5)

The amplitude G* can be expressed through derivatives of the non-radiative loop amplitude
Fin (A.2) with respect to the various scalar products (A.4). In some of the following terms,
the momentum P has to be replaced by P + k, leaving all scalar products unchanged that

do not contain P explicitly:
F(P+k)— F(P) I (P)A*
L.p cd 8(pa'pb) ab

G" = F(P)Z*+



Table 6: Coeflicients of the vertices V,V, defined in (A.1) for the various loop diagrams.
Only the relevant on—shell coefficients are lListed.

K(—=pa) = m(ps) +
m(z)m(y) = m(p)m(pa) | a0 | a1 | ay || bo | by | by
K* -5 nt +
rtnT > atrs —2M% | =2 | =2 || 2M?| 2 | =2
Kt —» 7ot +
rtr — m0x0 —2Mz | =2 | —2|| M2 | 2 | 0
Kt 5 7at +
oY — ¥t~ —MZ | =210 || M2 | 2|0
Kt =7 +
rint -5 ntpt 0 2 10 0 |—-2| 0
Kt =%+
mtr® — 7tn® ~ME |0 | =2 M2 | 0 |—2
K% —» nt +
mon~ — 7O~ MZ/V2| 0 |V20 M2 0 |—2
K° 57~ +
mOrt — 70rt MZ/V2 0 V2 M2 0 | =2
K° — 7% +
it > atn” MZ/\V2 (V2] 0 ||2M2] 2 | —2
oF s . OF y oOF .
ot Py her T gl RINa i, py (P A RIAG
O (P) ~ qetago (P + k)| D

1 i 9?2 F 9?2 F
PYD*
( ) *F a(pa'P)a(pc'P)

(P+ k)Db| .

(A.6)

We have used the definitions (2.9). When P appears as an index (e.g., in AYp or D%), the
corresponding momentum and charge in (2.9) are P and ¢, 4+ ¢4, respectively.

The second part H* of the loop amplitude (A.5) cannot be expressed in terms of F or
derivatives thereof. For the relevant case of equal loop masses (M, = M, = M, =: M), H*
takes on the following compact form:

H* = as(tsps — tapt ){(q= — ¢y)(2b0 + 2b1pc-pa + bop.- P)Coo( P2, —k- P)
' + b2(¢e + q,)[—2pc- PCay (P2, —k- P) + 2t.Cp(P?, —k-P) — p.- PCyo( P2, —k- P)]}
+ ba(tapt — tp){(as — 9,)[200 + 20104 Ps + @2(Pa- P + £2)|Cao((P + k)2, k- P)
+ as(qe + @) [=2(pa- P + ta)Car (P + k)%, k- P) — 2t,Ca((P + k)2, k- P)
— (Pa* P + ta)Cao((P + k)%, k- P)]} . (A.7)
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e gt

The functions C;; are defined as

—— | ng(u,fv) — C;'j(u,O)

ng(U,’U) — N (AS)
in terms of the three-propagator one-loop functions C;;(p?, k-p) for k* = 0:
l/ dez {z,z,,x,2,2,} -
i S (2m)¢ (22 — M?)[(z + p)? — M?|[(z + k)* — M?]
= {Co(p* k-P)guv + -+, Ca1(p", k) (Pugvp + PG + PoGu)
T 032(1727 k'p)(kugvp + kugp, + kpgut»') T .. } (A,Q)

We recall the following observations from Ref. [7]:

i. The amplitudes G* in (A.6) and H* in (A.7) are separately gauge invariant.

ii. The amplitude H* is finite and at least of O(k). It only contains the on-shell couplings
ag, a1, a2, bo, b1, by defined in (A.1) and the charges q., q, of the particles in the loop.

iii. The generalized bremsstrahlung part of the loop amplitude is contained in G*. De-

noting by Ehg(loop) the result obtained by inserting for A(s,v) the on-shell loop
amplitude (A.2) in Eq. (2.11), the difference

A* = G* — Efg(loop) (A.10)

is at least of O(k). Moreover, by construction of Egp all the divergences in A* are
renormalized by counterterms with an explicit field strength tensor. Finally, A* is finite
for a.b, = 0.

Putting everything together, the subtracted loop amplitude Ej;_ . sracteq 10 (3.1) 1s given
by

Eﬁ)op,subtracted — Z (A” + H”) : (Al]')

loops

The sum extends over the various configurations listed in Table 6.
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